首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: A methodology for obtaining the optimal design value to allow for sediment storage in a reservoir is presented for the situation where no data on sediment loads in the incoming streams are available. Information concerning the amount of sediment delivered to the reservoir over its life-time is obtained by a sediment yield model which uses data on rainfall amount and duration obtained from a nearby experimental watershed. Bayesian Decision Theory is used to obtain the optimal storage requirements in order to consider the natural variation of rainfall and the sampling error due to the short rainfall record available. The normally difficult calculations involved were made tractable by the use of simplifications and approximations valid in the context of the problem. Results show that sediment storage requirements can be calculated in this manner and that consideration of the uncertainties involved leads to a storage requirement substantially larger than that calculated without such consideration.  相似文献   

2.
Management of Sedimentation in Tropical Watersheds   总被引:2,自引:0,他引:2  
/ The sedimentation of reservoirs is a serious problem throughout the tropics, yet most attempts to control sedimentation in large river basins have not been very successful. Reliable information on erosion rates and sources of sediments has been lacking. In regions where geologically unstable terrain combines with high rainfall, natural erosion rates might be so high that the effects of human activity are limited. Estimates of natural erosion in these situations often have been poor because of the episodic nature of most erosion during large storms and because mass-wasting may supply much of the sediment. The predominance of mass-wasting in some watersheds can result in an unexpectedly high ratio of bedload to suspended load, shifting sedimentation to "live" rather than "dead" storage within reservoirs. Furthermore, the inappropriate use of the Universal Soil Loss Equation to assess the effectiveness of erosion control measures has led to inaccurate estimates of the sediment reduction benefits that could accrue to watershed treatment efforts. Although reducing erosion from cultivated areas is desirable for other reasons, efforts aimed at reducing reservoir sedimentation by controlling agricultural sources of erosion may have limited benefits if the principal sources are of natural origin or are associated with construction of the dams and reservoirs and with rural roads and trails. Finally, the most appropriate locations for watershed rehabilitation depend on the magnitude of temporary storage of colluvium and alluvium within the river basin: Where storage volume is large and residence time of sediment very long, reducing agricultural erosion may have limited impacts on sedimentation within the expected life of a reservoir. Systematic development and analysis of sediment budgets for representative watersheds is needed to address these limitations and thereby improve both the planning of river basin development schemes and the allocation of resources towards reducing sedimentation. When sedimentation of reservoirs is the key issue, sediment budgets must focus especially on channel transport rates and sediment delivery from hillsides. Sediment budgets are especially critical for tropical areas where project funds and technical help are limited. Once sediment budgets are available, watershed managers will be able to direct erosion control programs towards locations where they will be most effective. KEY WORDS: Tropical watersheds; Sedimentation; Reservoirs; Erosion control  相似文献   

3.
ABSTRACT: In‐reservoir thermal and ecological effects of releasing some flows over the surface spillway at Blue Mesa Reservoir, Colorado, rather than routing all releases through the hypolimnetic outlet were evaluated using a calibrated and validated one‐dimensional thermal model (CE‐THERM) with a set of ecological models. Thermal model output indicated that surface water temperatures were influenced primarily by atmospheric conditions, but the release of warmer water over the spillway resulted in a thinner epilimnion and cooler metalimnetic water temperatures. Ecological model predictions indicated that spillway releases and associated temperatures resulted in lower growth rates for young‐of‐year (YOY) kokanee salmon (Oncorhynchus nerka) in the reservoir by up to 9 percent when compared with growth rates under baseline operations with no releases over the spillway. Kokanee growth rates were reduced under spillway release scenarios because lower temperatures not only affected metabolic rates, but limited the productivity of the zooplankton as well. Thus, altering the release regime with spillway discharges could have deleterious effects on Blue Mesa's YOY kokanee. However, in other reservoirs, distributing discharges among different elevations may provide managers with a mechanism to regulate temperatures to benefit species of concern that are facing challenges imposed by environmental conditions such as global warming.  相似文献   

