首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents the laboratory scale results of an extra step in Poly (ethylene terephthalate) – PET mechanical recycling (grinding, washing, drying and reprocessing): a chemical washing after the conventional one. Cooking oil PET bottle flakes were washed in water and then subjected to a reaction with an aqueous solution of sodium hydroxide 5 M at 90 °C for 10 min (chemical washing). After rinsing and drying, the flakes were characterized by thermogravimetry, gas chromatography and elemental analysis tests. The results indicated that the chemically washed material had higher purity than PET washed only with water: 99.3% and 96.7%, respectively, which undoubtedly implies properties, applications and prices closer to those of virgin resin. The production of purified terephthalic acid (TPA) from the chemical washing residue was optimized and reached a purity of 99.6%. Despite the results, the use of chemically washed PET and of TPA obtained is not recommended for direct contact with food, since they still contain some impurities.  相似文献   

2.
At present glass fibre reinforced plastic (GRP) waste recycling worldwide is very limited due to its intrinsic thermoset properties, lack of characterisation data and non availability of viable recycling and recovery routes. In the present study, efforts were made to recycle GRP waste powder and fibre in concrete and cement composites and assess its quality to comply with the British standards for use in construction applications. Results revealed that the mean compressive strength of concrete composites using 5%–50% GRP waste powder under water curing varied from 37 N/mm2 to 19 N/mm2. Increase in the concentration of GRP waste decreased the compressive strength. However, increase in curing duration (14–180 days) resulted in improving the compressive strength of concrete with 5% GRP application to 45.75 N/mm2. Moreover, the density of concrete with 50% GRP waste was reduced by about 12% as compared to the control sample. The bending strength in terms of modules of rupture (MOR) of 12 mm thickness cement composites developed using 5% GRP waste fibre attained 16.5 N/mm2. The findings of this work pave the way for further GRP waste recycling in precast construction products for use in various applications.  相似文献   

3.
Continually increasing amounts of municipal solid waste (MSW) and the limited capacity of the existing waste management system in Phuket have led to the consideration of integrated waste management system (IWMS). Life cycle assessment (LCA) was employed to compare the greenhouse gas emissions expressed as global warming potential (GWP) of the existing waste management system (the base scenario) and other three IWMSs for Phuket MSW. Besides incineration and landfilling, the proposed scenarios include 30% source separation for recycling (scenario 2), anaerobic digestion (scenario 3) and both (scenario 4).The functional unit is set as 1 t of Phuket MSW treated. Results from the impact assessment of the base scenario shows that the net GWP is 1006 kg CO2 equivalent. Landfilling contributes to the highest potentials of this impact. The results from a holistic comparison show that scenario 4 is the best option among all the scenarios, contributing GWP of 415 kg CO2 eq., whereas the base scenario is the worst. The emission of greenhouse gas from landfilling is reduced by the introduction of landfill gas recovery and utilization for electricity production. By assumption, 50% recovery of landfill gas leads to the GWP reduction around 58% by total GWP of landfilling and 36% by the net GWP of the whole system in the base scenario. The study suggests that a policy that promotes source separation should be pursued, preferably combined with the application of landfill gas recovery for electricity. Policy promoting recycling is favorable over anaerobic digestion in the situation that both treatment systems could not be established at the same time. The major conclusion from the study is that results from the LCA can support Phuket Municipality for decision-making with respect to planning and optimizing IWMS. It can benefit other municipalities or policy makers to apply in their waste management projects.  相似文献   

4.
The life cycle of basic food items was studied in order to discover the reasons for low landfill diversion rates of this material. Management failures at key points of the cycle were identified. Subjects of study were commercialization procedures of fruit and vegetables before consumption, consumption proper and after-consumption disposal procedures for food scraps in the Brazilian context. Before consumption, the rate of lost fruit and vegetables stood at 16 wt.% of the total quantity commercialized. During consumption by residents, the waste rate of food amounted to 9 wt.% of all collected household garbage. In the after-consumption sector of the cycle, biodegradables represented 72 wt.% of all household garbage collected by official means in a typical Brazilian town. The numbers produced clearly identified landfill diversion of biodegradables as a management problem. The authors experimented with original proactive administrative procedures designed to set landfill diversion targets. The occurrence of wasted fruit and vegetables at the wholesaler and retailer levels was identified. Remedies were proposed and tested to reduce this waste by at least 50%. In the after-consumption sector, the notion of divided garbage collection was developed and applied to test communities. It was shown that biodegradables may be collected separately from the rest of household waste. This resulted in a diversion potential of 100% for biodegradables alone and 77 wt.% for all collected household waste. The study produced a formal policy proposal to municipal administrations to avoid the need for tipping of biodegradable material.  相似文献   

