首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 684 毫秒
1.
Miscible-displacement experiments were conducted to compare the effects of aqueous soil solutions with ethyl alcohol, ethylene glycol, diethylene glycol, and triethylene glycol on the movement of metals through soils. Aqueous or alcohol solutions containing 1 mM each Cd, Ni, and Zn and 5 mM Ca were perfused through columns containing River Sand, Canelo loam (Canelo 1) or Mohave sandy clay loam (Mohave scl) until effluent metal concentrations (C) equaled influent concentrations (C0) or CC0−1 = 1. In general, the order of sorption was Zn > Ni > Cd in aqueous-perfused columns, while in alcohol-perfused columns sorption of Ni Cd ≥ Zn. In comparison to aqueous solutions, alcohols reduced total metal sorption by at least 25%. Metal sorption was best correlated to cation exchange capacity of the soil, sorption of metals being greatest in the Mohave scl and least in the River Sand. After CC0−1 = 1 was reached, columns were leached with deionized water. While leaching did not affect the sorption of metals in columns which had been perfused with aqueous solvents, sorption behavior of metals changed significantly in columns which had been perfused with alcohol solvents. Leaching caused desorption of 5 to 30% of the sorbed Ni. In general, Cd was desorbed (up to 45%) from the soils tested. The exceptions were River Sand columns perfused with diethylene and triethylene glycol in which additional Cd was sorbed to the soil from the soil solution. Additional Zn was sorbed in all columns tested with the exception of the Canelo 1 column perfused with ethyl alcohol.  相似文献   

2.
Chen S  Nyman MC 《Chemosphere》2007,66(8):1523-1534
The sorption and desorption behavior of benzidine in eight solvent-sediment systems were studied using a batch method. The solvents tested included deionized water (DI), calcium chloride solution (CaCl2), sodium hydroxide solution (NaOH), acetonitrile (ACN), a mixture of acetonitrile and ammonium acetate solution (ACN-NH4OAc), methanol (MeOH), ammonium acetate solution (NH4OAc) and hydrochloric acid solution (HCl). Three sets of sorption isotherm experiments were conducted separately in these eight solvents with seven days, three weeks, and two months of contact times, respectively. The results demonstrated nonlinear benzidine sorption phenomena in all eight solvents with higher sorption affinities for sediment sites in the aqueous solvents than in the organic solvents. The results from the desorption experiments revealed that the benzidine desorption efficiencies in the solvents decreased in an order, which was approximately the reverse order of its sorption affinity. Results also suggested that hydrophobic partitioning and covalent binding processes dominated in the desorption experiments, while cation exchange process had little effect on desorption of benzidine. A three-stage model was subsequently applied to simulate the desorption data in the selected solvents of ACN, ACN-NH4OAc and NaOH, respectively. The rapidly desorbing initial fractions were about 0.13-0.20, 0.15-0.26, and 0.18-0.25 for ACN, ACN-NH4OAc and NaOH, respectively. Finally, the sorbed concentrations of benzidine in slowly and very slowly desorbing domains in the selected solvents were correlated with the maximum sorption capacities obtained from the Langmuir sorption isotherm model. The maximum sorption capacities of benzidine were found to be comparable to the amount of benzidine residing in the slowly and very slowly desorbing domains.  相似文献   

3.
Ozone treatment of soil contaminated with aniline and trifluralin   总被引:1,自引:0,他引:1  
Column studies were conducted to determine the ability of ozone to degrade aniline and trifluralin in soil. Ozone rapidly degraded aniline from soil under moist soil conditions, 5% (wt). Removal of 77-98% of [UL-14C]-aniline was observed from soil columns (15 ml, i.d. = 2.5 cm), exposed to 0.6% O(3) (wt) at 200 ml/min after 4 min. Initial ozonation products included nitrosobenzene and nitrobenzene, while further oxidation led to CO(2). Ring-labeled-[UL-14C]-trifluralin removal rates were slower, requiring 30 min to achieve removals of 70-97%. Oxidation and cleavage of the N-propyl groups of trifluralin was observed, affording 2,6-dinitro-4-(trifluoromethyl)-aniline, 2,6-dinitro-N-propyl-4-(trifluoromethyl)-benzamine, and 2,6-dinitro-N-propyl-N-acetonyl-4-(trifluoromethyl)-benzamine. Base solutions revealed that trifluralin was similarly oxidized to CO(2), where 72-83% of the activity recovered comprised 14CO(2). Use of ozone-rich water improved contaminant removal in trifluralin-amended soil columns, but did not improve removal in aniline, pentachloroaniline, hexachlorobenzene amended soil columns, suggesting that ozonated water may improve contaminant removal for reactive contaminants of low solubility.  相似文献   