4.
Designing a surface reservoir involves the concept of reservoir yield. This concept embodies three basic information items: hydrologic regime, active storage volume, and reservoir release policy. In the actual case presented below, the magnitude of the active storage was prescribed by a legal procedure, so that the planning issue became that of determining the reservoir yield given the hydrological information. A stochastic dynamic programming model was formulated to derive a schedule of seasonal optimal reservoir releases and their respective probabilities of occurrence. This schedule is the reservoir yield. The yearly cycle was divided into three seasons representing the actual climatic conditions, and conditional probabilities linking streamflows in consecutive seasons were estimated. An operating policy was postulated, based on the same set of legal decisions that prescribed the active storage volume, and target reservoir releases were assumed. Similarly, target storages at the end of each season were set up. The optimizing/ minimizing criterion in the dynamic programming formulation was the sum of squares of deviations of actual releases and final storage volumes from their respective targets.  相似文献   

5.
ABSTRACT: Many approaches are available for operation of a multipurpose reservoir during flood season; one of them is allocation of storage space for flood control. A methodology to determine a reservoir operation policy based on explicit risk consideration is presented. The objective of the formulation is to maximize the reservoir storage at the end of a flood season while ensuring that the risk of an overflow is within acceptable limits. The Dynamic Programming technique has been used to solve the problem. This approach has been applied to develop operation policies for an existing reservoir. The performance of the policy was evaluated through simulation and was found to be satisfactory.  相似文献   

6.
ABSTRACT: This paper is concerned with finding an optimal allocation of water entitlements for each of two users of water who share a reservoir. Two instruments of allocation are considered. The first, release sharing, involves sharing the releases from the reservoir; the second, capacity sharing, is concerned with allocating to each user of water a share of inflows, reservoir capacity and leakage and evaporation losses. Stochastic dynamic programming problems of reservoir operation under each type of sharing arrangement are formulated. It is shown that the maximum discounted expected profit from reservoir operation over the life of the storage using capacity sharing is at least as large as that obtained using release sharing and that release sharing is not Pareto efficient.  相似文献   

7.
Within the past few years, a number of papers have been published in which stochastic mathematical programming models, incorporating first order Markov chains, have been used to derive alternative sequential operating policies for a multiple purpose reservoir. This paper attempts to review and compare three such mathematical modeling and solution techniques, namely dynamic programming, policy iteration, and linear programming. It is assumed that the flows into the reservoir are serially correlated stochastic quantities. The design parameters are assumed fixed, i.e., the reservoir capacity and the storage and release targets, if any, are predetermined. The models are discrete since the continuous variables of time, volume, and flow are approximated by discrete units. The problem is to derive an optimal operating policy. Such a policy defines the reservoir release as a function of the current storage volume and inflow. The form of the solution and some of the advantages, limitations and computational efficiencies of each of the models and their algorithms are compared using a simplified numerical example.  相似文献   

8.
ABSTRACT: A basic problem in the management of rivers has been how to balance the tradeoffs between instream and out-of-stream uses. Traditionally, the problem has been addressed by optimizing the economic benefits of flow diversions and regulated releases with instream uses as a flow constraint. An alternative method is to model the effect different river flows have on various recreational uses (e.g., boating, fishing) and then use the results as an additional function or piece of information to determine river project operations and benefits. A methodology that is based on multiobjective decision theory and that relates instream recreational preferences to river flow is proposed. The methodology consists of determining, standardizing, and combining recreational benefit functions, and incorporating potential sources of uncertainty into an estimate of total instream benefits. Thus different types of flow patterns, resulting from reservoir regulation (out-of-stream water uses), can be analyzed to determine their potential instream impact. The methodology is applied to the New River Gorge, West Virginia, which has been designated as a National River.  相似文献   

9.
The Gunnison River in the Black Canyon of the Gunnison National Park (BCNP) near Montrose, Colorado is a mixed gravel and bedrock river with ephemeral side tributaries. Flow rates are controlled immediately upstream by a diversion tunnel and three reservoirs. The management of the hydraulic control structures has decreased low-frequency, high-stage flows, which are the dominant geomorphic force in bedrock channel systems. We developed a simple model to estimate the extent of sediment mobilization at a given flow in the BCNP and to evaluate changes in the extent and frequency of sediment mobilization for flow regimes before and after flow regulation in 1966. Our methodology provides a screening process for identifying and prioritizing areas in terms of sediment mobility criteria when more precise systematic field data are unavailable. The model uses the ratio between reach-averaged bed shear stress and critical shear stress to estimate when a particular grain size is mobilized for a given reach. We used aerial photography from 1992, digital elevation models, and field surveys to identify individual reaches and estimate reach-averaged hydraulic geometry. Pebble counts of talus and debris fan deposits were used to estimate regional colluvial grain-size distributions. Our results show that the frequency of flows mobilizing river bank sediment along a majority of the Gunnison River in the BCNP has significantly declined since 1966. The model results correspond well to those obtained from more detailed, site-specific field studies carried out by other investigators. Decreases in the frequency of significant sediment-mobilizing flows were more pronounced for regions within the BCNP where the channel gradient is lower. Implications of these results for management include increased risk of encroachment of vegetation on the active channel and long-term channel narrowing by colluvial deposits. It must be recognized that our methodology represents a screening of regional differences in sediment mobility. More precise estimates of hydraulic and sediment parameters would likely be required for dictating quantitative management objectives within the context of sediment mobility and sensitivity to changes in the flow regime.  相似文献   

