首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The zinc binding characteristics of natural organic matter (NOM) from several representative surface waters were studied and compared. NOM samples were concentrated by reverse osmosis. The samples were treated in the laboratory to remove trace metals. Square wave anodic stripping voltammetry (SWASV) was used to study zinc complexing properties of those NOM samples at fixed pH, ionic strength, and dissolved organic carbon (DOC) concentrations. Experimental data were compared to the predictions from the Windermere Humic Aqueous Model (WHAM) Version VI. At the same pH, ionic strength, and temperature, the zinc titration curves for NOM samples from different surface water sources tested in our study almost overlapped each other, indicating similarity in zinc binding properties of the NOM. A discrete two-site model gave good fits to our experimental titration data. Non-linear fitting by FITEQL 4.0 shows that the conditional zinc binding constants at the same pH are similar for NOM from different sources, indicating that zinc complexation characteristics of the NOM used in our study do not depend on their origin and one set of binding parameters can be used to represent Zn-NOM complexation for NOM samples from those different surface water sources representing geographically diverse locations. In addition, the total ligand concentrations (L(1,T), L(2,T), and L(T)) of all NOM show no observable gradation with increasing pH (L(1,T)=2.06+/-0.80 mmol/g carbon; L(2,T)=0.12+/-0.04 mmol/g carbon; L(T)=2.18+/-0.78 mmol/g carbon), while the conditional binding constants of zinc by NOM (logK(ZnL)(c)) show a linear increase with increasing pH(logK(1)(c)(pH=6.0)=4.69+/-0.25; logK(1)(c)(pH=7.0)=4.94+/-0.10; logK(1)(c)(pH=8.0)=5.25+/-0.006; logK(2)(c)(pH=6.0)=6.29+/-0.13; logK(2)(c)(pH=7.0)=6.55+/-0.08; logK(2)(c)(pH=8.0)=6.86+/-0.023) with a slope of ca. 0.28, indicating the zinc-NOM complexes become more stable at higher pH. The WHAM VI predicted free zinc ion activities at high zinc concentrations agree with our experimental results at pH 6.0, 7.0, and 8.0. However, the zinc binding of these NOM samples is over estimated by WHAM VI at zinc concentrations below 10(-6) M at pH 8.0.  相似文献   

2.
The evaluation of bioflocculant, in comparison with traditional inorganic coagulants, for the removal of humic acids from landfill leachates stabilized by biological treatment, was performed using conventional jar-test coagulation experiments. The optimized conditions (pH and coagulant dosage) were identified for the treatment of synthetic solutions as well as for biologically pre-treated landfill leachates. It was found that the application of bioflocculant was quite efficient in the removal of humic acids from synthetic solutions as well as in the reduction of COD content from real landfill leachates. The optimal pH value was found to be between 7 and 7.5, while a 20 mg/l bioflocculant dosage was sufficient in providing more than 85% humic acid removal. The results were comparable with those obtained by the application of conventional coagulants such as alum or polyaluminum chloride; therefore, bioflocculant can be considered as a viable alternative in the treatment of landfill leachates applying coagulation.  相似文献   

3.
Prosulfuron [1-(4-methoxy-6-methyltriazin-2-yl)-3-[2-(3,3,3-trifluoropropyl) phenylsulfonyl]-urea), a relatively new sulfonylurea herbicide, is a weak acid (pK(a) 3.76), and therefore, will undergo pH-dependent speciation and sorption. Understanding prosulfuron sorption in soils is important for predicting its environmental fate. Soil and solution factors controlling sorption were investigated by measuring prosulfuron sorption on five model sorbents (amorphous silica, alpha-alumina, CaSWy1 montmorillonite, commercial humic acid, and anion exchange resin) and 10 variable-charge soils from CaCl(2) and Ca(H(2)PO(4))(2) solutions as a function of pH and ionic strength. Anion exchange of prosulfuron accounted for up to 82% of overall sorption in the pH range from 3 to 7. The relative importance of anion exchange to prosulfuron sorption was positively correlated to the ratio of anion and cation exchange capacities. Comparison between organic carbon (OC)-normalized sorption (K(oc)) versus pH for humic acid and variable-charge soils show similar trends with sorption decreasing with increasing pH. However, K(oc) values estimated from variable-charge soils in the lower pH range where anion exchange has the greatest contribution to sorption was almost one log unit greater than that estimated from humic acid clearly exemplifying the impact of anion exchange. Similarity in K(oc)-pH curves for humic acid and variable-charge soils may result from the fact that (i) cation exchange capacity increases with increasing OC content, thus effective anion exchange capacity is reduced; and (ii) the relative contribution of hydrophobic and hydrophilic sorption mechanisms was fairly constant. Given that both hydrophilic and hydrophobic sorption of prosulfuron decrease with increasing pH, addition of fertilizer and lime amendments may enhance the potential for off-site leaching of recently applied acidic pesticides.  相似文献   

