首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fish and benthic macroinvertebrate assemblages often provide insight on ecological conditions for guiding management actions. Unfortunately, land use and management legacies can constrain the structure of biotic communities such that they fail to reflect habitat quality. The purpose of this study was to describe patterns in fish and benthic macroinvertebrate assemblage structure, and evaluate relationships between biota and habitat characteristics in the Chariton River system of south-central Iowa, a system likely influenced by various potential management legacies (e.g., dams, chemical removal of fishes). We sampled fishes, benthic macroinvertebrates, and physical habitat from a total of 38 stream reaches in the Chariton River watershed during 2002–2005. Fish and benthic macroinvertebrate assemblages were dominated by generalist species tolerant of poor habitat quality; assemblages failed to show any apparent patterns with regard to stream size or longitudinal location within the watershed. Metrics used to summarize fish assemblages and populations [e.g., presence–absence, relative abundance, Index of Biotic Integrity for fish (IBIF)] were not related to habitat characteristics, except that catch rates of piscivores were positively related to the depth and the amount of large wood. In contrast, family richness of benthic macroinvertebrates, richness of Ephemeroptera, Trichoptera, and Plecoptera taxa, and IBI values for benthic macroinvertebrates (IBIBM) were positively correlated with the amount of overhanging vegetation and inversely related to the percentage of fine substrate. A long history of habitat alteration by row-crop agriculture and management legacies associated with reservoir construction has likely resulted in a fish assemblage dominated by tolerant species. Intolerant and sensitive fish species have not recolonized streams due to downstream movement barriers (i.e., dams). In contrast, aquatic insect assemblages reflected aquatic habitat, particularly the amount of overhanging vegetation and fine sediment. This research illustrates the importance of using multiple taxa for biological assessments and the need to consider management legacies when investigating responses to management and conservation actions.  相似文献   

2.
Stream-riparian ecosystems are dynamic and complex entities that can support high levels of bird assemblage abundance and diversity. The myriad patches (e.g., aquatic, floodplain, riparian) found in the riverscape habitat mosaic attract a unique mixture of aquatic, semiaquatic, riparian, and upland birds, each uniquely utilizing the river corridor. Whereas standard morning bird surveys are widely used across ecosystems, the variety of bird guilds and the temporal habitat partitioning that likely occur in stream-riparian ecosystems argue for the inclusion of evening surveys. At 41 stream reaches in Vermont and Idaho, USA, we surveyed bird assemblages using a combination of morning and evening fixed-width transect counts. Student’s paired t-tests showed that while bird abundance was not significantly different between morning and evening surveys, bird assemblage diversity (as measured by species richness, Shannon-Weiner’s index, and Simpson’s index) was significantly higher in the morning than in the evening. NMS ordinations of bird species and time (i.e., morning, evening) indicated that the structure of morning bird assemblages was different from that of evening assemblages. NMS further showed that a set of species was only found in evening surveys. The inclusion of evening counts in surveying bird assemblages in stream-riparian ecosystems has important experimental and ecological implications. Experimentally, the sole use of morning bird surveys may significantly underestimate the diversity and misrepresent the community composition of bird assemblages in these ecosystems. Ecologically, many of the birds detected in evening surveys were water-associated species that occupy high trophic levels and aerial insectivores that represent unique aquatic-terrestrial energy transfers.  相似文献   

3.
The benthic macroinvertebrate community of East Fork Poplar Creek (EFPC) in East Tennessee was monitored for 18 years to evaluate the effectiveness of a water pollution control program implemented at a major United States (U.S.) Department of Energy facility. Several actions were implemented to reduce and control releases of pollutants into the headwaters of the stream. Four of the most significant actions were implemented during different time periods, which allowed assessment of each action. Macroinvertebrate samples were collected annually in April from three locations in EFPC (EFK24, EFK23, and EFK14) and two nearby reference streams from 1986 through 2003. Significant improvements occurred in the macroinvertebrate community at the headwater sites (EFK24 and EFK23) after implementation of each action, while changes detected 9 km further downstream (EFK14) could not be clearly attributed to any of the actions. Because the stream was impacted at its origin, invertebrate recolonization was primarily limited to aerial immigration, thus, recovery has been slow. As recovery progressed, abundances of small pollution-tolerant taxa (e.g., Orthocladiinae chironomids) decreased and longer lived taxa colonized (e.g., hydropsychid caddisflies, riffle beetles, Baetis). While assessments lasting three to four years may be long enough to detect a response to new pollution controls at highly impacted locations, more time may be needed to understand the full effects. Studies on the effectiveness of pollution controls can be improved if impacted and reference sites are selected to maximize spatial and temporal trending, and if a multidisciplinary approach is used to broadly assess environmental responses (e.g., water quality trends, invertebrate and fish community assessments, toxicity testing, etc.).  相似文献   