4.
Concerning the transport of the veterinary antibiotic sulfadiazine (SDZ) little is known about its possible degradation during transport. Also its sorption behaviour is not yet completely understood. We investigated the transport of SDZ in soil columns with a special emphasis on the detection of transformation products in the outflow of the soil columns and on modelling of the concentration distribution in the soil columns afterwards. We used disturbed soil columns near saturation, packed with a loamy sand and a silty loam. SDZ was applied as a 0.57 mg L(-1) solution at a constant flow rate of 0.25 cm h(-1) for 68 h. Breakthrough curves (BTC) of SDZ and its transformation products 4-(2-iminopyrimidin-1(2H)-yl)aniline and 4-hydroxy-SDZ were measured for both soils. For the silty loam we additionally measured a BTC for an unknown transformation product which we only detected in the outflow samples of this soil. After the leaching experiments the (14)C-concentration was quantified in different layers of the soil columns. The transformation rates were low with mean SDZ mass fractions in the outflow samples of 95% for the loamy sand compared to 97% for the silty loam. The formation of 4-(2-iminopyrimidin-1(2H)-yl)aniline appears to be light dependent and did probably not occur in the soils, but afterwards. In the soil columns most of the (14)C was found near the soil surface. The BTCs in both soils were described well by a model with one reversible (kinetic) and one irreversible sorption site. Sorption kinetics played a more prominent role than sorption capacity. The prediction of the (14)C -concentration profiles was improved by applying two empirical models other than first order to predict irreversible sorption, but also these models were not able to describe the (14)C concentration profiles correctly. Irreversible sorption of sulfadiazine still is not well understood.  相似文献   

5.
Li H  Lee LS  Fabrega JR  Jafvert CT 《Chemosphere》2001,44(4):627-635
Predicting the reversible interactions between aromatic amines and soil is essential for assessing the mobility, bioavailability and exposure from contaminated sites. Reversible sorption mechanisms of aniline and alpha-naphthylamine were investigated by using single and binary solute sorption to five soils at several pH values, and by applying a distributed parameter (DP) model. The DP model assumes linear partitioning of the neutral species into soil organic matter domains and organic cation binding on negative-charged sites with the exchange coefficients represented by a Gaussian probability distribution. Sorption nonlinearity was attributed to cation exchange with varying site affinities, which was adequately simulated using the DP model. Greater uptake by hydrophobic partitioning and selectivity for cation exchange sites was observed for alpha-naphthylamine compared to aniline. Sorption of alpha-naphthylamine was not impacted quantitatively by aniline under those conditions examined; however, aniline sorption was reduced by alpha-naphthylamine with the largest reduction occurring in the soil with the lowest pH. DP model simulations showed that although hydrophobic partitioning increases with soil-solution pH, cation exchange still contributes significantly to the total sorption even at soil-solution pH values greater than pKa + 2.  相似文献   