4.
This work focuses on an experimental investigation of the thermodynamic properties of natural organic matter (NOM), and whether fractions of NOM possess the same thermodynamic characteristics as the whole NOM from which they are derived. Advanced thermal characterization techniques were employed to quantify thermal expansion coefficients (alpha), constant-pressure specific heat capacities (C(p)), and thermal transition temperatures (T(t)) of several aquatic- and terrestrial-derived NOM. For the first time, glass transition behavior is reported for a series of NOM fractions derived from the same whole aquatic or terrestrial source, including humic acid-, fulvic acid-, and carbohydrate-based NOM, and a terrestrial humin. Thermal mechanical analysis (TMA), standard differential scanning calorimetry (DSC), and temperature-modulated differential scanning calorimetry (TMDSC) measurements revealed T(t) ranging from -87 degrees C for a terrestrial carbohydrate fraction to 62 degrees C for the humin fraction. The NOM generally followed a trend of increasing T(t) from carbohydrate to fulvic acid to humic acid to humin, and greater T(t) associated with terrestrial fractions relative to aquatic fractions, similar to that expected for macromolecules possessing greater rigidity and larger molecular weight. Many of the NOM samples also possessed evidence of multiple transitions, similar to beta and alpha transitions of synthetic macromolecules. The presence of multiple transitions in fractionated NOM, however, is not necessarily reflected in whole NOM, suggesting other potential influences in the thermal behavior of the whole NOM relative to fractionated NOM. Temperature-scanning X-ray diffraction studies of each NOM fraction confirmed the amorphous character of each sample through T(t).  相似文献   

5.
The solubilization of pentachlorophenol (PCP) by beta-cyclodextrin (beta-CD) and three of its most used derivatives, methyl-beta-cyclodextrin (MCD), hydroxypropyl-beta-cyclodextrin (HPCD) and carboxymethyl-beta-cyclodextrin (CMCD), has been investigated. The formation of soluble inclusion complexes between PCP and cyclodextrin (CDs) increases the aqueous solubility of PCP. Due to the ionizable nature of PCP, the effects of pH and ionic strength on the equilibrium complexation were evaluated. All CDs were found to form 1:1 inclusion complexes. Equilibrium constants calculated from solubility enhancement experiments revealed that the stability of the complexes was dependent on the polarity of the compound, on the ionic strength and on the cyclodextrin type. In general, weaker equilibrium constants were observed for PCP with beta-CD than with MCD or CMCD. For all CDs, the complexation or the solubilization efficiency of PCP (weak acid) depended on pH and ionic strength. Moreover, we observed that the solubility of the beta-CD/PCP complex was lower than that of the beta-CD molecule and dependent on the ionic strength of the solution. Although the equilibrium constant of PCP/CD complex was found to be higher at pH 3 than at pH 7 in water, extraction of PCP from porous media by a CD solution at neutral pH would be achievable due to the higher PCP aqueous solubility in neutral/basic media.  相似文献   

6.
A novel cellulose-based anion exchanger (Cell-AE) with tertiary amine functionality was synthesized by graft polymerization reaction of cellulose and glycidyl methacrylate using N,N′-methylene-bis-acrylamide as a crosslinker and benzoyl peroxide as an initiator, followed by dimethylamine (amination) and acid (HCl) treatment. The chemical modification was confirmed by infrared spectroscopy and CHN analysis. The anion exchanger was used in batch processes to study AS(V) adsorption in solutions. The operating variables studied were pH, contact time, initial As(V) concentration, sorbent mass, and ionic strength. The process was affected by solution pH with an optimum adsorption occurring at pH 6.0. Adsorption equilibrium was achieved within 1 h. Increasing ionic strength of solution negatively affected the arsenic uptake. The adsorption process performed more than 99.0% of As(V) removal from an initial concentration of 25.0 mg/L. The process of adsorption followed pseudo-second-order kinetics. The adsorption equilibrium isotherm data were analyzed using the Langmuir, Freundlich, Redlich–Peterson and Langmuir–Freundlich equations. The Langmuir–Freundlich isotherm described the adsorption data over the concentration range 25–400 mg/L. The adsorption mechanism appears to be a ligand-exchange process. A simulated groundwater sample was treated with Cell-AE to demonstrate its efficiency in removing As(V). The adsorbed As(V) ions were desorbed effectively by a 0.1 M NaOH solution.  相似文献   

