首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
北京市春季大气颗粒物污染特性研究   总被引:3,自引:0,他引:3  
为研究北京市春季大气颗粒物污染特性,2008年3月至2008年5月,对北京市西三环大气颗粒物进行采样分析.测定了总悬浮颗粒物(TSP)与可吸入颗粒物(PM10)的日平均质量浓度,使用扫描电子显微镜(SEM)观察大气颗粒物的微观形貌,并通过X射线能谱仪(EDX)对样品中的元素组成进行分析.结果表明,TSP和PM10日平均质量浓度以初春最高,春天次之,春夏交际最低;PM10/TSP以春夏交际最高,初春次之,春天最低;大气颗粒物形态有规则和不规则2类,以不规则形态居多,同时发现花粉颗粒存在.EDX分析表明,大气颗粒物所附着的重金属中Pb所占的质量分散最高,并且集中吸附在细粒子颗粒物上.  相似文献   

2.
烧结机细颗粒物PM_(2.5)排放特性   总被引:1,自引:0,他引:1  
利用基于荷电低压颗粒物撞击器(ELPI)的颗粒物排放稀释采样系统,对不同烧结机组的机头、机尾、配料和整粒后的烟粉尘进行了PM2.5的现场测试。结果表明了各测试点位排放的PM2.5粒径分布和质量浓度分布特点。烧结机机头脱硫后虽然降低PM2.5的质量浓度,却增大了其粒数浓度,因此应对脱硫工艺进行优化。PM2.5单体颗粒形态有:球形颗粒、超细颗粒、不规则颗粒和烟尘集合体。PM2.5中SO2-4、有机碳(OC)、无机碳(EC)和铁(Fe)的含量较高,分别为2.65%~10.76%,6.15%~12.6%,3.05%~10.05%和4.14%~26.78%。  相似文献   

3.
天津冬季PM2.5与PM10中有机碳、元素碳的污染特征   总被引:2,自引:0,他引:2  
研究了天津冬季PM2.5和PM10中碳成分的污染特征.结果表明,天津冬季PM2.5和PM10的平均质量浓度分别为(124.4±60.9)、(224.6±131.2)μg/m3;总碳(TC)、有机碳(OC)与元素碳(EC)在PM2.5中的平均质量分数比在PM10中分别高出5.0%、3.6%、1.2%;PM2.5中OC、EC的相关系数较高,为0.95,表明OC、EC的来源相对简单,可能主要反应了燃煤和机动车尾气的贡献.OC/EC的平均值在PM2.5和PM10中分别为3.9、4.9.次生有机碳(SOC)在PM2.55和PM10中的平均质量浓度分别为14.9、23.4/μg/m3,分别占OC的48.5%(质量分数,下同)、49.8%,OC/EC较高可能主要与直接排放源有关;PM2.5中的OC1与OC2的比例明显高于PM10,而聚合碳(OPC)的比例又低于PM10,同时PM2.5与PM10中的EC1含量均较高,表明天津冬季燃煤取暖和机动车尾气是重要的污染源.  相似文献   

4.
采用荷电低压颗粒冲击器对4套湿法烟气脱硫(WFGD)系统进出口颗粒物进行在线检测和采样分析,获得烟气中PM10、PM2.5质量浓度以及粒径分布特征,并通过场发射扫描电镜(FESEM)和元素能谱对飞灰颗粒的形貌特征和主要元素含量进行分析。实验结果表明,由于脱硫塔喷淋浆液的洗涤作用,WFGD系统对飞灰颗粒有一定的脱除效果,但喷淋浆液产生的小液滴以及石灰石/石膏颗粒被携带进入烟气,导致WFGD系统对烟气中颗粒物质量浓度及粒径分布影响较大。WFGD系统对飞灰颗粒组成成分也有一定影响,以WFGD系统B为例,出口飞灰颗粒中Ca和S的质量分数从进口的1.60%、2.81%上升到出口的6.12%、10.92%。FESEM观察结果表明,脱硫后小颗粒在脱硫浆液的促进作用下团聚凝并,形成大颗粒,呈现致密的不规则块状、层状或絮状结构。  相似文献   