10.
ABSTRACT: Warm summer stream temperatures due to low flows and high air temperatures are a critical water quality problem in many western United States river basins because they impact threatened fish species’habitat. One way to alleviate this problem is for local and federal organizations to purchase water rights to be used to increase flows, hence decrease temperatures. Presented is a Decision Support System (DSS) that can be used in an operations mode to effectively use water acquired to mitigate warm stream temperatures. The DSS uses a statistical model for predicting daily stream temperatures and a rule‐based module to compute reservoir releases. Water releases are calculated to meet fish habitat temperature targets based on the predicted stream temperature and a user specified confidence of the temperature predictions. Strategies that enable effective use of a limited amount of water throughout the season have also been incorporated in the DSS. The utility of the DSS is demonstrated by an example application to the Truckee River near Reno, Nevada, using hypothetical operating policy and 1988 through 1994 inflows. Results indicate that the DSS could substantially reduce the number of target temperature violations (i.e., stream temperatures exceeding the target temperature levels detrimental to fish habitat).  相似文献   

11.
Abstract: Previous investigations observed significant seepage losses from the Rio Grande to the shallow aquifer between Socorro and San Antonio, New Mexico. High‐resolution telescopic modeling was used along a 10‐km reach of the Rio Grande and associated drains and canals to evaluate several management alternatives aimed at improving river conveyance efficiency. Observed data consisted of ground‐water and surface‐water elevations, seepage rates along the Rio Grande and associated canals and drains, and borehole geology. Model calibration was achieved by adjusting hydraulic conductivity and specific storage until the output matched observed data. Sensitivity analyses indicated that the system was responsive to changes in hydrogeologic properties, especially when such alterations increased vertical connectivity between layers. The calibrated model predicted that removal of the low flow conveyance channel, a major channel draining the valley, would not only decrease river seepage by 67%, but also decrease total flow through the reach by 75%. The decreased flow through the reach would result in increased water logging and an average increase in ground‐water elevations of 1.21 meter. Simulations of the system with reduced riparian evapotranspiration rates or a relocated river channel also predicted decreased river seepage, but to a much lesser degree.  相似文献   

12.
ABSTRACT: A new method has been developed for estimating future reservoir storage capacities, allowing for sediment deposition and compaction. Reservoir sedimentation surveys for 117 reservoirs, conducted by the Illinois State Water Survey over the past 60 years, were used to determine regional constants K to represent the severity of sediment deposition in the reservoirs. More than half of the 82 water supply reservoirs investigated had records of reservoir sedimentation surveys, and their K values were calculated by using data from those sediment surveys. The average K values of the remaining non-surveyed water supply reservoirs were estimated from the regional distribution of the K values. Other important factors considered in the estimation of future reservoir storage capacities are the trap efficiency of the reservoirs and the variation of density of sediment deposits due to compaction. The model can also be used for analyzing the economics of alternative sites and of design features that can be incorporated in dams for reducing reservoir sedimentation.  相似文献   

13.
Lakes are landscape features that influence connectivity of mass and energy by being foci for the reception, mixing, and provision of water and material. Where lake fractions are high, they influence hydrological connectivity. This behavior was exemplified in the Baker Creek watershed in Canada's Northwest Territories during a two‐year drought in which many lake levels declined below outlet elevations. This study evaluated how lakes controlled surface runoff connectivity reestablishment following the drought using a new assessment method, T‐TEL (time scales — thresholds, excesses, losses). Analysis of daily data showed that during a summer period following the drought, connectivity occurred between 0% and 41% of the time. The size of run‐of‐the‐river lakes relative to their upstream watershed area, and the upstream lake fraction, are two factors for connectivity. These terms represent a lake's ability to control the size of storage deficits relative to rainfall, and evaporation and storage losses along pathways. The connectivity magnitude–duration curve only aligned with the watershed flow duration curve during high‐water conditions, implying lakes functioned as individuals rather than as part of a perennial watercourse during much of the study. The T‐TEL method can be used to quantify consistent metrics of hydrologic connectivity that can be used for regionalization exercises and understanding hydrologic controls on material transport.  相似文献   

