首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

The presence of recalcitrant contaminants in wastewater is major challenge to decrease pollution and associated health issues. As a consequence, membrane technologies have recently attracted industrial attention, yet a major setback of membrane employment is membrane fouling which leads to frequent discarding of membrane modules. More than 45% of all membrane fouling cases are caused by biofilms that are resistant to antimicrobial agents. Here we review polymeric membranes with antifouling properties, with focus on surface properties, fabrication, characterization, biocatalysis using enzymes and application towards the removal of dyes, phenol, pesticides and fertilizers. Nano-engineered fabrication of polymeric membranes allow to decrease fouling by 80–90%. Immobilized oxidoreductases in polymeric membranes allow 65–98% removal contaminants in wastewater.

  相似文献   

2.
4A zeolite supported nanoparticulate zero-valent iron (nZVI/4A zeolite), synthesized through borohydride reduction method, was used as a catalyst with H2O2 to build Fenton-like reaction system to degrade methylene blue (MB) in model wastewater. The characteristics and primary mechanisms of the catalyst were investigated. The results show that nZVI/4A zeolite has the potential as a Fenton-like catalyst, and (about 30 mg/L) MB was degraded completely in 3 h with 10 mM H2O2, 0.2 g/L catalyst, and initial pH of 3.0. The MB degradation rates were obtained at least 70% in the tests with initial pH ranged from 2.0 to 9.0 and the catalyst dose rose from 0.2 to 5.0 g/L. Importantly, the catalyst also has a distinctive ability to increase the solution pH value from its initial acidic pH and then maintain the value at close to neutrality. This ability was controlled by both the initial pH and the catalyst dose. MB degradation clarified that hydroxyl radical was the dominated active oxidative specie in the tests with initial acidic pH and low catalyst dose (less 2.5 g/L); otherwise, Fe(VI) oxidation was the main mechanism for MB degradation; and the two processes shared synergistic effect in MB degradation in the present test. The catalyst has high operational stability in both of the composites with low iron leaching (less 2%) and catalyzing ability. Therefore, nZVI/4A zeolite has great potential as a Fenton-like catalyst and is used with H2O2 to build Fenton-like system which could be used to degrade MB efficiently.  相似文献   

3.
Abstract

A metal-organic framework of iron-doped copper 1,4-benzenedicarboxylate was synthesized and, for the first time, utilized as a heterogeneous photo-Fenton catalyst for degradation of methylene blue dye in aqueous solution under visible light irradiation. The synthesized materials were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy. The influence factors, kinetics, and stability of the synthesized catalysts were investigated in detail. Iron-doped copper 1,4-benzenedicarboxylate showed higher degradation efficiency than pure copper 1,4-benzenedicarboxylate. An almost complete degradation was achieved within 70?min under visible light irradiation at a solution pH of 6, a catalyst loading of 1?g?L?1, a H2O2 dosage of 0.05?mol L?1 and methylene blue concentration of 50?mg?L?1. Recycling studies demonstrated that the iron-doped copper 1,4-benzenedicarboxylate is a promising heterogeneous photo-Fenton catalyst for long-term removal of methylene blue dye from industrial wastewater.  相似文献   

4.
Fe-pillared bentonite (Fe-Bent) was prepared by ion exchange as heterogeneous catalyst for degradation of organic contaminants in petroleum refinery wastewater. X-ray diffraction analysis showed the existence of α-Fe2O3. The effects of pH, H2O2 concentration, and catalyst dosage on the rate of lowering the chemical oxygen demand (COD) were investigated in detail. Removal efficiency of COD can be up to 92% under the following conditions: dosage of Fe-Bent 7 g L?1, pH value 3, and H2O2 concentration 10 mmol L?1. Fe-Bent showed good stability for the degradation of organics in petroleum refinery wastewater for five cycles. The adsorption of organics in wastewater onto Fe-Bent could be well described by a pseudo-second-order kinetic model.  相似文献   