5.
This paper presents relevant data for industry and governmental policy makers with the aim of increasing the recycling rate of end-of-life copper and zinc in Australia in a technically and economically feasible way. The methodology used to quantify and spatially distribute end-of-life flows of copper and zinc is based on existing and anticipated in-use stocks, their residence times, and their historical and anticipated future evolution. Australia currently (ca. 2000) generates about 72 Gg/year and 57 Gg/year of end-of-life copper and zinc, respectively. Some 70% of all discarded copper and 40% of all discarded zinc generated in Australia are currently being recycled. A detailed assessment shows that about 75% of all end-of-life material in Australia comes from the three states New South Wales, Victoria, and Queensland. In Australia, about 70–75% of waste copper and waste zinc is generated in urban areas. Residential applications account for about 40% (copper) and 60% (zinc) of the generated discards; commercial and industrial applications account for the remainder. By 2030, the discard flows are predicted to increase by about 105% and 155%, to 150 Gg Cu/year and 145 Gg Zn/year, providing substantially increased opportunities for recovery and re-use. Priority targets for the improvement of copper and zinc recycling in Australia are buildings under renovation, urban infrastructure, the transportation sector, and also consumer and business durables. Urban centres are particularly attractive locations for recycling facilities, especially in Perth and Adelaide.  相似文献   

6.
废旧家用电器回收再利用技术研究   总被引:1,自引:0,他引:1  
介绍了国内外废旧家电的回收利用状况、处理方法和工艺流程,重点介绍了废旧电视机、冰箱、空调器和洗衣机的处理工艺和废塑料的再生利用,并针对我国实际提出了相应的措施和办法。  相似文献   

7.
This paper summarises the results of a number of life cycle evaluations that we have carried out in recent years about some of the sub-units (in particular, the recycling of the packaging materials, the treatment of the bio-waste, and the energy recovery from the residual waste) that compose a municipal solid waste management system (MSWMS) and about the MSWMS as a whole.The range of values estimated for cumulative energy demand (CED), global warming (GWP100), human toxicity, acidification, and photochemical ozone creation indicators according to the different analyses are presented in the paper for each sub-unit. The assumptions influencing the results have been identified, too. The proper aggregation of sub-units has allowed the estimation of the impacts associated with two integrated MSWMSs implemented in Italy and of the order of magnitude of those associated with a generic MSWMS, similar to those of the two case studies.The results show that the assumptions that most influence the environmental indicators are those about selection efficiencies and quality deterioration in the recycling of the packaging materials, about process emissions and avoided products in the composting, about the biogas yield and its way of utilisation in the anaerobic digestion, and about the efficiency of the plant and the kind of avoided energy in the energy recovery. All the indicators, except GWP100 under certain assumptions, are negative in sign, thus indicating a benefit for the environment thanks to the avoided impact associated with the production of material and energy during the waste management. The estimated order of magnitude of the CED and GWP100 indicators turns out to be respectively thousands of MJ eq. and tens of kg CO2 eq. per tonne of managed waste.  相似文献   

8.
The waste electrical and electronic equipment (WEEE) directives are designed to deal with the rapidly increasing waste stream comprised of electrical and electronic equipment. Recycling electrical and electronic equipment reduces the quantity of waste going to final disposal. The demand for thin film transistor liquid crystal display (TFT-LCD) panels, commonly used in everyday electronic products, is increasing. Conventionally adopted treatments of TFT-LCD waste glass cannot meet WEEE directives. This study adopts the following operating conditions in fabricating glass–ceramics: sintering temperature of 800–950 °C; sintering time of 6 h; and, temperature increase rate of 5 °C/min. The glass–ceramic samples then underwent a series of tests, including the Vickers hardness, water absorption and porosity tests, to determine product quality. The Vickers hardness was 12.1 GPa when fired at 900 °C for 6 h, and density was 2.4 g/cm3 and water absorption was 0%. Thus, TFT-LCD waste glass can be regarded as a good glass–ceramic material.  相似文献   