7.
Although most of the organic carbon in soils and sediments may be composed of humic substances, their interaction with other compounds, especially their sorption interactions, may be significantly affected by the presence of small amounts of the other components of natural organic matter (NOM). In this investigation, the influence of the lipid fraction of NOM on the sorption thermodynamics of fluorene, phenanthrene, and pyrene to several geosorbent samples was examined before and after extraction of lipids. Batch experiments were performed at the same concentration for all polycyclic aromatic hydrocarbons (PAHs) (0.025 x their solubility in water) at different temperatures (10, 20, 30, and 40 degrees C), and the thermodynamic parameters were calculated. Removal of the lipids increases the sorption capacity of the samples as well as the exothermicity of the process. The free energy change was negative for all the samples and no significant differences were noticed on lipid removal. The entropy changes were small and positive for the whole geosorbent samples, but even smaller or more negative when the lipids were removed. This indicates that the interaction of PAHs with soils and sediments in the absence of extractable lipids is stronger and the mechanisms involved may be different, changing from a partitioning-like mechanism to specific adsorption. Because of the competition between lipids and PAHs for the same sorption sites, the lipids can be viewed as an "implicit sorbate."  相似文献   

8.
Two different humic acids (HA) and a fulvic acid (FA) were chemically immobilized to a high performance liquid chromatography (HPLC) silica column material. The immobilization was performed by binding amino groups in HA/FA to the free aldehyde group in glutardialdehyde attached to the silica gel. The HPLC column materials were compared with a blank column material made by applying the same procedure but without immobilizing HA or FA. Also, a column was made by binding carbonyl groups in HA to amino groups attached to the silica gel. The humic substances were selected to secure appropriate variation of their structural features. The retention factors of 45 polycyclic aromatic compounds (PAC) to the four columns were determined by HPLC. The advantage of the technique is a large number of compounds can easily be studied. The binding procedure does not appear to cause a drastic selection between the HA molecules. The k' values obtained for the two Aldrich HA columns agree in general reasonably. The retention or sorption of the compounds increased with the size of the PAC and the number of lipophilic substituents, but decreased when polar substituents were present. The PAC retention was much stronger to the two HA columns than to the FA and blank column, both for hydrophobic polycyclic aromatic hydrocarbons (PAH) and the polar PAC. Other factors impacting the PAC binding may be specific interactions with HA and the ionic strength of the aqueous phase. The technique has been applied to do direct determinations of Koc.  相似文献   

9.
Oxytetracycline sorption to organic matter by metal-bridging   总被引:11,自引:0,他引:11  
The sorption of oxytetracycline to metal-loaded ion exchange resin and to natural organic matter by the formation of ternary complexes between polyvalent metal cations and sorbent- and sorbate ligand groups was investigated. Oxytetracycline (OTC) sorption to Ca- and Cu-loaded Chelex-100 resin increased with increasing metal/sorbate ratio at pH 7.6 (OTC speciation: 55% zwitterion, 45% anion). Greater sorption to Cu- than Ca-loaded resin was observed, consistent with the greater stability constants of Cu with both the resin sites and with OTC. Oxytetracycline sorption to organic matter was measured at pH 5.5 (OTC speciation: 1% cation, 98% zwitterion, 1% anion). No detectable sorption was measured for cellulose or lignin sorbents that contain few metal-complexing ligand groups. Sorption to Aldrich humic acid increased from "clean" < "dirty" (no cation exchange pretreatment) < Al-amended < Fe(III)-amended clean humic acid with K(d) values of 5500, 32000, 48000, and 250000 L kg(-1) C, respectively. Calcium amendments of clean humic acid suggested that a portion of the sorbed OTC was interacting by cation exchange. Oxytetracycline sorption coefficients for all humic acid sorbents were well-correlated with the total sorbed Al-plus-Fe(III) concentrations (r(2) = 0.87, log-log plot), suggesting that sorption by ternary complex formation with humic acid is important. Results of this research indicate that organic matter may be an important sorbent phase in soils and sediments for pharmaceutical compounds that can complex metals by the formation of ternary complexes between organic matter ligand groups and pharmaceutical ligand groups.  相似文献   