5.
活性污泥吸附预处理重油裂化制气废水   总被引:2,自引:0,他引:2  
利用剩余活性污泥对含有高浓度芳香族化合物的重油裂化制气废水进行预处理的研究并提出了合适的吸附条件。结果表明,活性污泥吸附预处理对COD和悬浮物有明显的去除效果,而且可以提高废水BOD5/COD的比值,另外还有降解芳香族化合物的作用,使进入生物处理系统的废水的可生物降解性有明显的改善。这一方法为利用普通废水生物处理系统中产生的剩余活性污泥来预处理难降解的工业废水提供了一条有效的途径。  相似文献   

6.
• The sustainable approaches related to Fenton sludge reuse systems are summarized. • Degradation mechanism of Fenton sludge heterogeneous catalyst is deeply discussed. • The efficient utilization directions of Fenton sludge are proposed. The classical Fenton oxidation process (CFOP) is a versatile and effective application that is generally applied for recalcitrant pollutant removal. However, excess iron sludge production largely restricts its widespread application. Fenton sludge is a hazardous solid waste, which is a complex heterogeneous mixture with Fe(OH)3, organic matter, heavy metals, microorganisms, sediment impurities, and moisture. Although studies have aimed to utilize specific Fenton sludge resources based on their iron-rich characteristics, few reports have fully reviewed the utilization of Fenton sludge. As such, this review details current sustainable Fenton sludge reuse systems that are applied during wastewater treatment. Specifically, coagulant preparation, the reuse of Fenton sludge as an iron source in the Fenton process and as a synthetic heterogeneous catalyst/adsorbent, as well as the application of the Fenton sludge reuse system as a heterogeneous catalyst for resource utilization. This is the first review article to comprehensively summarize the utilization of Fenton sludge. In addition, this review suggests future research ideas to enhance the cost-effectiveness, environmental sustainability, and large-scale feasibility of Fenton sludge applications.  相似文献   

7.

Traditional wastewater treatment has been aimed solely at sanitation by removing contaminants, yet actual issues of climate change and depletion of natural resources are calling for methods that both remove contaminants and convert waste into chemicals and fuels. In particular, biological treatments with synergic coupling of microalgae and bacteria appear promising to remove organic, inorganic, and pathogen contaminants and to generate biofuels. Here, we review the use of algae and bacteria in the treatment and valorization of wastewater with focus on cell-to-cell adhesion, wastewater properties, and techniques for algae harvesting and production of biodiesel, bioethanol, biohydrogen, exopolysaccarides, biofertilizers, and animal feeds.

  相似文献   

8.
从生产乙羧氟草醚工厂的污水处理池污泥中分离到一株乙羧氟草醚降解细菌,命名为YF1.根据表型特征、生理生化特性和16S rDNA序列系统发育分析,将其鉴定为假单胞菌属(Pseudomonas sp.).接种量为5%时,菌株YF1在含200 mg/L乙羧氟草醚的基础盐液体培养基中降解乙羧氟草醚,7 d后降解率约80%.加大接种量和外加营养碳氮源可以促进乙羧氟草醚的降解.该菌株降解乙羧氟草醚的最适pH为7.0,最适温度为30℃.菌株YF1能利用苯酚、邻苯二酚、对苯二酚、苯甲酸、龙胆酸、对硝基苯酚和邻氯苯酚为底物生长,不能利用3-苯氧基苯甲酸为碳源生长,菌株YF1细胞内邻苯二酚1,2-双加氧酶受到乙羧氟草醚或其代谢产物的诱导.图5表1参25  相似文献   

9.
The Kishon River, which is now an industrial sewage canal, may be turned into a recreational area in two stages, and by approximately 20 million dollar investment.

Stage A: The wastewater is treated in order to avoid polluted effluents from entering the river.

Stage B: The river water is treated in order to turn the river into a recreational area.  相似文献   