9.
Agriculture is an important contributor to global emissions of greenhouse gases (GHG), in particular for methane (CH4) and nitrous oxide (N2O). Emissions from farms with a stock of ruminant animals are particularly high due to CH4 emissions from enteric fermentation and manure handling, and due to the intensive nitrogen (N) cycle on such farms leading to direct and indirect N2O emissions. The whole-farm model, FarmGHG, was designed to quantify the flows of carbon (C) and nitrogen (N) on dairy farms. The aim of the model was to allow quantification of effects of management practices and mitigation options on GHG emissions. The model provides assessments of emissions from both the production unit and the pre-chains. However, the model does not quantify changes in soil C storage.Model dairy farms were defined within five European agro-ecological zones for both organic and conventional systems. The model farms were all defined to have the same utilised agricultural area (50 ha). Cows on conventional and organic model farms were defined to achieve the same milk yield, so the basic difference between conventional and organic farms was expressed in the livestock density. The organic farms were defined to be 100% self-sufficient with respect to feed. The conventional farms, on the other hand, import concentrates as supplementary feed and their livestock density was defined to be 75% higher than the organic farm density. Regional differences between farms were expressed in the milk yield, the crop rotations, and the cow housing system and manure management method most common to each region.The model results showed that the emissions at farm level could be related to either the farm N surplus or the farm N efficiency. The farm N surplus appeared to be a good proxy for GHG emissions per unit of land area. The GHG emissions increased from 3.0 Mg CO2-eq ha−1 year−1 at a N surplus of 56 kg N ha−1 year−1 to 15.9 Mg CO2-eq ha−1 year−1 at a N surplus of 319 kg N ha−1 year−1. The farm N surplus can relatively easily be determined on practical farms from the farm records of imports and exports and the composition of the crop rotation. The GHG emissions per product unit (milk or metabolic energy) were quite closely related to the farm N efficiency, and a doubling of the N efficiency from 12.5 to 25% reduced the emissions per product unit by ca. 50%. The farm N efficiency may therefore be used as a proxy for comparing the efficiencies of farms with respect to supplying products with a low GHG emission.  相似文献   

10.
This paper presents a study on the resource and environmental profile of leather for communicating to the consumers about the environmental burdens of leather products. The results indicate that significant environmental impacts were caused during the tanning and finishing of leather as well as the electricity production and transportation required in the life cycle. The use of fossil fuels in the production of energy has greater impact with increased emissions leading to about 15190 kg CO2 equivalent of global warming and about 73 kg SO2 equivalent of acidification while producing 100 m2 of leather for shoe uppers. Further resource use of 174 kg of coal, 6.5 kg of fuel oil, 17.4 m3 of water and 348 kg of chemicals of which about 204 kg are hazardous are consumed, and wastewater of about 17 m3, BOD of 55 kg, COD of about 146 kg, TDS of 732 kg and solid waste of about 1445 kg are generated during the life cycle for the production of 100 m2 of leather. The total solid waste generated is 1317 kg, out of which about 80% is biodegradable contributed by slaughtering, tanning and finishing stage, 14% is non-biodegradable contributed by tanning, finishing and electricity production stages and 6% is hazardous mainly from tanning and finishing stage of leather.  相似文献   

11.
In many parts of the world, freshwater is already a scarce and overexploited natural resource, raising concerns about global food security and damage to freshwater ecosystems. This situation is expected to intensify with the FAO estimating that world food production must double by 2050. Food chains must therefore become much more efficient in terms of consumptive water use. For the small and geographically well-defined Australian mango industry, having an average annual production of 44,692 t of marketable fresh fruit, the average virtual water content (sum of green, blue and gray water) at orchard gate was 2298 l kg?1. However, due to wastage in the distribution and consumption stages of the product life cycle, the average virtual water content of 1 kg of Australian-grown fresh mango consumed by an Australian household was 5218 l. This latter figure compares to an Australian-equivalent water footprint of 217 l kg?1, which is the volume of direct water use in Australia having an equivalent potential to contribute to water scarcity. Nationally, distribution and consumption waste in the food chain of Australian-grown fresh mango to Australian households represented an annual waste of 26.7 Gl of green water and 16.6 Gl of blue water. These findings suggest that interventions to reduce food chain waste will likely have as great or even greater impact on freshwater resource availability as other water use efficiency measures in agriculture and food production.  相似文献   