10.
An increase in the chemical oxygen demand (COD) has been noticed in most Korean reservoirs. Therefore, this research systematically investigated the causes of organic accumulation. Samples of soil affecting the quality of water of reservoirs were collected at various sources and analyzed for their organic characteristics. The COD to biochemical oxygen demand (BOD) ratio was used as the key parameter in the evaluation of non-biodegradable (NBD) organic accumulation in the reservoirs. Soil samples containing plant roots were agitated, with the supernatant showing COD/BOD ratios of less than 2.8, while those of the composted tree leaves were greater than 5.0, suggesting that humic substances produced in forest areas are a major cause of NBD organic accumulation in reservoirs. In addition, the organic fractionation of the leachate from leaching tests showed that of the various types of hydrophobic natural organic matter (NOM), the larger molecular weight humic acid makes a greater contribution than fulvic acid to the increase in the NBD COD in Korean reservoirs.  相似文献   

11.
以叉鞭金藻作为生物吸附剂,去除废水中微量Pb^2 。结果表明,培养4d左右的叉鞭金藻对Pb^2 的去除能力最强;随着藻细胞密度的增大,藻体对Pb^2 的去除率也增大;当pH为5~7时,藻细胞对Pb^2 有较好的吸附作用。研究还表明,叉鞭金藻对Pb^2 的生物吸附经历了快速的吸附和缓慢的吸收两个步骤;离子强度Pb^2 的吸附有一定的抑制作用;在一定的浓度范围内,叉鞭金藻对Pb^2 的生物吸附符合Freundlich等温吸附模型。  相似文献   

12.
Factors controlling phosphate interaction with iron oxides   总被引:2,自引:0,他引:2  
Factors such as pH, solution ion composition, and the presence of natural organic matter (NOM) play a crucial role in the effectiveness of phosphorous adsorption by iron oxides. The interplay between these factors shows a complicated pattern and can sometimes lead to controversial results. With the help of mechanistic modeling and adsorption experiments, the net macroscopic effect of single and combined factors can be better understood and predicted. In the present work, the relative importance of the above-mentioned factors in the adsorption of phosphate was analyzed using modeling and comparison between the model prediction and experimental data. The results show that, under normal soil conditions, pH, concentration of Ca, and the presence of NOM are the most important factors that control adsorption of phosphate to iron oxides. The presence of Ca not only enhances the amount of phosphate adsorbed but also changes the pH dependency of the adsorption. An increase of dissolved organic carbon from 0.5 to 50 mg L can lead to a >50% decrease in the amount of phosphate adsorbed. Silicic acid may decrease phosphate adsorption, but this effect is only important at a very low phosphate concentration, in particular at high pH.  相似文献   

13.
Contamination of water often results from the heavy use of agricultural chemicals, and the disposal of aqueous pesticide waste is a concern. Anodic Fenton treatment (AFT) has been shown to be a successful remediation method for pesticides in solution, but the effect of soil on the degradation kinetics of pesticides using this method has not been determined. The purpose of this study was to study the effect of humic acid, as a soil surrogate, on the degradation kinetics of alachlor [2-chloro-N-(2,6-diethylphenyl-N-(methoxymethyl) acetamide], a heavily used herbicide that has been studied in pure aqueous solution by AFT. The AFT consists of a controlled constant delivery of Fenton reagents, using an electrochemical half-cell to deliver ferrous iron. Alachlor was quickly degraded by AFT, and the kinetics were found to obey the previously developed AFT model well. Degradation of alachlor by AFT in humic acid slurry showed that when the amount of humic acid was increased, alachlor degradation was significantly slowed down and the degradation kinetics were shifted from the AFT model to a first-order model. Further experimentation indicated that humic acid not only competes with alachlor for hydroxyl radicals, reducing the degradation rate of the target compound, but also buffers the slurry at near neutral pH, blocking regeneration of ferrous ion from ferric ion and subsequently shifting the kinetics to first order. Degradation of several other pesticides in humic acid slurry also followed first-order kinetics. These results imply that higher concentrations of Fenton reagents will be required for soil remediation.  相似文献   