14.
ABSTRACT: A methodology for assessing reservoir management was applied to the historical conflict between winter fish and wildilife flows below Island Park Reservoir on Henrys Fork of the Snake River and the fulfillment of storage water rights. The methodology consists of (1) identifying impacts of flow regulation, (2) quantifying relationships among variables affecting physical reservoir fill, and (3) assessing effects of these discharges on the fulfillment of water rights in the context of a larger system of interrelated reservoirs. Winter (storage season) flows are critical to management of fish and wildlife populations below Island Park Dam, but flow regulation has resulted in decreased winter discharge. Allowable winter flows are a function of inflow, length of storage season, reservoir content at the start of storage season, and potential for downstream capture of excess storage season water discharged at Island Park. Modeling results indicate that winter flows in the range of those recommended for fish and wildlife management are attainable during average years but not during years when initial reservoir content is low. The methodology was successful in quantifying information useful to decision makers in a variety of agencies and disciplines and could be applied to solve water management problems on other regulated river systems.  相似文献   

15.
Uncertainty plays an important role in water quality management problems. The major sources of uncertainty in a water quality management problem are the random nature of hydrologic variables and imprecision (fuzziness) associated with goals of the dischargers and pollution control agencies (PCA). Many Waste Load Allocation (WLA) problems are solved by considering these two sources of uncertainty. Apart from randomness and fuzziness, missing data in the time series of a hydrologic variable may result in additional uncertainty due to partial ignorance. These uncertainties render the input parameters as imprecise parameters in water quality decision making. In this paper an Imprecise Fuzzy Waste Load Allocation Model (IFWLAM) is developed for water quality management of a river system subject to uncertainty arising from partial ignorance. In a WLA problem, both randomness and imprecision can be addressed simultaneously by fuzzy risk of low water quality. A methodology is developed for the computation of imprecise fuzzy risk of low water quality, when the parameters are characterized by uncertainty due to partial ignorance. A Monte-Carlo simulation is performed to evaluate the imprecise fuzzy risk of low water quality by considering the input variables as imprecise. Fuzzy multiobjective optimization is used to formulate the multiobjective model. The model developed is based on a fuzzy multiobjective optimization problem with max–min as the operator. This usually does not result in a unique solution but gives multiple solutions. Two optimization models are developed to capture all the decision alternatives or multiple solutions. The objective of the two optimization models is to obtain a range of fractional removal levels for the dischargers, such that the resultant fuzzy risk will be within acceptable limits. Specification of a range for fractional removal levels enhances flexibility in decision making. The methodology is demonstrated with a case study of the Tunga–Bhadra river system in India.  相似文献   

16.
ABSTRACT: A climate change impacts assessment for water resources in the San Joaquin River region of California is presented. Regional climate projections are based on a 1 percent per year CO2 increase relative to late 20th Century CO2 conditions. Two global projections of this CO2 increase scenario are considered (HadCM2 and PCM) during two future periods (2010 to 2039 and 2050 to 2079). HadCM2 projects faster warming than PCM. HadCM2 and PCM project wetter and drier conditions, respectively, relative to present climate. In the HadCM2 case, there would be increased reservoir inflows, increased storage limited by existing capacity, and increased releases for deliveries and river flows. In the PCM case, there would be decreased reservoir inflows, decreased storage and releases, and decreased deliveries. Impacts under either projection case cannot be regarded as more likely than the other. Most of the impacts uncertainty is attributable to the divergence in the precipitation projections. The range of assessed impacts is too broad to guide selection of mitigation projects. Regional planning agencies can respond by developing contingency strategies for these cases and applying the methodology herein to evaluate a broader set of CO2 scenarios, land use projections, and operational assumptions. Improved agency access to climate projection information is necessary to support this effort.  相似文献   