10.
Nowadays, the water ecosystem is being polluted due to the rapid industrialization and massive use of antibiotics, fertilizers, cosmetics, paints, and other chemicals. Chemical oxidation is one of the most applied processes to degrade contaminants in water. However, chemicals are often unable to completely mineralize the pollutants. Enhanced pollutant degradation can be achieved by Fenton reaction and related processes. As a consequence, Fenton reactions have received great attention in the treatment of domestic and industrial wastewater effluents. Currently, homogeneous and heterogeneous Fenton processes are being investigated intensively and optimized for applications, either alone or in a combination of other processes. This review presents fundamental chemistry involved in various kinds of homogeneous Fenton reactions, which include classical Fenton, electro-Fenton, photo-Fenton, electro-Fenton, sono-electro-Fenton, and solar photoelectron-Fenton. In the homogeneous Fenton reaction process, the molar ratio of iron(II) and hydrogen peroxide, and the pH usually determine the effectiveness of removing target pollutants and subsequently their mineralization, monitored by a decrease in levels of total organic carbon or chemical oxygen demand. We present catalysts used in heterogeneous Fenton or Fenton-like reactions, such as H2O2–Fe3+(solid)/nano-zero-valent iron/immobilized iron and electro-Fenton-pyrite. Surface properties of heterogeneous catalysts generally control the efficiency to degrade pollutants. Examples of Fenton reactions are demonstrated to degrade and mineralize a wide range of water pollutants in real industrial wastewaters, such as dyes and phenols. Removal of various antibiotics by homogeneous and heterogeneous Fenton reactions is exemplified.  相似文献   

11.
Photocatalytic reactions using titanium dioxide are of great interest due to their possible applications to solar energy storage and detoxification of wastewater. However, TiO2 has usually given a very poor selectivity. Here we show that, using binary mixtures, it is possible to selectively degrade one molecular substance without any concentration change of another substance. We have studied the influence of the pH and TiO2 concentration on the selectivity of the degradation of benzamide and 4-hydroxybenzoic acid. With appropriate modifications of both parameters, the selectivity can be improved.  相似文献   

12.
A spent fluid catalytic cracking (FCC) catalyst containing lanthanum (La) was used as a novel adsorbent for phosphorus (P) in simulated wastewater. The experiments were conducted in a batch system to optimize the operation variables, including pH, calcination temperature, shaking time, solid-liquid ratio, and reaction temperature under three initial P-concentrations (C0 = 0.5, 1.0, and 5.0 mg/L). Orthogonal analysis was used to determine that the initial P-concentration was the most important parameter for P removal. The P-removal rate exceeded 99% and the spent FCC catalyst was more suitable for use in low P-concentration wastewater (C0 <5.0 mg/L). Isotherms, thermodynamics and dynamics of adsorption are used to analyze the mechanism of phosphorus removal. The results show that the adsorption is an endothermic reaction with high affinity and poor reversibility, which indicates a low risk of second releasing of phosphate. Moreover, chemical and physical adsorption coexist in this adsorption process with LaPO4 and KH2PO4 formed on the spent FCC catalyst as the adsorption product. These results demonstrate that the spent FCC catalyst containing La is a potential adsorbent for P-removal from wastewater, which allows recycling of the spent FCC catalyst to improve the quality of water body.
  相似文献   

13.
金属负载活性炭催化氧化法处理ZPT生产废水   总被引:4,自引:0,他引:4  
研究了金属负载活性炭催化剂在常温常压下催化氧化处理吡啶硫酮锌(ZPT)废水的技术,在探讨影响催化氧化效果诸因素的基础上,确定出中和预处理、后接两级催化氧化处理该废水的工艺流程,该流程的COD的去除率最高可达92%,处理出水达到国家污水综合排放标准二级指标。  相似文献   

14.
A laboratory scale method is proposed in order to establish the advantages and disadvantages of reclaimed wastewater irrigation. Data on possible environmental impact (on groundwater and soils) of such irrigation practices are obtained by using lysimetric columns. At the same time it is possible to gather data about treated wastewater nutrient content.

Global results of percolating ions and vegatative growth on columns data are shown.  相似文献   

15.
高锰酸钾对染料废水的脱色研究   总被引:15,自引:0,他引:15  
研究了影响高锰酸钾对染料废水脱色的有关因素,结果表明,脱色反应的最佳PH值应小于1.5,高锰酸钾的浓度对脱色效果显著。  相似文献   

16.
张治宏  薛峰 《环境化学》2012,31(5):677-681
采用水溶液合成法制备了具有Keggin型结构的十一镍锆钼杂多酸盐Na6[Ni(Mo11ZrO39)].20H2O(NiZrMo),并对其进行表征及分析.元素分析表明,镍锆钼之间的物质的量之比满足1∶1∶11的关系;热重/差热分析说明合成的杂多酸盐具有比较好的热稳定性并带有20个结晶水;红外光谱、X射线衍射及紫外光谱表征充分表明合成的杂多酸盐其阴离子仍保持Keggin型结构;扫描电镜分析表明,具有比较好的大分子化合物的基本特征和比较规则的晶体结构.以NiZrMo杂多酸盐为催化剂降解酸性绿B(AGB)染料废水,降解率最高可达95.72%.  相似文献   