5.
以和田绿洲西北部的墨玉县为研究区域,对该地区2016—2018年发生的沙尘暴天气资料以及气象因子(气温、风速、湿度、气压、水汽压、日照时数)和大气污染物(PM2.5、PM10、SO2、NO2、CO、O3)进行分析。结果表明,墨玉县沙尘暴天气主要发生在春夏季(3—8月),平均占全年发生频率的77.12%。墨玉县沙尘暴强度主要由气象因子决定,特别是气温、风速、日照时数和湿度。沙尘暴强度与大气颗粒物(PM10和PM2.5)存在着明显的间接关系,主要因为两者均受风速影响较大,沙尘暴强度越大,大气中PM10和PM2.5浓度越高。沙尘暴强度与SO2、NO2、CO、O3等大气污染物的关系非常微弱,但O3与沙尘暴的形成季节比较一致。  相似文献   

6.
利用法国CEMEL公司制造的自动跟踪扫描太阳光度计(CE-318)获取中国北京地区2013—2014年气溶胶数据,并结合MODIS遥感数据以及美国国家海洋和大气管理局(NOAA)的气象资料进行后向轨迹分析,探讨了污染物来源与其雾霾事件的相关性。结果表明:在时间上,北京地区气溶胶光学厚度(AOD)具有春夏季大、秋冬季小的特点;在空间上,北京地区气溶胶颗粒物在大尺度上主要来源于内蒙地区的沙尘以及近海海域的海盐颗粒,小范围内的气溶胶颗粒主要来自人为污染尤其是汽车尾气、工业废气等排放;北京地区2013年6月以及2014年4月PM10与AOD的相关系数(R2)分别为0.418和0.599,说明雾霾发生期间PM10与AOD的相关性较高。  相似文献   

7.
采集了武汉春季大气PM10样品,用超声萃取、衍生化、气相色谱/质谱(GC/MS)技术分析了其有机组成.结果表明,PM10质量浓度为160.3~296.7 μg/m3,其夜晚浓度大于白天.PM10中有机物浓度总体表现为正烷酸>左旋葡聚糖>正构烷烃>二元酸>甘油酸酯>多环芳烃>甾醇>藿烷和甾烷的特征,夜晚浓度大于白天,工作日(周一至周五)大于周末(周六、周日).武汉大气颗粒有机物(POM)既有来源于植物蜡等自然源的输入,也有交通和食物烹饪等人为源的影响.  相似文献   

8.
2008年冬、春季在宝鸡市4个不同功能区采集PM10样品,探讨了PM10中水溶性物质的化学组成、时空分布特征以及来源。结果表明,冬、春季PM10的平均质量浓度分别为(402±100)、(410±160)μg/m3,无明显季节差异,冬季以交通干道区的PM10浓度为最高,而春季则以商贸区的PM10浓度为最高;冬、春季PM10中水溶性有机碳(WSOC)浓度最高值均出现在商贸区,最低值则分别出现在背景点和交通干道区,水溶性无机碳(WSIC)浓度最高值分别出现在交通干道区和商贸区,最低值均出现在背景点;冬、春季PM10中所含大多数无机离子浓度不存在显著空间差异,但不同功能区PM10中无机离子所占质量分数差异较明显;冬、春季PM10中的水溶性物质质量浓度分别为207、151μg/m3,在PM10中所占质量分数分别为51%和40%,其中,冬、春季水溶性物质浓度最高的分别为居民区和商贸区;冬季PM10中WSOC浓度与SO24-、NO3-浓度有较好的相关性,说明冬季PM10中WSOC的主要组分为二次有机气溶胶,而春季PM10中WSOC浓度与SO42-、NO3-浓度的相关性相对较差,这是由于一次有机气溶胶对WSOC的贡献率较冬季显著增大;宝鸡市与北京市大气PM10浓度、PM10中的SO42-、NO3-、NH4+浓度最为接近;广州市大气PM10中的SO42-所占质量分数(14%)要高于北方城市(宝鸡市和北京市均为9%)。  相似文献   

