首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Meneses M  Schuhmacher M  Domingo JL 《Chemosphere》2002,46(9-10):1393-1402
The vegetation and soil levels of the 17 polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) toxic congeners were calculated by means of a vegetation and a soil model, respectively. Both models predicted the levels of the 17 PCDD/F congeners in quite good agreement with the observed results although the soil model was more accurate than the vegetation model. Four different pathways of contribution to the vegetation concentrations were taken into account: vapour-phase absorption, dry particle deposition, wet particle deposition and uptake by root. The most important pathway was the vapour-phase absorption and the less was the uptake by root. In the soils model four pathways were considered: background soil concentration, dry particle deposition, wet particle deposition and uptake by root. After the background concentration, the most important pathway was the wet deposition.  相似文献   

2.
The transfer characteristics of Cd and Pb from soils to the edible parts of six vegetable species were calculated from plant and corresponding surface soil samples collected from the fields in Fujian Province, southeastern China. The soil-to-plant transfer factors (TF) calculated from both total and DTPA-extractable Cd and Pb in the soils decreased with increasing total or DTPA-extractable Cd and Pb, indicating that the TF values of Cd and Pb depend on the soil metal content. For most plants studied, there was a significant relation between the TF values and the corresponding soil metal concentrations (total or DTPA-extractable) that was best described by an exponential equation (y=axb). We recommend that the representative TF value for a given crop-metal system should be estimated from the regression models between the transfer factors and the corresponding soil metal concentrations and at a given soil metal concentration.  相似文献   

3.
Modelling of atrazine transport in the presence of surfactants   总被引:1,自引:0,他引:1  
Laboratory experiments were conducted to examine the effect of detergents on transport of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] through loam and sandy loam soils under saturation conditions. The Convection Dispersion Equation (CDE) was used to model and quantify the effects of detergents on atrazine model parameters: the retardation factor (R), pore velocity (v) and dispersion coefficient (D). The transport parameters were estimated using moment technique and partition coefficient obtained from batch experiments and compared with best-fitted parameters, R and D, keeping pore velocity constant. Results indicated the CDE model was not successful in predicting atrazine transport in the presence of surfactants at high concentrations. In the case of anionic surfactant with Elora loam, the average predicted R and D from moment technique of 3.4 and 11.1 cm2/h, respectively were significantly different than fitted parameters (R = 39 and D = 227 cm2/h). The poor performance of CDE in the presence of surfactants results from physiochemical changes in herbicide solubility and retention to the soil matrix rather than changes in soil hydraulic properties since the predicted pore water velocities from moment technique were similar to those measured during leaching experiments. Nevertheless, BTC analysis with CDE showed that land application of anionic surfactant (sulphonic) significantly increased R and D and decrease v for both soils. Addition of sulphonic increased R of atrazine by 12 and 26 folds for loam and sandy loam soils, respectively. On the other hand non-ionic surfactants seemed to decrease R, especially in sandy loam soil, thus facilitating atrazine leaching through soil. Non-equilibrium conditions seemed to govern atrazine transport in the presence of surfactants; double peaks in breakthrough curves were observed, indicating a need for mathematical models to account for such phenomena. Atrazine dispersion and tailing seemed to be higher through Elora loam compared to Caledon sandy loam due to higher aggregation of the Elora soil.  相似文献   

4.
In the present laboratory study, persistence of imidacloprid (IMI) as a function of initial insecticide concentration and soil properties in two Croatian soils (Krk sandy clay and Istria clay soils) was studied and described mathematically. Upon fitting the obtained experimental data for the higher concentration level (5 mg/kg) to mathematical models, statistical parameters (R 2, scaled root mean squared error and χ 2 error) indicated that the single first-order kinetics model provided the best prediction of IMI degradation in the Krk sandy clay soil, while in the Istria clay soil biphasic degradation was observed. At the lower concentration level (0.5 mg/kg), the biphasic models Gustafson and Holden models as well as the first-order double exponential model fitted the best experimental data in both soils. The disappearance time (DT50) values estimated by the single first-order double exponential model (from 50 to 132 days) proved that IMI can be categorized as a moderately persistent pesticide. In the Krk sandy clay soil, resulting DT50 values tended to increase with an increase of initial IMI concentration, while in the Istria clay soil, IMI persistence did not depend on the concentration. Organic matter of both experimental soils provided an accelerating effect on the degradation rate. The logistic model demonstrated that the effect of microbial activity was not the most important parameter for the biodegradation of IMI in the Istria clay soil, where IMI degradation could be dominated by chemical processes, such as chemical hydrolysis. The results pointed that mathematical modeling could be considered as the most convenient tool for predicting IMI persistence and contributes to the establishment of adequate monitoring of IMI residues in contaminated soil. Furthermore, IMI usage should be strictly controlled, especially in soils with low organic matter content where the risk of soil and groundwater contamination is much higher due to its longer persistence and consequent leaching and/or moving from soil surface prior to its degradation.  相似文献   