17.
Intrusion of synthetic textile dyes in the ecosystem has been recognized as a serious issue worldwide. The effluents generated from textiles contain large amount of recalcitrant unfixed dyes which are regarded as emerging contaminants in the field of waste water study. Removal of various toxic dyes often includes diverse and complex set of physico-chemical, biological and advanced oxidation processes adopted for treatment. Adsorption in itself is a well-known technique utilized for treatment of textile effluents using a variety of adsorbents. In addition, ozonation deals with effective removal of dyes using high oxidising power of ozone. The review summarizes dye removal study by a combination of ozonation and adsorption methods. Also, to acquire an effective interpretation of this combined approach of treating wastewater, a thorough study has been made which is deliberated here. Results assert that, with the combined ability of ozone and a catalyst/adsorbent, there is high possibility of total elimination of dyes from waste water. Several synthetically prepared materials have been used along with few natural materials during the combined treatment. However, considering practical applicability, some areas were identified during the study where work needs to be done for effective implementation of the combined treatment.
  相似文献   

18.

Wastewater is major source of contaminants originating from the production, usage, and disposal of plastic materials. Due to their poor biodegradability of these contaminants in municipal wastewater treatment plants, additional advanced oxidation processes such as electrochemical treatments have been developed to improve the standard biological treatment. Here we review the applications of electrochemical treatments of wastewater for the removal of the following plastic contaminants: bisphenol A, phthalic acid esters, and benzotriazoles. We present the effectiveness of treatment in terms of contaminant removal and mineralization; the identification of transformation products; toxicity assessment; and process energy requirements. In the present review, we have focused on the applications of electrochemical treatments of wastewater for the removal of three important groups of contaminants originating mainly from plastics: bisphenol A, phthalic acid esters, and benzotriazoles. The review focuses on the research of electrochemical treatments for these contaminants from the last five years. The papers are assessed from the point of i) effectiveness of treatment in terms of contaminant removal and mineralization; ii) identification of transformation products; iii) toxicity assessment; iv) processes’ energy requirements. Electrochemical treatments were confirmed to be a viable option for the removal of selected contaminants from wastewater.

  相似文献   

19.
Peng  Hao  Guo  Jing  Li  Bing  Huang  Huisheng  Shi  Wenbing  Liu  Zuohua 《Environmental Chemistry Letters》2022,20(3):1763-1776

At low concentrations, vanadium is essential for cell growth, yet vanadium is harmful to human beings, animals and plants at high concentrations. Therefore, vanadium should be removed from wastewater and solid waste to avoid pollution and to recycle vanadium in the context of the circular economy. Here we review aqueous vanadium species and techniques to remove vanadium such as adsorption, remediation, chemical precipitation, solvent extraction, photo-catalyst reduction and membrane filtration.

  相似文献   

20.
Biodegradation experiments of various polycyclic aromatic hydrocarbons were studied with mixed bacteria culture under aerobic conditions. An easy‐to‐handle clean‐up procedure was developed for PAH and their metabolites simultaneously as well as a gc‐ms‐method to identify and quantify these compounds.

Anthracene and dibenzothiophene are completely degradable in an aqeous system, whereas biodegradation of benzo(k)fluoranthene and benzo(h)quinoline is possible only in an oil‐in‐water‐system with dodecane as cosubstrate. No degradation of nitronaphthalene was observed in aqueous systems. New metabolites are 2,3‐dihydroxybenzothiophene, hydroxybenzothiophenecarbonic acid and benzothiophenequinone for dibenzothiophene and hydroxyfluoranthenic acid for benzo(k)flouranthene. Whereas the former metabolites are degradable under the experimental conditions, the latter accumulates during the degradation experiment.

The results are important for microbiological wastewater treatment, since knowledge of biodegradation processes is indespensable for the successful treatment of PAH‐containing wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号