14.
Sorption of the antibiotic tetracycline to humic-mineral complexes   总被引:3,自引:0,他引:3  
Humic substances, by altering the surface properties and/or competing for available reaction sites, can either suppress or promote sorption of organic compounds to mineral surfaces. Limited literature evidence points to the reduction in sorption of the antibiotic tetracycline to clay minerals in the presence of humic substances. We investigated the surface interaction of Elliott soil humic acid (ESHA) with hydrous Al oxide (HAO) and the effect of this association on tetracycline sorption. Strong interaction between ESHA and HAO led to ESHA-promoted dissolution of HAO and surface charge reversal. The ESHA-HAO sorption-desorption isotherms were successfully described using a modified Langmuir model that accounted for the heterogeneity of HAO surface and ESHA. Ligand exchange was proposed as the major interaction mechanism, and the edge Al atoms on HAO surface were considered as the sorption sites for ESHA macromolecules. ESHA was coated onto HAO to achieve two different organic content (foc) levels of 0.81 and 1.52%. Sorption results were compared for the binary ESHA-tetracycline and HAO-tetracycline systems, and the ternary ESHA-HAO-tetracycline system. The coating of ESHA on HAO significantly suppressed tetracycline sorption levels, attributable to altered HAO surface charge characteristics and/or direct competition between ESHA and tetracycline for potential sorption sites. Higher foc level, besides increasing the extent of sorption suppression, also resulted in greater ionic strength dependence and increased nonlinearity of sorption behavior. It, therefore, appears that the presence of humic substances, in both dissolved and mineral-bound forms, is likely to increase the environmental mobility of tetracycline compounds.  相似文献   

15.
Suction cups made of poly(tetrafluorethene) (PTFE) are widely used for sampling of soil solution. A brand (Prenart) of PTFE cups was tested for adsorption of Cd, Cu, Ni, and Zn at low concentrations under different conditions. In a laboratory experiment adsorption from a 10 microg L(-1) heavy metal solution with a 0.01 M NaCl background electrolyte was investigated at pH 3.6, 4.5, and 5.8 by pumping the solutions through the cups. The effect of three different ionic compositions was also investigated using 0.01 M CaCl2, 0.01 M NaCl, and no background electrolyte at pH 4.5. In 0.01 M NaCl electrolyte at pH 5.8 the cups acted as effective filters. At pH 3.6 after 300 mL of solution had passed through the cup, equivalence between the Cd and Ni concentrations in influent and effluent was found. No equivalence between effluent and influent concentrations was found for Zn and Cu at pH 4.5 and 5.8. With Ca as the electrolyte, no adsorption of Cd, Ni, or Zn was found. In Na electrolyte, equivalence between influent and effluent concentrations for Cd, Ni, and Zn was reached. The difference between effluent and influent concentrations of Zn, Ni, and Cd remained significant in the absence of electrolyte. For all pH values and electrolytes the difference between effluent and influent concentrations of Cu was significant. It is concluded that PTFE cups affect the concentrations of heavy metals sampled at low soil solution concentrations. Cadmium, Cu, Ni, and Zn adsorb to the cup at pH > 4.5 and low ionic strength.  相似文献   

16.
A polyaluminum chloride (PAC) coagulant was prepared from AlCl3 x 6H2O and Na2CO3. The Al13 species in PAC was separated and purified by the SO4(2-)/Ba2+ deposition-replacement method, and characterized by 27Al-NMR and XRD. From 27Al-NMR spectroscopy, it was found that PAC obtained after separation and purification contained more Al13 (PAC-Al13, for short) than original PAC before separation and purification. In XRD spectra, a strong Al13 signal appeared in the range of 2theta from 5 to 25 degrees. Jar tests were performed to test the coagulation efficiency of AlCl3, PAC and PAC-Al13 in treating synthetic or actual water samples. Compared with PAC and AlCl3, PAC-Al13 gives the best results for turbidity, humic acid and color removal, and achieves the highest charge-neutralizing ability. Under the study conditions, PAC-Al13 gave about 90% humic acid removal and almost 100% reactive blue dye removal when its dosages were 4.0 and 15 mg/L as Al, respectively. The Al13 species has a higher positive charge and is the most effective polymeric Al species in water and wastewater treatment.  相似文献   