9.
浙东沿海城市大气颗粒物污染特征及来源解析研究   总被引:5,自引:0,他引:5  
对2009年夏季浙东沿海地区环境空气质量进行监测,监测大气颗粒物(TSP、PM10、PM2.5、PM1.0)浓度,分析颗粒物污染特征、水溶性离子及无机元素组成,运用化学质量平衡受体模型(CMB模型)对浙东沿海地区大气TSP来源进行解析.结果表明,浙东沿海地区的大气颗粒物主要以细颗粒物为主,颗粒物中主要的水溶性离子为SO2-4、NH+4、Ca2+,土壤尘是该地区大气TSP的主要来源,北仑、乐清和奉化TSP中土壤尘的分担率分别达到55.49%、42.52%、40.70%,各监测点TSP来源具有一定的地域特征.  相似文献   

10.
黄石市冬/春季大气PM_(10)中重金属形态特征研究   总被引:1,自引:0,他引:1  
采用三级序列提取程序分离黄石市黄石港区、西塞山区、大冶市、阳新县PM10中的不同形态重金属,并使用电感耦合等离子体质谱对分离后液体中8种重金属(Cu、Cd、Zn、Cr、As、Pb、Ni、Co)的含量进行测定。同时,将传统金属生物有效性系数(k)进行加权,从而以重金属生物有效性综合系数(K)直观表征4个区域空气PM10中重金属对人体健康的危害程度。结果表明:(1)As为黄石市主要重金属污染物,冬季西赛山区As的质量分数为85.5%。(2)黄石港区PM10中冬季Cu、Zn、Cd、Pb和春季Cu、Cr、Pb,西塞山区PM10中冬季Cu、Zn、Cd、Pb、Ni、Co和春季Zn、Cd、Cr、Pb、Ni、Co,大冶市PM10中冬季Cu、Zn、Pb、Ni和春季Cd、As、Pb,阳新县PM10中冬季Zn、Cd、As、Pb和春季Zn、Cd、Pb,其k均大于0.2,对当地居民的健康存在潜在风险或风险。综合评价,阳新县冬季和大冶市春季的大气重金属污染较严重,其K分别为0.544和0.340,对人体健康风险较大。  相似文献   

11.

A campaign was conducted to assess and compare the personal exposure in L3 of Tianjin subway, focusing on PM2.5 levels, chemical compositions, morphology analysis, as well as the health risk of heavy metal in PM2.5. The results indicated that the average concentration of the PM2.5 was 151.43 μg/m3 inside the train of the subway during rush hours. PM2.5 concentrations inside car under the ground are higher than those on the ground, and PM2.5 concentrations on the platform are higher than those inside car. Regarding metal concentrations, the highest element in PM2.5 samples was Fe; the level of which is 17.55 μg/m3. OC is a major component of PM2.5 in Tianjin subway. Secondary organic carbon is the formation of gaseous organic pollutants in subway. SEM–EDX and TEM–EDX exhibit the presence of individual particle with a large metal content in the subway samples. For small Fe metal particles, iron oxide can be formed easily. With regard to their sources, Fe-containing particles are generated mainly from mechanical wear and friction processes at the rail–wheel–brake interfaces. The non-carcinogenic risk to metals Cr, Ni, Cu, Zn and Pb, and carcinogenic hazard of Cr and Ni were all below the acceptable level in L3 of Tianjin subway.