6.
Relation of enhanced Pb solubility to Fe partitioning in soils   总被引:2,自引:0,他引:2  
It is well documented that Pb solubility may be related to Fe chemistry in soils and enhanced Pb solubility may occur under certain reducing conditions; however, quantification of such relationships is unavailable. Based on metal classification, Pb (II) and Fe (II) are similar in some chemical characteristics. Thus, competition between Pb and Fe for ligands in soils may be important in determining Pb solubility. In this paper, Pb solubility was examined in a sandy soil after spiking with Pb and incubating for 40 days under water-flooded or non-water-flooded conditions. Solution chemistry in soil columns was adjusted using different concentrations of NaCl, CaCl(2) and deionized water of varying pH before incubation. The results showed that Pb solubility in the soil was not correlated well with pH, dissolved organic C or aqueous Fe concentrations. However, an index of Fe partition behavior using the ratio of aqueous Fe to sorbed Fe was related to Pb solubility. Enhanced Pb solubility occurred only when the index was < approximately 2 kg l(-1). The index can be a simple measure of Fe's ability to compete with Pb for ligands in solution. The ability of Fe to compete with Pb decreases as the index decreases and as the ratio approached its minimum, substantial increases in Pb solubility will be expected. In general, the index was not sensitive to changes in solution chemistry. A similar trend was observed using one data set published in the literature.  相似文献   

7.
Sorption of 3,4-dichloroaniline (3,4-DCA) on four typical Greek agricultural soils, with distinct texture, organic matter content and cation exchange capacities, was compared by using sorption isotherms and the parameters calculated from the fitted Freundlich equations. The sorption process of 3,4-DCA to the soil was completed within 48–72 h. The 3,4-DCA sorption on all soils was well described by the Freundlich equation and all sorption isotherms were of the L-type. The sandy clay loam soil with the highest organic matter content and a slightly acidic pH was the most sorptive, whereas the two other soil types, a high organic matter and neutral pH clay and a low organic matter and acidic loam, had an intermediate sorption capacity. A typical calcareous soil with low organic matter had the lowest sorption capacity which was only slightly higher than that of river sand. The 3,4-DCA sorption correlated best to soil organic matter content and not to clay content or cation exchange capacity, indicating the primary role of organic matter. The distribution coefficient (K d) decreased with increasing initial 3,4-DCA concentration and the reduction was most pronounced with the highly sorptive sandy clay loam soil, suggesting that the available sorption sites of the soils are not unlimited. Liming of the two acidic soils (the sandy clay loam and the loam) raised their pH (from 6.2 and 5.3, respectively) to 7.8 and reduced their sorption capacity by about 50 %, indicating that soil pH may be the second in importance factor (after organic matter) determining 3,4-DCA sorption.  相似文献   

8.
Sorption of 3,4-dichloroaniline (3,4-DCA) on four typical Greek agricultural soils, with distinct texture, organic matter content and cation exchange capacities, was compared by using sorption isotherms and the parameters calculated from the fitted Freundlich equations. The sorption process of 3,4-DCA to the soil was completed within 48-72 h. The 3,4-DCA sorption on all soils was well described by the Freundlich equation and all sorption isotherms were of the L-type. The sandy clay loam soil with the highest organic matter content and a slightly acidic pH was the most sorptive, whereas the two other soil types, a high organic matter and neutral pH clay and a low organic matter and acidic loam, had an intermediate sorption capacity. A typical calcareous soil with low organic matter had the lowest sorption capacity which was only slightly higher than that of river sand. The 3,4-DCA sorption correlated best to soil organic matter content and not to clay content or cation exchange capacity, indicating the primary role of organic matter. The distribution coefficient (K(d)) decreased with increasing initial 3,4-DCA concentration and the reduction was most pronounced with the highly sorptive sandy clay loam soil, suggesting that the available sorption sites of the soils are not unlimited. Liming of the two acidic soils (the sandy clay loam and the loam) raised their pH (from 6.2 and 5.3, respectively) to 7.8 and reduced their sorption capacity by about 50 %, indicating that soil pH may be the second in importance factor (after organic matter) determining 3,4-DCA sorption.  相似文献   