17.
One of the concerns regarding the safety and efficacy of ultraviolet radiation for treatment of drinking water and wastewater is the fate of nitrate, particularly its photolysis to nitrite. In this study, N NMR was used to establish for the first time that UV irradiation effects the incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter (NOM). Irradiation of (15)N-labeled nitrate in aqueous solution with an unfiltered medium pressure mercury lamp resulted in the incorporation of nitrogen into Suwannee River NOM (SRNOM) via nitrosation and other reactions over a range of pH from approximately 3.2 to 8.0, both in the presence and absence of bicarbonate, confirming photonitrosation of the NOM. The major forms of the incorporated label include nitrosophenol, oxime/nitro, pyridine, nitrile, and amide nitrogens. Natural organic matter also catalyzed the reduction of nitrate to ammonia on irradiation. The nitrosophenol and oxime/nitro nitrogens were found to be susceptible to photodegradation on further irradiation when nitrate was removed from the system. At pH 7.5, unfiltered irradiation resulted in the incorporation of (15)N-labeled nitrite into SRNOM in the form of amide, nitrile, and pyridine nitrogen. In the presence of bicarbonate at pH 7.4, Pyrex filtered (cutoff below 290-300 nm) irradiation also effected incorporation of nitrite into SRNOM as amide nitrogen. We speculate that nitrosation of NOM from the UV irradiation of nitrate also leads to production of nitrogen gas and nitrous oxide, a process that may be termed photo-chemodenitrification. Irradiation of SRNOM alone resulted in transformation or loss of naturally abundant heterocyclic nitrogens.  相似文献   

18.
In this paper, rice straw was esterified thermochemically with citric acid (CA) to produce potentially biodegradable cationic sorbent. The modified rice straw (MRS) and crude rice straw (CRS) were evaluated for their methylene blue (MB) removal capacity from aqueous solution. The effects of various experimental parameters (e.g., initial pH, sorbent dose, dye concentration, ion strength, and contact time) were examined. The ratio of MB sorbed on CRS increased as the initial pH was increased from pH 2 to 10. For MRS, the MB removal ratio came up to the maximum value beyond pH 3. The 1.5g/l or up of MRS could almost completely remove the dye from 250mg/l of MB solution. The ratio of MB sorbed kept above 98% over a range from 50 to 450mg/l of MB concentration when 2.0g/l of MRS was used. Increase in ion strength of solution induced decline of MB sorption. The isothermal data fitted the Langmuir model. The sorption processes followed the pseudo-first-order rate kinetics. The intraparticle diffusion rate constant (k(id)) was greatly increased due to modification.  相似文献   

19.
Organic pollutants are degraded in soil and simultaneously nonextractable residues are formed. However, proof is lacking that this fixation has a detoxifying effect. We investigated the transformation and binding of 2,4,6-trinitrotoluene (TNT) with catechol or soil humic acid as cosubstrates. Carbon-14-labeled TNT and its reaction products were quantified by radiocounting; extractable compounds were identified by high performance liquid chromatography (HPLC). Bound and extractable residues of 15N-labeled TNT and metabolites were studied by 15N nuclear magnetic resonance spectroscopy (15N NMR). Since TNT is not easily transformed under oxidizing conditions an anaerobic/aerobic treatment was used. Anaerobic microorganisms from cow manure were used to reduce TNT during the anaerobic phase and subsequently, a laccase from Trametes villosa was used in the aerobic phase to oxidatively couple the metabolites to humic matter. Seventy-four percent of TNT was immobilized with catechol as cosubstrate, but only 25% with humic acid. With catechol the main extractable component was TNT, while with humic acid it was mostly the metabolite 4-aminodinitrotoluene. For both co-substrates, the spectra of immobilized metabolites obtained by solid-state 15N-cross polarization magic angle spinning (CPMAS) NMR spectroscopy showed signals in the chemical shift region for protonated aromatic amino compounds. However, in the presence of catechol, an additional signal from nonextractable nitro groups was found, which could represent sequestered TNT. The partially reduced metabolites of TNT that formed nonextractable residues in humic acid are not likely to be remobilized easily and are thus regarded as detoxified.  相似文献   

20.
Filters, containing glass-fiber (GF) filter material, are commonly used as the primary filter or as the prefilter in sampling natural waters and laboratory experiments with high concentrations of suspended solids. We observed that GF filter material removed substantial quantities of trace metals from solutions of low ionic strength at near neutral and slightly acidic pH. The GF material sorbed essentially all Pb and Ag from 5-mL aliquots of solutions containing 0.054 and 0.093 mM, respectively. Somewhat less Ni was sorbed from a 0.099 mM solution. This material retained about 43 micromol of Ag per gram of GF material (4600 microg/g). The Ag and Ni sorption was highest at low KNO(3) concentrations (as background electrolyte) and decreased to a constant concentration of sorbed metal at approximately 10 mM KNO(3). Glass-fiber filter material should only be used with careful testing for the elements of concern under conditions that closely match expected environmental or experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号