  相似文献   

12.
This study investigates the source identification of nickel in the aerosol of the Tokyo metropolitan area. TSP and PM2.5 samples were collected daily from August to November 2004. The samples were examined by means of the water-extraction method, followed by elemental analysis and SEM/EDX analysis. We distinguished two types of atmospheric nickel sources in the studied area: (1) particles derived from heavy oil combustion, distributed mostly in fine particles such as PM2.5, relatively water-soluble, and containing vanadium and (2) particles derived from mechanical abrasion/erosion of metallic surfaces, distributed in coarse particles such as TSP, relatively water-insoluble, and containing chromium.  相似文献   

13.
Aerosol particles were collected in the situation of the widespread dust suspension on 21 February 1991 at Qira in the southern edge of the Taklamakan Desert, western China. The collected particles were examined by a transmission electron microscope equipped with an energy-dispersive X-ray (EDX) analyzer in order to obtain the size and elemental composition of individual mineral particles.On the basis of EDX analyses for 386 particles, mineral particles were present in high number fractions (>99%) of particles in the radius range of 0.1–4 μm. Particles mainly composed of silicates comprised 76% of mineral particles. “Ca-rich” particles were detected in 7% of all the particles. Ca in the particles would be present not only as CaCO3 but also as an internal mixture of CaCO3 and CaSO4. Particles containing halite (NaCl) were detected in number proportions of about 10% and were mainly present in the radius range of 0.5 μm. Some halite particles would be modified by chemical reactions with sulfuric acid.  相似文献   

14.
Tobacco smoking is one of the greatest sources of indoor inhalable (PM10) particles. In the past, the studies conducted on indoor particulates were mostly related to PM10, however in the last decade respirable particles (PM2.5) and even smaller particles (PM1) began to be more important as they penetrate deeper in the respiratory system, causing severe health effects. Therefore, more information on fine particles is needed. Aiming to evaluate the impact of tobacco smoke on public health, this work evaluates the influence of tobacco smoke on the characteristics of PM10, PM2.5, and PM1 considering concentration and elemental composition. Samples were collected at sites influenced by tobacco smoke, as well as at reference sites, using low-volume samplers; the element analyses were performed by proton induced X-ray emission (PIXE); Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Cd, I, Ba, La, Ce and Pb were quantified. At the sites influenced by tobacco smoke concentrations were 270–560% higher for PM10 and 320–680% higher for PM2.5 than at reference sites. Tobacco smoke increased the total concentrations of five carcinogenic elements (Cr, Ni, As, Cd and Pb) 1100–2400% for PM10 and 840–2200% for PM2.5. The elements associated with tobacco smoke (S, K, Cr, Ni, Zn, As, Cd and Pb) were predominantly present in the fine fraction; the elements mostly originating from building erosion (Mg, Al, Si and Ca) predominantly occurred in the coarse particles. The analysis of enrichment factors confirmed that tobacco smoking mainly influenced the composition of the fine fraction of particles; as these smaller particles have a strong influence on health, these conclusions are relevant for the development of strategies to protect public health.  相似文献   

15.
Energy dispersive X-ray analysis of elements and reagent thin-film test of particulate nitrate and sulfate were carried out to examine individual dust particles collected in Beijing during five dust-storm events occurring in spring of 1995 and 1996. Dominant particles were electron-opaque and had irregular shapes during the dust-storm periods, and their size was frequently in the range larger than 1 μm (diameter). Besides, some mineral particles that showed regular cubic shapes were found in the range from 0.1 to 2 μm. Their X-ray spectrums indicated calcium was abundant and little or no other elements with atomic number larger than 11 existed in such particles. They were supposed to be emitted initially from construction sites, and then formed through crystallization in the atmosphere. Their most possible composition was CaO or Ca(OH)2. It was estimated that 93% of the collected electron-opaque particles are dust particles and the cubic particles in term of number frequency. On reagent films, few dust particles reacted apparently with barium chloride suggesting there was no water-soluble sulfate on the surface of dust particles although X-ray spectrums of about 14.6% of dust particles showed peaks of sulfur. The frequency of nitrate-containing particles in dust particles was 10.8%, which was much smaller than that in mineral particles collected in non-dust-storm periods. These results suggest that almost no sulfate is formed and nitrate is hardly formed on the surface of dust particles during their transport from source areas to Beijing.  相似文献   