17.
Hummel, Ryan, Jennifer G. Duan, and Shiyan Zhang, 2012. Comparison of Unsteady and Quasi‐Unsteady Flow Models in Simulating Sediment Transport in an Ephemeral Arizona Stream. Journal of the American Water Resources Association (JAWRA) 48(5): 987‐998. DOI: 10.1111/j.1752‐1688.2012.00663.x Abstract: Hydrodynamic and sediment transport models are useful engineering tools for predicting unsteady flood flow and sediment transport. Many models such as HEC‐RAS, HEC‐6, and IALLUVIAL apply quasi‐unsteady flow model, whereas others apply the unsteady flow model. It remains unknown if a quasi‐unsteady flow model is sufficiently accurate for simulating sediment transport in rapidly varied unsteady flood events, especially in ephemeral rivers in arid and semiarid regions. This study compared the quasi‐unsteady HEC‐RAS 4.1 model with one‐dimensional (1D) Finite Volume Method (FVM) based model in simulating flood flow and sediment transport in the Pantano Wash, a dryland river in the state of Arizona. The objective is to determine which sediment transport method is appropriate in predicting bed elevation changes in an ephemeral stream, Pantano Wash, and if an unsteady model is more accurate than a quasi‐unsteady flow model in predicting sediment transport. Results showed that the quasi‐unsteady HEC‐RAS model and the 1D FVM yielded similar results of bed degradation and aggradation for this dryland stream, although the FVM model predicted better flood hydrographs. Among the seven sediment transport formulas embedded in HEC‐RAS, Yang’s and Engelund‐Hansen’s equations gave the best matches with the field measurements for this particular case study.  相似文献   

18.
ABSTRACT A methodology for predicting the spatial and temporal levels of conservative water quality constituents within a multibasin water resource system is presented. Dissolved solids, sulfates, and chlorides are the constituents used during this investigation; however, any other conservative ion or mineral can be incorporated into the simulation model. The methodology is tested on the proposed Texas Water System. The water quality model, QNET-I, utilizes monthly canal and river flows and reservoir storage levels calculated by the Texas Water Development Board's systems simulation model. Discharge-concentration relationships are developed for each source of water in the system, including significant waste-water discharges. Reservoirs in the system are assumed to be completely mixed with respect to conservative constituents. A mass balance analysis is performed for each node and each month during the simulation period. The output from the water quality simulation is a table of the concentrations of the conservative water quality constituents at each demand point in the system and in each reservoir and canal for every month the system is in operation. The desired quality of the water at the demand locations is used to determine the economic utility of transporting and mixing water from various sources.  相似文献   

19.
ABSTRACT: Urbanization, farming, and other watershed activities can significantly alter storm hydrographs and sediment erosion rates within a watershed. These changes routinely cause severe economic and ecological problems manifested in the form of increased flooding and significant changes in channel morphology. As the activities within a watershed influence the hydrologic, hydraulic, and ecological conditions within a river, interdisciplinary approaches to predict and assess the impacts that different land uses have on streams need to be developed. An important component of this process is ascertaining how hydrologic changes induced by specific watershed activities will affect hydraulic conditions and the accompanying flood levels, sediment transport rates, and habitat conditions within a stream. A conceptual model for using spatially explicit (two‐dimensional) hydraulic models to help evaluate the impacts that changes in flow regime might have on a river is presented. This framework proposes that reproducing and quantifying flow complexity allows one to compare the hydraulic conditions within urban, urbanizing, and non‐urban streams in a more biologically and economically meaningful way. The justification, advantage, and need for such a method is argued through the results of one‐ and two‐dimensional hydraulic model studies. The implementation of this methodology in watershed urbanization studies is described.  相似文献   

20.
Effect of reservoir flushing on downstream river water quality   总被引:1,自引:0,他引:1  
The effect of short-term reservoir flushing on downstream water quality in the Geum River, Korea was studied using field experiments and computer simulations. The reservoir release was increased from 30 to 200 m(3)/s within 6 h for the purpose of this experiment. The flushing discharge decreased the concentrations of soluble nitrogen and phosphorus species considerably, but the experimental results revealed a negative impact on organic forms of nutrients and biochemical oxygen demand (BOD). A dynamic river water quality model was applied to simulate the river hydraulics and water quality variations during the event. The model showed very good performance in predicting the travel time of flushing flow and the variations of dissolved forms of nitrogen and phosphorus constituents. However, it revealed a limited capability in simulating organic forms of nutrients and BOD because it does not consider the re-suspension mechanism of these constituents from sediment during the wave front passage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号