5.
6.
7.

Gene expression can be modified in people who are chronically exposed to high concentrations of heavy metals. The soil surrounding the Ventanas Industrial Complex, located on the coastal zone of Puchuncaví and Quintero townships (Chile), contain heavy metal concentrations (As, Cu, Pb, Zn, among others) that far exceed international standards. The aim of this study was to determine the potential association of the heavy metals in soils, especially arsenic, with the status of methylation of four tumor suppressor genes in permanent residents in those townships. To study the methylation status in genes p53, p16, APC, and RASSF1A, we took blood samples from adults living in areas near the industrial complex for at least 5 years and compared it to blood samples from adults living in areas with normal heavy metal concentrations of soils. Results indicated that inhabitants of an area with high levels of heavy metals in soil have a significantly higher proportion of methylation in the promoter region of the p53 tumor suppressor gene compared with control areas (p-value: 0.0035). This is the first study to consider associations between heavy metal exposure in humans and aberrant DNA methylation in Chile. Our results suggest more research to support consistent decision-making on processes of environmental remediation or prevention of exposure.

  相似文献   

8.
A laboratory experiment was carried out to measure volatilisation fluxes of polychlorinated biphenyls (PCBs) from sewage sludge-amended soils. The most commonly practised methods of applying sludge to agricultural land in the UK, namely, surface application, ploughing in to soil and subsurface injection, were simulated inside glass experimental chambers using an anaerobically digested sludge and a sandy loam soil. Humidified air was blown over the surface of the soil/sludge in the chambers for a period of 32 days, in order to sample a sufficient air volume to detect the volatilising PCBs. The resulting PCB volatilisation fluxes from the different sludge application methods were quantified and compared. Volatilisation fluxes of individual congeners were generally highest for the surface sludge (1-cm depth) application and slightly lower for the plough layer (5-cm depth) application. Fluxes from the subsurface layer of sludge (5-cm depth) were only quantified for the lightest congeners near to the end of the experimental run-time. Results from a multiple regression analysis showed that volatilisation fluxes of PCBs from the surface application are highly dependent on both the sludge concentration and the log of the octanol-air partition coefficient (K(OA)). A well-known soil volatilisation model, developed by Jury et al., was adapted and used to predict fluxes for the different sludge application methods during the experiment. The model predicted volatilisation fluxes that were reasonably comparable to measured fluxes for some congeners, but for others predicted fluxes that were more than an order of magnitude lower than measured fluxes. The model predicted similar loss kinetics to those observed in the experiment. Possible reasons for the dissimilarity between measured and predicted fluxes include inaccuracies in model input parameters and the fact that the models were not developed for predicting fluxes from sludge-amended soils.  相似文献   

9.
Solute transport in soils is affected by soil layering and soil-specific morphological properties. We studied solute transport in two sandy Spodosols: a dry Spodosol developed under oxidizing conditions of relatively deep groundwater and a wet Spodosol under periodically reducing conditions above a shallow groundwater table. The wet Spodosol is characterized by a diffuse and heterogeneous humus-B-horizon (i.e., Spodic horizon), whereas the dry Spodosol has a sharp Spodic horizon. Drainage fluxes were moderately variable with a coefficient of variation (CV) of 25% in the wet Spodosol and 17% in the dry Spodosol. Solute transport in 1-m-long and 0.8-m-diameter soil columns was investigated using spatial averages of solute concentrations measured by a network of 36 Time Domain Reflectometry (TDR) probes. In the dry Spodosol, solute transport evolves from stochastic-convective to convective-dispersive at a depth of 0.25 m, coinciding with the depth of the Spodic horizon. Chloride breakthrough at the bottom of the soil columns was adequately well predicted by a convection-dispersion model. In the wet Spodosol, solute transport was heterogeneous over the entire depth of the column. Chloride breakthrough at 1 m depth was predicted best using a stochastic-convective transport model. The TDR sampling volume of 36 probes was too small to capture the heterogeneous flow and concomitant transport in the wet Spodosol.  相似文献   