9.
Rabølle M  Spliid NH 《Chemosphere》2000,40(7):715-722
Laboratory studies were conducted to characterise four different antibiotic compounds with regard to sorption and mobility in various soil types. Distribution coefficients (Kd values) determined by a batch equilibrium method varied between 0.5 and 0.7 for metronidazole, 0.7 and 1.7 for olaquindox and 8 and 128 for tylosin. Tylosin sorption seems to correlate positively with the soil clay content. No other significant interactions between soil characteristics and sorption were observed. Oxytetracycline was particularly strongly sorbed in all soils investigated, with Kd values between 417 in sand soil and 1026 in sandy loam, and no significant desorption was observed. Soil column leaching experiments indicated large differences in the mobility of the four antibiotic substances, corresponding to their respective sorption capabilities. For the weakly adsorbed substances metronidazole and olaquindox the total amounts added were recovered in the leachate of both sandy loam and sand soils. For the strongly adsorbed oxytetracyline and tylosin nothing was detected in the leachate of any of the soil types, indicating a much lower mobility. Results from defractionation and extraction of the columns (30 cm length) showed that 60-80% of the tylosin added had been leached to a depth of 5 cm in the sandy loam soil and 25 cm in the sand soil.  相似文献   

10.
The fate of the acidic organic solute from the soil-water-solvent system is not well-understood. In this study, the effect of the acidic functional group of organic solute in the sorption from cosolvent system was evaluated. The sorption of naphthalene (NAP) and 1-naphthoic acid (1-NAPA) by three kaolinitic soils and two model sorbents (kaolinite and humic acid) were measured as functions of the methanol volume fractions (f (c) ≤ 0.4) and ionic compositions (CaCl(2) and KCl). The solubility of 1-NAPA was also measured in various ionic compositions. The sorption data were interpreted using the cosolvency-induced sorption model. The K (m) values (= the linear sorption coefficient) of NAP with kaolinitic soil for both ionic compositions was log linearly decreased with f (c). However, the K (m) values of 1-NAPA with both ionic compositions remained relatively constant over the f (c) range. For the model sorbent, the K (m) values of 1-NAPA with kaolinite for the KCl system and with humic acid for both ionic compositions decreased with f (c), while the sorption of 1-NAPA with kaolinite for the CaCl(2) system was increased with f (c). From the solubility data of 1-NAPA with f (c), no significant difference was observed with the different ionic compositions, indicating an insignificant change in the aqueous activity of the liquid phase. In conclusion, the enhanced 1-NAPA sorption, greater than that predicted from the cosolvency-induced model, was due to an untraceable interaction between the carboxylate and hydrophilic soil domain in the methanol-water system. Therefore, in order to accurately predict the environmental fate of acidic pesticides and organic solutes, an effort to quantitatively incorporate the enhanced hydrophilic sorption into the current cosolvency-induced sorption model is required.  相似文献   

11.
Martins JM  Mermoud A 《Chemosphere》1999,38(3):601-616
This paper presents a study on degradation, sorption and transport of the sulfonylurea herbicide rimsulfuron and its major metabolites in alluvial soil columns. The formulation of rimsulfuron was found to strongly affect its degradability. Hydrolysis of pure rimsulfuron takes place rapidly in distilled water (t(1/2)=2.2 days) or indeed instantaneously in alkaline solution. The formulated rimsulfuron (Titus, 25% rimsulfuron, Du Pont De Nemours) is more persistent in alluvial soil suspensions (t(1/2)=7.5 days). The study of sorption of Titus and its two major metabolites (1 and 2) revealed that these three chemicals are potentially highly mobile in the studied soil: in suspension distribution coefficients of 0.0028, 0.125 and 0.149 cm3 g(-1) were obtained respectively. Given the instability of rimsulfuron in alkaline solutions, the pH effect was evaluated with metabolite 2 in water saturated Fontainebleau sand columns at pH 6, 8 and 10. Transport was found to be strongly dependent on pH; a linear relationship was obtained between pH and the retardation factor or the dispersion coefficient. In alluvial soil columns, rimsulfuron from Titus was found to be very mobile (R=1.2) and rapidly degraded into metabolites 1 and 2, which were transported at a similar velocity. Nevertheless, the risks of groundwater contamination by rimsulfuron seem very low, as it is rapidly degraded under dynamic conditions (t(1,2)=1.4 days). On the other hand the relatively stable metabolite 2 seems likely to persist in the soil and to be transported to the groundwater. Special attention should thus be given to this compound at least as long as its harmlessness is not demonstrated.  相似文献   