12.
In recent years, the increasing world population and rapid industrial development has increased the consumption of fossil fuel-derived oils. In response to the resulting exhaustion of fossil fuel energy, many countries around the world are investigating methods of waste energy recovery and reuse, including oil recovery from the pyrolysis process of waste tires. This study investigates the efficiency of an ultrasound-assisted oxidative desulfurization (UAOD) process in sulfur reduction from diesel oil and the pyrolysis oil from waste tires treatment. The results indicate that the oxidation efficiency increases as the doses of transition metal catalyst are increased. Longer sonication time also enhances the oxidation process, apparently through the biphasic transfer of oxidants, which results in a high yield of organic sulfur oxidation products. The best desulfurization efficiency was 99.7% (2.67 ppm sulfur remaining) and 89% (800 ppm sulfur remaining) for diesel and pyrolysis oils, respectively, via a process executed by two UAOD units connected in series and combined with solid adsorption using 30 g of Al2O3 in 6 cm columns. These batch experiment results demonstrate clean waste energy recovery and utilization, while fulfilling the requirements of Taiwan EPA environmental regulations (sulfur concentrations less than 5000 ppm).  相似文献   

13.
Nitrogen (N) losses from agriculture are negatively impacting groundwater, air, and surface water quality. National, state, and local policies and procedures that can mitigate these problems are needed. Market-based approaches where waste treatment plants (point sources) can purchase nutrient credits from upstream agricultural operations (non-point sources) to meet their National Pollutant Discharge Elimination System permit requirements within the Clean Water Act are being explored. This paper reviews these market-based approaches for enhancing air and water quality at a lower cost than simple command-and-control regulation, and describes new tools that are being developed, such as Nitrogen Trading Tool (NTT), that can be used to assess nitrogen losses to the environment under different management scenarios. The USDA-NRCS, EPA and several other state and local agencies are interested in these new tools. The NTT, though primarily designed for water quality markets, also estimates savings in nitrous oxide (N2O) emissions that can be traded in carbon markets. For example, an analysis using NTT shows that for 100 ha of crop land, a C sequestration equivalent of approximately 25–38 Mg C y?1 for a farm in Ohio, and 13–21 Mg C y?1 for a farm in Virginia could be achieved with better nitrogen management practices. These numbers across a watershed could be much larger with improved N and conservation management practices that contribute to better water quality and lower global warming potential. There is a need to further develop, calibrate, and validate these tools to facilitate nitrogen and carbon trading future markets around the globe to increase environmental conservation across agro-ecosystems worldwide.  相似文献   

14.
Soil organic C (SOC) and total soil N (TSN) sequestration estimates are needed to improve our understanding of management influences on soil fertility and terrestrial C cycling related to greenhouse gas emission. We evaluated the factorial combination of nutrient source (inorganic, mixed inorganic and organic, and organic as broiler litter) and forage utilization (unharvested, low and high cattle grazing pressure, and hayed monthly) on soil-profile distribution (0–150 cm) of SOC and TSN during 12 years of pasture management on a Typic Kanhapludult (Acrisol) in Georgia, USA. Nutrient source rarely affected SOC and TSN in the soil profile, despite addition of 73.6 Mg ha?1 (dry weight) of broiler litter during 12 years of treatment. At the end of 12 years, contents of SOC and TSN at a depth of 0–90 cm under haying were only 82 ± 5% (mean ± S.D. among treatments) of those under grazed management. Within grazed pastures, contents of SOC and TSN at a depth of 0–90 cm were greatest within 5 m of shade and water sources and only 83 ± 7% of maximum at a distance of 30 m and 92 ± 14% of maximum at a distance of 80 m, suggesting a zone of enrichment within pastures due to animal behavior. During 12 years, the annual rate of change in SOC (0–90 cm) followed the order: low grazing pressure (1.17 Mg C ha?1 year?1) > unharvested (0.64 Mg C ha?1 year?1) = high grazing pressure (0.51 Mg C ha?1 year?1) > hayed (?0.22 Mg C ha?1 year?1). This study demonstrated that surface accumulation of SOC and TSN occurred, but that increased variability and loss of SOC with depth reduced the significance of surface effects.  相似文献   