10.
Speciation of zinc in contaminated soils   总被引:1,自引:0,他引:1  
The chemical speciation of zinc in soil solutions is critical to the understanding of its bioavailability and potential toxic effects. We studied the speciation of Zn in soil solution extracts from 66 contaminated soils representative of a wide range of field conditions in both North America and Europe. Within this dataset, we evaluated the links among the dissolved concentrations of zinc and the speciation of Zn(2+), soil solution pH, total soil Zn, dissolved organic matter (DOM), soil organic matter (SOM) and the concentrations of different inorganic anions. The solid-liquid partitioning coefficient (K(d)) for Zn ranged from 17 to 13,100Lkg(-1) soil. The fraction of dissolved Zn bound to DOM varied from 60% to 98% and the soil solution free Zn(2+) varied from 40% to 60% of the labile Zn. Multiple regression equations to predict free Zn(2+), dissolved Zn and the solid-liquid partitioning of Zn are given for potential use in environmental fate modeling and risk assessment. The multiple regressions also highlight some of the most important soil properties controlling the solubility and chemical speciation of zinc in contaminated soils.  相似文献   

11.
A study in small outdoor lysimeters was carried out to determine the leaching of the herbicides tebuthiuron and diuron in different soil types, using undisturbed soil columns. Soil sorption and degradation for both herbicides were also studied in the laboratory. The multi-layered AF (Attenuation Factor) model was evaluated for predicting the herbicides leaching in undisturbed soil columns. Tebuthiuron leached in greater amounts than diuron in both soils. Sorption was well represented by linear and Freundlich equations, however parameters from the linear equations were used in the AF model. In general, both herbicides presented very low sorption, with diuron presenting lower values of sorption coefficient than tebuthiuron in the two soils. Chromatographic data indicated rapid late degradation of diuron and tebuthiuron in both soil types at two different depths. Simple exponential equation was not able to represent degradation, thus a bi-exponential equation was used, and some model adjusting was needed. Average measured amounts of each herbicide were compared with amounts predicted by the multi-layered-soil AF model. The AF model was able to predict leaching amounts in the sandy soil, especially for diuron, however it did not perform well in the clayey soil.  相似文献   

12.
Biotransformation studies of atrazine, metolachlor and evolution of their metabolites were carried out in soils and subsoils of Northern Greece. Trace atrazine, its metabolites and metolachlor residues were detected in field soil samples 1 year after their application. The biotransformation rates of atrazine were higher in soils and subsoils of field previously exposed to atrazine (maize field sites) than in respective layers of the field margin. The DT50 values of atrazine ranged from 5 to 18 d in the surface layers of the adapted soils. DT50 values of atrazine increased as the soil depth increased reaching the value of 43 d in the 80-110 cm depth layer of adapted soils. Metolachlor degraded at slower rates than atrazine in surface soils, subsoils of field and field margins with the respective DT50 values ranging from 56 to 72 d in surface soils and from 165 to 186 d in subsoils. Hydroxyatrazine was the most frequently detected metabolite of atrazine. The maximum concentrations of metolachlor-OXA and metolachlor-ESA were detected in the soil layers of 20-40 cm depth after 90 d of incubation. Principal Component Analysis (PCA) of soil Phospholipid Fatty Acids (PLFAs), fungal/bacterial and Gram-negative/Gram-positive ratios of the PLFA profiles revealed that the higher biotransformation rates of atrazine were simultaneously observed with the abundance of Gram-negative bacteria while the respective rates of metolachlor were observed in soil samples with abundance of fungi.  相似文献   