12.
The application of poultry litter to metal-contaminated soils may influence metal leaching and distribution of metals among soil fractions. Soil columns (one uncontaminated control, one metal-amended, and two metal-contaminated soils) were leached with H2O, CaCl2, EDTA, and poultry litter extract (PLE) solutions. After leaching, the soil samples in the columns were sequentially extracted for water soluble (WS), exchangeable (EXC), organic matter (OM), Mn oxide (MNO), amorphous Fe oxide (AFEO), crystalline Fe oxide (CFEO) and residual (RES) fractions. The OM fraction showed high retention for Zn from the PLE. The EDTA redistributed Zn, Cd and Pb from the EXC, OM and MNO fractions to the WS fraction. The PLE usually solubilized more Zn and Cd from the EXC fraction than CaCl2. Neither PLE nor CaCl2 mobilized Pb. The application of poultry litter on metal-contaminated soils might cause Zn and Cd redistribution from the EXC to the WS fraction and enhance metal mobility.  相似文献   

13.
Phosphate fertilizers and herbicides such as glyphosate and MCPA are commonly applied to agricultural land, and antibiotics such as tetracycline have been detected in soils following the application of livestock manures and biosolids to agricultural land. Utilizing a range of batch equilibrium experiments, this research examined the competitive sorption interactions of these chemicals in soil. Soil samples (0-15 cm) collected from long-term experimental plots contained Olsen P concentrations in the typical (13 to 20 mg kg?1) and elevated (81 to 99 mg kg?1) range of build-up phosphate in agricultural soils. The elevated Olsen P concentrations in field soils significantly reduced glyphosate sorption up to 50%, but had no significant impact on MCPA and tetracycline sorption. Fresh phosphate additions in the laboratory, introduced to soil prior to, or at the same time with the other chemical applications, had a greater impact on reducing glyphosate sorption (up to 45%) than on reducing tetracycline (up to 13%) and MCPA (up to 8%) sorption. The impact of fresh phosphate additions on the desorption of these three chemicals was also statistically significant, but numerically very small namely < 1% for glyphosate and tetracycline and 3% for MCPA. The presence of MCPA significantly reduced sorption and increased desorption of glyphosate, but only when MCPA was present at concentrations much greater than environmentally relevant and there was no phosphate added to the MCPA solution. Tetracycline addition had no significant effect on glyphosate sorption and desorption in soil. For the four chemicals studied, we conclude that when mixtures of phosphate, herbicides and antibiotics are present in soil, the greatest influence of their competitive interactions is phosphate decreasing glyphosate sorption and the presence of phosphate in solution lessens the potential impact of MCPA on glyphosate sorption. The presence of chemical mixtures in soil solution has an overall greater impact on the sorption than desorption of individual organic chemicals in soil.  相似文献   

14.
A study in small outdoor lysimeters was carried out to determine the leaching of the herbicides tebuthiuron and diuron in different soil types, using undisturbed soil columns. Soil sorption and degradation for both herbicides were also studied in the laboratory. The multi-layered AF (Attenuation Factor) model was evaluated for predicting the herbicides leaching in undisturbed soil columns. Tebuthiuron leached in greater amounts than diuron in both soils. Sorption was well represented by linear and Freundlich equations, however parameters from the linear equations were used in the AF model. In general, both herbicides presented very low sorption, with diuron presenting lower values of sorption coefficient than tebuthiuron in the two soils. Chromatographic data indicated rapid late degradation of diuron and tebuthiuron in both soil types at two different depths. Simple exponential equation was not able to represent degradation, thus a bi-exponential equation was used, and some model adjusting was needed. Average measured amounts of each herbicide were compared with amounts predicted by the multi-layered-soil AF model. The AF model was able to predict leaching amounts in the sandy soil, especially for diuron, however it did not perform well in the clayey soil.  相似文献   