16.
In this paper we describe and quality assure the sampling system of a mobile research laboratory SNIFFER which was shown to be a useful tool for studying emission levels of respirable dust from street surfaces. The dust plume had bimodal structure; another mode rising to higher altitudes whereas the other mode remained at lower altitudes. The system was tested on a route in Helsinki, Finland, during spring 2005 and 2006. The PM2.5 and PM10 were positively correlated and the PM levels increased with the vehicle speed. SNIFFER was able to identify the characteristic emission levels on different streets. A clear downward trend in the concentrations was observed in all street locations between April and June. The composition of the street dust collected by SNIFFER was compared with springtime PM10 aerosol samples from the air quality monitoring stations in Helsinki. The results showed similarities in the abundance and composition of the mineral fraction but contained significantly more salt particles.  相似文献   

17.
After urban sources, mineral dust in Madrid is the second biggest contributor to PM10, making up 40% on average, of total emissions. Approximately, 50% of the days on which the daily limit of 50 μg m?3 marked by the European Directive, are ascribable to Saharan outbreaks. The present study has focused on individual particle characterization of North African dust over Madrid by SEM/EDX, since no previous works on this type of characterization have been found in the region. More than 30,000 particles from 6 different samples have been measured to characterize 4 African episodes with very different meteorological scenarios, transport processes and source origins. Different samples from the same episode have also been characterized to evaluate homogeneity of dust characteristics over time. Silicates, mainly composed of clay minerals, are the main component, with abundances ranging from 65 to 85% by particle volume. Chemical cluster distribution of silicates has been linked to the major topsoil mineralogical composition in the origin of the episodes. Aspect Ratio (AR) has been used to compare particle morphology between episodes. AR values from samples taken under the same scenarios are statistically equal. For all the samples and size ranges AR values are found to be in the same order: ARsulphates > ARsilicates > ARcarbonates. Particles not only maintained morphology during the episode, but also chemical composition, since clusters turned out to be very similar in samples taken on the same day and different days. Similarities and differences in particle chemical composition and morphology between the different transport patterns are discussed in detail throughout the paper.  相似文献   

18.
Because of the mutagenic and/or carcinogenic properties, Polycyclic Aromatic Hydrocarbons (PAH), have a direct impact on human population. Consequently, there is a widespread interest in analysing and evaluating the exposure to PAH in different indoor environments, influenced by different emission sources. The information on indoor PAH is still limited, mainly in terms of PAH distribution in indoor particles of different sizes; thus, this study evaluated the influence of tobacco smoke on PM10 and PM2.5 characteristics, namely on their PAH compositions, with further aim to understand the negative impact of tobacco smoke on human health. Samples were collected at one site influenced by tobacco smoke and at one reference (non-smoking) site using low-volume samplers; the analyses of 17 PAH were performed by Microwave Assisted Extraction combined with Liquid Chromatography (MAE–LC). At the site influenced by tobacco smoke PM concentrations were higher 650% for PM10, and 720% for PM2.5. When influenced by smoking, 4 ring PAH (fluoranthene, pyrene, and chrysene) were the most abundant PAH, with concentrations 4600–21 000% and 5100–20 800% higher than at the reference site for PM10 and PM2.5, respectively, accounting for 49% of total PAH (ΣPAH). Higher molecular weight PAH (5–6 rings) reached concentrations 300–1300% and 140–1700% higher for PM10 and PM2.5, respectively, at the site influenced by tobacco smoke. Considering 9 carcinogenic PAH this increase was 780% and 760% in PM10 and PM2.5, respectively, indicating the strong potential risk for human health. As different composition profiles of PAH in indoor PM were obtained for reference and smoking sites, those 9 carcinogens represented at the reference site 84% and 86% of ΣPAH in PM10 and PM2.5, respectively, and at the smoking site 56% and 55% of ΣPAH in PM10 and PM2.5, respectively. All PAH (including the carcinogenic ones) were mainly present in fine particles, which corresponds to a strong risk for cardiopulmonary disease and lung cancer; thus, these conclusions are relevant for the development of strategies to protect public health.  相似文献   