13.
The fate of hydrophobic organic compounds (HOCs) in soils and waters in a northern boreal catchment was explored through the development of a chemical fate model in a well-characterised catchment system dominated by two land types: forest and mire. Input was based solely on atmospheric deposition, dominated by accumulation in the winter snowpack. Release from soils was governed by the HOC concentration in soil, the soil organic carbon fraction and soil-water DOC content. The modelled export of selected HOCs in surface waters ranged between 11 and 250 ng day−1 during the snow covered period, compared to 200 and 9600 ng/d during snow-melt; highlighting the importance of the snow pack as a source of these chemicals. The predicted levels of HOCs in surface water were in reasonable agreement to a limited set of measured values, although the model tended to over predict concentrations of HOCs for the forested sub-catchment, by over an order of magnitude in the case of hexachlorobenzene and PCB 180. This possibly reflects both the heterogeneity of the forest soils and the complicated and changing hydrology experienced between the different seasons.  相似文献   

14.
Several simple models for the estimation of the half-life (t(1/2)) for the depletion of an organic chemical from a soil surface to air were examined. For moist surfaces, two models are proposed: the first requires knowledge of the soil/organic carbon partition coefficient (K(oc)) and the Henry's law constant (H) and the second the vapor pressure (P(s)) of the chemical involved. Due to uncertainties in the experimental K(oc) values those ones predicted by the group-contribution model of Meylan et al. [Environ. Sci. Technol. 26 (1992) 1560]-and proposed by the U.S. Environmental Protection Agency (EPA)-should be used. If reliable experimental P(s) values are not available, the first model is proposed, where in cases when H values are not available, predicted ones by the Bond-Contribution method of Meylan and Howard [Environ. Toxicol. Chem. 10 (1991) 1283]-and also proposed by EPA-can be used. In general, the agreement of the predicted t(1/2) values with the measured ones is within a factor of 3-5. Similar expressions, but with somewhat poorer results, are presented for dry field soils. In all cases, the obtained results represent a substantial improvement over those obtained with the currently used Dow method: t(1/2) = 1.58 x 10(-8)((K(oc) x S)/P(S)), where S is the solubility of the compound in water.  相似文献   

15.
Polychlorinated biphenyls (PCBs) are a threat to environmental and human health due to their persistence and toxicological effects. In this paper, we analyse some meteorological and organic-matter-related effects on their distribution in the soils of an Alpine environment that is not subject to direct contamination. We collected samples and measured the contamination of 12 selected congeners from three soil layers (O, A1 and A2) and from North-, plain- and South-facing slopes on six different dates spanning the entire snowless portion of the year. We recorded the hourly air and soil temperatures, humidity and rainfall in the study period. We found evidence that PCBs contamination in soils varies significantly, depending on sampling date, layer and aspect. The observed seasonal trend shows an early summer peak and a rapid decrease during June. The layer effect demonstrates higher dry-weight-based concentrations in the O layer, whereas the differences are much smaller for SOM-based concentrations. Different factors caused significantly higher concentrations in northern soils, with a N/S enrichment factor ranging from 1.8 to 1.5 during the season. The southern site has significantly more rapid early-summer re-volatilisation kinetics (half-time of 16 d for South, 25 d for North).  相似文献   

16.
Mo bioaccumulation in the earthworm Eisenia andrei was determined after 28 d exposure in ten different European field soils (pH 4.4-7.8) and an artificial soil, freshly spiked with Na2MoO4 at concentrations between 3.2 and 3200 mg Mo kg−1 dry soil. Three field soils were also tested after ageing for 11 months. Earthworm Mo concentrations generally levelled off at high exposure levels but in most soils showed a (nearly) linear increase with increasing soil concentrations in the lower, non-toxic range (below EC10 or NOEC for reproduction effects). Bioaccumulation (BAF) and Bioconcentration factors (BCF) were calculated as the ratio of earthworm concentration to soil and estimated porewater concentrations, respectively. BAFs (0.35-3.44) and BCFs (1.31-276) did not seem much affected by soil concentration, suggesting that earthworms are not capable of regulating their internal Mo concentrations. BAF was best predicted by ammonium oxalate-extractable iron (Feox) and phosphor (Pox) contents of the soils.  相似文献   