15.
Soil tillage and straw management are both known to affect soil organic matter dynamics. However, it is still unclear whether, or how, these two practices interact to affect soil C storage, and data from long term studies are scarce. Soil C models may help to overcome some of these problems. Here we compare direct measurements of soil C contents from a 9 year old tillage experiment to predictions made by RothC and a cohort model. Soil samples were collected from plots in an Irish winter wheat field that were exposed to either conventional (CT) or shallow non-inversion tillage (RT). Crop residue was removed from half of the RT and CT plots after harvest, allowing us to test for interactive effects between tillage practices and straw management. Within the 0–30 cm layer, soil C contents were significantly increased both by straw retention and by RT. Tillage and straw management did not interact to determine the total amount of soil C in this layer. The highest average soil C contents (68.9 ± 2.8 Mg C ha?1) were found for the combination of RT with straw incorporation, whereas the lowest average soil C contents (57.3 ± 2.3 Mg C ha?1) were found for CT with straw removal. We found no significant treatment effects on soil C contents at lower depths. Both models suggest that at our site, RT stimulates soil C storage largely by decreasing the decomposition of old soil C. Extrapolating our findings to the rest of Ireland, we estimate that RT will lead to C mitigation ranging from 0.18 to 1.0 Mg C ha?1 y?1 relative to CT, with the mitigation rate depending on the initial SOC level. However, on-farm assessments are still needed to determine whether RT management practices can be adopted under Irish conditions without detrimental effects on crop yield.  相似文献   

16.
Using the life cycle assessment (LCA) method, we analyzed the effects of different cropping systems (sole maize (CK), maize + soybean (CST) and maize + groundnut (CGT)) on the environment. The comprehensive index of environmental impacts varied in the order, sole maize > maize + groundnut > maize + soybean, with corresponding intercropping values of 0.1295, 0.1229 and 0.0945, respectively. The results showed that intercropping maize with suitable plants (e.g., groundnut and soybean) could reduce the adverse effects of over-application of nitrogen fertilizer on the environment. The study further showed that the LCA method may be a convenient and effective approach for analyzing the environmental impact of fertilizer management in agricultural fields.  相似文献   

17.
Using the organic fraction of municipal solid waste (OFMSW) for biogas production might contribute to greenhouse gas mitigation, but emissions linked with biogas production can reduce these beneficial effects. Therefore the emissions of NH3, CH4 and N2O and costs caused by treating OFMSW by co-fermentation with slurry were calculated in detail from literature data, and strategies for reducing emissions were evaluated. Emission factors were calculated for single gases during storage and after application. The sensitivity of the calculations concerning the organic dry matter content of OFMSW, retention time and CH4-yield was analyzed. The anaerobic co-fermentation of OFMSW increased biogas yields and contributed to the reduction of CO2 emissions with 32 to 152 kg CO2 t−1 organic waste depending on application and storage techniques used for the fermentation residues. Considering a payment of 0.1 €/kWh for the electricity produced, the costs for utilization of OFMSW in slurry based biogas plants were calculated to range between 34 and 38  t−1. Measures for mitigating greenhouse gas emissions by covering the fermentation residue stores proved to be more cost effective with 3–31  t−1 CO2 compared to immediate harrowing or injecting the residues during field application.  相似文献   

18.
Upscaling the spatial and temporal changes in carbon (C) stocks and fluxes from sites to regions is a critical and challenging step toward improving our understanding of the dynamics of C sources and sinks over large areas. This study simulated soil organic C (SOC) dynamics within 0–100 cm depth of soils across the state of Iowa in the USA from 1972 to 2007 using the General Ensemble biogeochemical Modeling System (GEMS). The model outputs with variation coefficient were analyzed and assembled from simulation unit to the state scale based upon major land use types at annual step. Results from this study indicate that soils (within a depth of 0–100 cm) in Iowa had been a SOC source at a rate of 190 ± 380 kg C ha?1 yr?1. This was likely caused by the installation of a massive drainage system which led to the release of SOC from deep soil layers previously protected under poor drainage conditions. The annual crop rotation was another major force driving SOC variation and resulted in spatial variability of annual budgets in all croplands. Annual rate of change of SOC stocks in all land types depended significantly on the baseline SOC levels; soils with higher SOC levels tended to be C sources, and those with lower levels tended to be C sinks. Management practices (e.g., conservation tillage and residue management practices) slowed down the C emissions from Iowa soils, but could not reverse the general trend of net SOC loss in view of the entire state due mainly to a high level of baseline SOC stocks.  相似文献   