19.
The ambient air of the Monterrey Metropolitan Area (MMA) in Mexico frequently exhibits high levels of PM10 and PM2.5. However, no information exists on the chemical composition of coarse particles (PMc = PM10 – PM2.5). A monitoring campaign was conducted during the summer of 2015, during which 24-hr average PM10 and PM2.5 samples were collected using high-volume filter-based instruments to chemically characterize the fine and coarse fractions of the PM. The collected samples were analyzed for anions (Cl, NO3, SO42–), cations (Na+, NH4+, K+), organic carbon (OC), elemental carbon (EC), and 35 trace elements (Al to Pb). During the campaign, the average PM2.5 concentrations did not showed significance differences among sampling sites, whereas the average PMc concentrations did. In addition, the PMc accounted for 75% to 90% of the PM10 across the MMA. The average contribution of the main chemical species to the total mass indicated that geological material including Ca, Fe, Si, and Al (45%) and sulfates (11%) were the principal components of PMc, whereas sulfates (54%) and organic matter (30%) were the principal components of PM2.5. The OC-to-EC ratio for PMc ranged from 4.4 to 13, whereas that for PM2.5 ranged from 3.97 to 6.08. The estimated contribution of Secondary Organic Aerosol (SOA) to the total mass of organic aerosol in PM2.5 was estimated to be around 70–80%; for PMc, the contribution was lower (20–50%). The enrichment factors (EF) for most of the trace elements exhibited high values for PM2.5 (EF: 10–1000) and low values for PMc (EF: 1–10). Given the high contribution of crustal elements and the high values of EFs, PMc is heavily influenced by soil resuspension and PM2.5 by anthropogenic sources. Finally, the airborne particles found in the eastern region of the MMA were chemically distinguishable from those in its western region.

Implications: Concentration and chemical composition patterns of fine and coarse particles can vary significantly across the MMA. Public policy solutions have to be built based on these observations. There is clear evidence that the spatial variations in the MMA’s coarse fractions are influenced by clearly recognizable primary emission sources, while fine particles exhibit a homogeneous concentration field and a clear spatial pattern of increasing secondary contributions. Important reductions in the coarse fraction can come from primary particles’ emission controls; for fine particles, control of gaseous precursors—particularly sulfur-containing species and organic compounds—should be considered.  相似文献   


20.
Continuous measurement of PM10, PM2.5 and carbon (organic, elemental composition) concentrations, and samples of PM10 and PM2.5 collected on a polycarbonate membrane filter (Nuclepore®, pore size: 0.8 μm), were carried out during a period from December 1998 to January 1999 at Shinjuku in Tokyo in order to investigate the chemical characterization of particles in winter-night smog within a large area of the Japan Kanto Plain including the Tokyo Metropolitan area. These were measured using an ambient particulate monitor (tapered element oscillating microbalance—TEOM) and a carbon particulate monitor. Elemental compositions in the filter samples of PM10 and PM2.5 were determined by means of particle-induced X-ray emission (PIXE) analysis. Ionic species (anion: F, Cl, NO3, SO42− and C2O42−; cation: Na+, NH4+, K+, Ca2+ and Mg2+) in the filter samples were analyzed by ion chromatography. The temporal variation patterns of PM2.5 were similar to those of PM10 and carbon. PM2.5 made up 90% of the PM10 at a high concentration, and 70% at a low concentration. Concentrations of 22 elements in both the PM10 and PM2.5 samples were consistently determined by PIXE, and Na, Mg, Al, Si, S, Cl, K, Ca, Fe, Zn and Pb were found to be the major components. Among these S and Cl were the most dominant elements of the PM2.5 and PM10 at high concentrations. Ionic species were mainly composed of Cl, NO3, SO42− and NH4+. The component proportion of carbon, the other elements (total amount of measured elements other than S and Cl) and secondary-formed particles of PM2.5 was similar to that of PM10. The major component was carbon particles at a low concentration and secondary-formed particles at a high concentration. The proportion of NH4NO3 and NH4Cl plus HCl in secondary-formed particles at a high concentration, in particular, was as high as 90%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号