15.
Addition of organic wastes to agricultural soils is becoming a common practice as a disposal strategy and to improve the physical and chemical soil properties. However, in order to optimise the use of organic wastes as soil amendments, their effect on the behaviour of other compounds that are also used in agriculture, such as pesticides, needs to be assessed. In this work, we have investigated the effects of the addition of the final solid residue of the new technology of olive-oil extraction (extracted alperujo or solid olive-mill waste, SOMW2) on the sorption, degradation and leaching of the herbicide simazine in a sandy loam soil. The results are compared with those of a previous study, where the intermediary by-product of the olive-oil processing technology (unextracted alperujo or SOMW1) was applied to the same soil. The soil was amended in the laboratory with SOMW2 at two different rates (5% and 10% w/w). Simazine sorption isotherms showed a great increase in herbicide sorption after SOMW2 addition to soil. SOMW2 addition also increased sorption irreversibility. Incubation studies revealed reduced biodegradation of simazine in the soil amended with SOMW2 compared to the unamended soil. Breakthrough curves of simazine in handpacked soil columns showed that SOMW2 addition retarded the vertical movement of the herbicide through the soil and greatly reduced the amount of herbicide available for leaching. Interestingly, the results were quantitatively different from those obtained for the intermediary by-product SOMW1, illustrating the importance of the specific characteristics of the organic amendment in determining its effect on pesticide behaviour.  相似文献   

16.
We obtained the sorption isotherms of Cd, Cu, Pb and Zn in clay, clay saline and organic soils. The distribution coefficients (K(d)) were determined in 0.02 eq l(-1) CaCl(2) and in a solution that simulated the soil solution cationic composition. The K(d) values greatly varied with the composition of the sorption solution and the initial metal concentration. The sorption experiments were complemented with the quantification of the extractable metal, to estimate the reversibility of metal sorption. The extraction yields depended on the metal-soil combination, and the initial metal concentration, showing no correlation with previous K(d) values. The effect of the solution composition in mobility predictions was estimated through a Retention Factor, defined as the ratio of the K(d) versus the extraction yield. Results showed that risk was over- or underestimated using the CaCl(2) medium in soils with a markedly different soil solution composition.  相似文献   

17.
Ptaquiloside (PTA) is a carcinogenic norsesquiterpene glucoside produced by Bracken in amounts up to at least 500 mg m(-2). The toxin is transferred from Bracken to the underlying soil from where it may leach to surface and groundwater's impairing the quality of drinking water. The objectives of the present study were to characterize the solubility, degradation and retention of PTA in soils in order to evaluate the risk for groundwater contamination. PTA was isolated from Bracken. The logarithmic octanol-water and ethyl acetate-water partitioning coefficients for PTA were -0.63 and -0.88, respectively, in agreement with the high water solubility of the compound. PTA hydrolysed rapidly in aqueous solution at pH 4 or lower, but was stable above pH 4. Incubation of PTA with 10 different soils at 25 degrees C showed three different first order degradation patterns: (i) rapid degradation observed for acid sandy soils with half life's ranging between 8 and 30 h decreasing with the soil content of organic matter, (ii) slow degradation in less acid sandy soils with half-lives of several days, and (iii) fast initial degradation with a concurrent solid phase-water partitioning reaction observed for non-acid, mostly clayey soils. The presence of clay silicates appears to retard the degradation of PTA, possibly through sorption. Degradation at 4 degrees C was generally of type (iii) and degradation rates were up to 800 times lower than at 25 degrees C. Sorption isotherms for the same set of soils were almost linear and generally showed very low sorption affinity with distribution coefficients in the range 0.01-0.22 l kg(-1) at a solution concentration of 1 mg l(-1) except for the most acid soil; Freundlich affinity coefficients increased linearly with clay and organic matter contents. Negligible sorption was also observed in column studies where PTA and a non-sorbing tracer showed almost coincident break-through. Leaching of PTA to the aqueous environment will be most extensive on sandy soils, having pH >4 and poor in organic matter which are exposed to high precipitation rates during cold seasons.  相似文献   