17.
Four metal enriched sewage sludges containing different concentrations of polychlorinated biphenyls (PCBs) were applied to two field soils in the UK in 1968. Samples of the sludges, sludge-amended soils and soils from untreated control plots were stored and analysed retrospectively. Sludge concentrations ranged from 1 to 7 mg SigmaPCB kg(-1). The pattern of PCBs was similar in three of the four sludges, with congeners 14, 18, 28 and 52 present at the highest concentrations. The fourth sludge contained higher amounts of congeners 149, 153, 138 and 180. SigmaPCB concentrations in control plot soil have declined over the last 20 years, indicating a reduction in atmospheric deposition inputs of PCBs to the soil. SigmaPCB concentrations also declined on the sludge-amended plots, reaching control plot concentrations (30-60 microg SigmaPCB kg(-1)) in the late-1980s. Half-lives ranged from < 1 to 8.5 years for congeners 18, 28 and SigmaPCB. Biodegradation and/or the formation of reversibly sorbed soil PCB residues could not account for the losses observed. Volatilisation is implicated as the most important loss process on both the control and sludge-amended plots. Using the fugacity approach, congener concentrations in soils at Luddington were predicted still to have not reached equilibrium with the air. Further losses to the atmosphere are likely.  相似文献   

18.
H. Behrendt  R. Brüggemann 《Chemosphere》1993,27(12):2325-2332
The fate of organic chemicals in the soil-plant-atmosphere environment and the governing processes were studied with a coupled dynamic soil transport and plant compartment model. Scenarios with applications of pesticides on sand and loam soils with chemical uptake in barley and wheat were used in the model calculations. Root uptake and concentrations in the plant compartments stem, leave and fruit were calculated for the pesticides terbuthylazine, isoproturon and carbofuran.

The effectivity of uptake from soils with different soil sorption coefficients had been shown for sand and loam soils. The processes degradation in plant and volatilization from leaves to atmosphere are especially effective for carbofuran and terbuthylazine. Although the concentrations in corn at harvest are lower than the maximum allowed concentrations, the peak concentrations in the course of the vegetation period are significantly higher (factor ≤ 200).  相似文献   


19.
Evaluation of the potential environmental risk posed by metals depends to a great extent on modeling the fate and mobility of metals with soil-solution partitioning coefficients (Kd). However, the effect of biological cycling on metal partitioning is rarely considered in standard risk assessments. We determined soil-solution partitioning coefficients for 5 metals (Cd, Zn, Pb, Co and Ni) at 46 forested sites that border the Precambrian Shield in central Ontario, where soil pHaq varied from 3.9 to 8.1. Foliage from the dominant tree species and forest floor samples were also collected from each site to compare their metal levels with Kd predictions. Analogous to other studies, log Kd values for all metals were predicted by empirical linear regression with soil pH (r2=0.66-0.72), demonstrating that metal partitioning between soil and soil solution can be reliably predicted for relatively unpolluted forest mineral soils by soil pH. In contrast, whereas the so-called bioavailable water-soluble metal fraction could be predicted from soil pH, metal concentrations in foliage and the forest floor at each site were not consistently related to pH. Risk assessment of metals should take into account the role of biota in metal cycling and partitioning in forests, particularly if metal bio-accumulation and chronic toxicity in the food chain, rather than metal mobility in soils, are of primary concern.  相似文献   

20.
Potential contamination at ex-industrial sites means that, prior to change of use, it will be necessary to quantify the extent of risks to potential receptors. To assess ecological hazards, it is often suggested to use biological assessment to augment chemical analyses. Here we investigate the potential of a commonly recommended bioassay, the earthworm reproduction test, to assess the status of urban contaminated soils. Sample points at all study sites had contaminant concentrations above the Dutch soil criteria Target Values. In some cases, the relevant Intervention Values were exceeded. Earthworm survival at most points was high, but reproduction differed significantly in soil from separate patches on the same site. When the interrelationships between soil parameters and reproduction were studied, it was not possible to create a good model of site soil toxicity based on single or even multiple chemical measurements of the soils. We thus conclude that chemical analysis alone is not sufficient to characterize soil quality and confirms the value of biological assays for risk assessment of potentially contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号