19.
In West Africa policies for prescribed early fire and livestock grazing in the savanna woodlands are rarely based on long-term experimental studies. The inherently different management characteristics and their effects on the vegetation dynamics make landscape degradation a contentious issue. The effects of grazing intensity were investigated by a comparison of non-grazed areas, lightly grazed areas, moderately grazed areas, heavily grazed areas and very heavily grazed areas that received one of two fire treatments: early burning and fire protection in a long-term 12-year study. The parameters assessed reflected changes in herbaceous plant cover, biomass as well as soil physical and hydrological properties. The main findings were by and large specific for the grazing level. This supports the argument for devolution of management responsibility to the local level where there is indigenous site-specific knowledge but at the same time insufficient management capacity.A comparison of composite soil samples taken at a depth of 0–10 cm did not differentiate significantly between treatments. This is probably because the composite soil sampling procedure hid the properties of the top first few centimeters. Grazing pressure had a tendency to reduce total above ground biomass (p = 0.081). This was related to increased biomass removal and the trampling pressure (static load) exerted by the animals. The infiltration measurements indicated that the deleterious impact of cattle trampling increased as stocking rate increased. Livestock grazing significantly (p = 0.038) lowered the infiltrability. Prescribed early fire had a tendency (p = 0.073) to reduce the soil water infiltration rate. The subplots subjected to prescribed burning had a lower steady state infiltration rate compared to unburnt areas (means of 49.2 ± 27.5 mm h−1 versus 78 ± 70.5 mm h−1 for burnt and unburnt subplots, respectively). A partial least squares projection to latent structures showed that 34% of the steady state infiltrability was explained by the stocking rate and soil organic matter. Also all soil characteristics were significantly connected to steady state infiltrability suggesting that they are related to the soil hydrological response to trampling.From a management perspective, adoption of a short duration grazing system should avoid high stocking rates because they may adversely affect soil infiltrability, increase susceptibility to erosion in the savannas and decrease biomass productivity.  相似文献   

20.
One-year winter wheat–summer maize rotation is the most popular double cropping system in north-central China, and this highly productive system is an important source of nitrous oxide (N2O) and nitric oxide (NO) emissions due to the high fertilizer N and irrigation water inputs. To sustain the high crop production and mitigate the detrimental impacts of N2O and NO emissions, improved management practices are extensively applied. The aim of this study is therefore to evaluate the effects of an improved management practice of irrigation, fertilization and crop straw on grain yield and N2O and NO emissions for a wheat–maize rotation field in northern China. Using automated and manual chamber measuring systems, we monitored N2O and NO fluxes for the conventional (CT, 2007–2008), improved (IT, 2007–2008), straw-amended (WS, 2008–2009), straw-not-amended (NS, 2008–2009), and no N-fertilizer treatments (WS–NN, 2008–2009), respectively, for one rotation-year. The grain yields were determined for CT and IT for three rotation-years (2005–2008) and for WS, NS and WS–NN for one rotation-year (2008–2009). The improved management of irrigation and fertilization reduced the annual N fertilization rate and irrigation amount by 17% and 30%, respectively; increased the maize yield by 7–14%; and significantly decreased the N2O and NO emissions by 7% (p < 0.05) and 29% (p < 0.01), respectively. The incorporation of wheat straw increased the cumulative N2O and NO emissions in the following maize season by 58% (p < 0.01) and 13%, respectively, whereas the effects of maize straw application were not remarkable. The N2O and NO emission factors of applied N were 2.32 ± 2.32% and 0.42 ± 1.69% for wheat straw and 0.67 ± 0.23% and 0.54 ± 0.15% for chemical N-fertilizers, respectively. Compared to conventional management practices using high application rates of irrigation water and chemical N-fertilizer as well as the field burning of crop straw, the improved management strategy presented here has obvious environmentally positive effects on grain yield and mitigation of N2O and NO emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号