18.
Recent monitoring investigations have shown that antimicrobial agents used in veterinary medicine can cause non-point source contamination of soils through manure spreading. In the present study, the effect of the antimicrobial agent sulfamethazine (sulfadimidine) on degradation and sorption of the herbicide metolachlor in a sandy loam soil was studied. In soil samples treated with sulfamethazine at two concentrations (15 and 150 microg kg(-1) soil), metolachlor persistence was not different than of that observed in untreated samples. These results were supported by the absence of effects of both sulfamethazine concentration levels on the size of the culturable soil bacteria population. Equilibrating soil samples with metolachlor solutions containing equivalent sulfamethazine concentrations did not lead to any significant effects on metolachlor sorption, suggesting that, under the conditions of the present experiment, sulfamethazine did not affect metolachlor bioavailability in soil. This laboratory investigation showed that concentrations of sulfamethazine in the microg kg(-1) range did not cause significant effects on metolachlor degradation and sorption thus not affecting the main processes ruling its environmental fate in soil.  相似文献   

19.

Pesticides and other organic species are adsorbed by soil via different mechanisms, with bond strengths that depend on the properties of both the soil and the pesticide. Since the clay fraction in soil is a preferential sorbent for organic matter, reference kaolinite and montmorillonite are useful models for studying the mechanism and the strength of sorption. This paper presents the results of batch experiments to investigate the interactions of kaolinite KGa-1 and montmorillonite SWy-1 with the following pesticides and organic species resulting from the natural degradation of pesticides in the environment: atrazine (1-chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine), simazine (1-chloro-3,5-bisethylamino-2,4,6-triazine), diuron [1,1-dimethyl-3-(3,4-dichlorophenyl)urea], aniline, 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol. Each of these chemicals has different hydrophilicity. Systems containing 2.0 g of clay were put in contact with 100.0 mL of solutions of the pesticides at known concentration ranging from 1.0 to 5.0 mg/L, and the amount of solute adsorbed was evaluated through RP-HPLC analysis of the pesticide still present in the aqueous suspension. To test for electrostatic interactions between the clay surface and the pesticides, potentiometric titration was used to determine the permanent surface charge of clays. Experiments were performed at different pH values. The results indicate that, for the chemicals studied, neutral molecules are preferentially retained relative to ionized ones, and that montmorillonite is a more effective sorbent than kaolinite.  相似文献   

20.
This study investigated the effect of cation type, ionic strength, and pH on the performance of an anionic monorhamnolipid biosurfactant for solubilization and removal of residual hexadecane from sand. Three common soil cations, Na+, Mg2+, and Ca2+, were used in these experiments and hexadecane was chosen to represent a nonaqueous phase liquid (NAPL) less dense than water. Results showed that hexadecane solubility in rhamnolipid solution was significantly increased by the addition of Na+ and Mg2+. Addition of up to 0.2 mM Ca2+ also increased hexadecane solubility. For Ca2+ concentrations greater than 0.2 mM there was little effect on hexadecane solubility due to competing effects of calcium-induced rhamnolipid precipitation and enhanced hexadecane solubilization. Efficiency of NAPL solubilization can be expressed in terms of molar solubilization ratios (MSR). The results showed that MSR values for hexadecane in rhamnolipid solutions increased 7.5-fold in the presence of 500 mM Na+, and 25-fold in the presence of 1 mM Mg2+. The presence of cations also reduced the interfacial tension between rhamnolipid solutions and hexadecane. For example, an increase in Na+ from 0 to 800 mM caused a decrease in interfacial tension from 2.2 to 0.89 dyn cm−1. Similarly, decreasing pH caused a reduction in interfacial tension. The lowest interfacial tension value observed in this study was 0.02 dyn cm−1 at pH 6 in the presence of 320 mM Na+. These conditions were also found to be optimal for removal of hexadecane residual from sand columns, with 58% of residual removed within three pore volumes. The removal of residual NAPL from the packed columns was primarily by mobilization, even though solubilization was significantly increased in the presence of Na+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号