4.
5.
Arid zone rivers have highly variable flow rates, and flood control projects are needed to protect adjacent property from flood damage. On the other hand, riparian corridors provide important wildlife habitat, especially for birds, and riparian vegetation is adapted to the natural variability in flows on these rivers. While environmental and flood control goals might appear to be at odds, we show that both goals can be accommodated in the Limitrophe Region (the shared border between the United States and Mexico) on the Lower Colorado River. In 1999, the International Boundary and Water Commission proposed a routine maintenance project to clear vegetation and create a pilot channel within the Limitrophe Region to improve flow capacity and delineate the border. In 2000, however, Minute 306 to the international water treaty was adopted, which calls for consideration of environmental effects of IBWC actions. We conducted vegetation and bird surveys within the Limitrophe and found that this river segment is unusually rich in native cottonwood and willow trees, marsh habitat, and resident and migratory birds compared to flow-regulated segments of river. A flood-frequency analysis showed that the existing levee system can easily contain a 100 year flood even if vegetation is not removed, and the existing braided channel system has greater carrying capacity than the proposed pilot channel.  相似文献   

6.
7.
The objective of this study was to assess the effects of dredging on the structure and composition of diatom assemblages from a lowland stream and to investigate whether the response of diatom assemblages to the dredging is also influenced by different water quality. Three sampling sites were established in Rodríguez Stream (Argentina); physico-chemical variables and benthic diatom assemblages were sampled weekly in spring 2001. Species composition, cell density, diversity and evenness were estimated. Diatom tolerance to organic pollution and eutrophication were also analyzed. Differences in physico-chemical variables and changes in benthic diatom assemblages were compared between the pre- and post-dredging periods using a t-test. Data were analyzed using Principal Components Analysis (PCA), non-metric multidimensional scaling (MDS) ordination and cluster analysis. The effects of dredging in the stream involve two types of disturbances: (i) in the stream bed, by the removal and destabilization of the substrate and (ii) in the water column, by generating chemical changes and an alteration of the light environment of the stream. Suspended solids, soluble reactive phosphorus and dissolved inorganic nitrogen were significantly higher in post-dredging periods. Physical and chemical modifications in the habitat of benthic diatoms produced changes in the assemblage; diversity and species numbers showed an immediate increase after dredging, decreasing at the end of the study period. Changes in the tolerance of the diatom assemblage to organic pollution and eutrophication were also observed as a consequence of dredging; in the post-dredging period sensitive species were replaced by either tolerant or most tolerant species. These changes were particularly noticeable in site 1 (characterized by its lower amount of nutrients and organic matter previous to dredging), which showed an increase in the amount of nutrients and oxygen demand as a consequence of sediment removal. However, these changes were not so conspicuous in sites 2 and 3, which already presented a marked water quality deterioration before the execution of the dredging works.  相似文献   

8.
Assemblage stability in stream fishes: A review   总被引:6,自引:0,他引:6  
We quantified the stability of nine stream fish assemblages by calculating coefficients of variation of population size for assemblage members. Coefficients of variation were high and averaged over 96%; indicating that most assemblages were quite variable. Coefficient of variation (CV) estimates were not significantly affected by: (1) years of study, (2) mean abundance, (3) familial classification, or (4) mean interval between collections. We also detected minor regional differences in CVs. The high variability exhibited by many stream fish assemblages suggests that it may be difficult to detect the effects of anthropogenic disturbances using population data alone. Consequently, we urge managers to exercise caution in the evaluation of the effects of these disturbances. More long-term studies of the ecological characteristics of undisturbed stream fish assemblages are needed to provide a benchmark against which disturbed systems can be compared. We suggest that CVs are a better estimator of population/assemblage stability, than either Kendall's W or the standard deviation of the logarithms of numerical censuses. This conclusion is based on the following reasons. First, CVs scale population variation by the mean and, hence, more accurately measure population variability. Second, this scaling permits the comparison of populations with different mean abundances. Finally, the interpretation of CV values is less ambiguous than either of the aforementioned metrics.  相似文献   

9.
This paper develops a comprehensive and objective picture of bird distributions relative to habitats across Britain. Bird species presence/absence data from an extensive field survey and habitat data from the remotely sensed UK Land Cover Map 2000 were analysed in 36,920 tetrads (2 kmx2 km) across Britain (a 65% sample of Britain's c. 240,000 km2). Cluster analysis linked birds to generalised landscapes based on distinctive habitat assemblages. Maps of the clusters showed strong regional patterns associated with the habitat assemblages. Cluster centroid coordinates for each bird species and each habitat were combined across clusters to derive individualised bird-habitat preference indices and examine the importance of individual habitats for each bird species. Even rare species and scarce habitats showed successful linkages. Results were assessed against published accounts of bird-habitat relations. Objective corroboration strongly supported the associations. Relatively scarce coastal and wetland habitats proved particularly important for many birds. However, extensive arable farmland and woodland habitats were also favoured by many species, despite reported declines in bird numbers in these habitats. The fact that habitat-specialists do not or cannot move habitat is perhaps a reason for declining numbers where habitats have become unsuitable. This study showed that there are unifying principles determining bird-habitat relations which apply and can be quantified at the national scale, and which corroborate and complement the cumulative knowledge of many and varied surveys and ecological studies. This 'generality' suggests that we may be able, reliably and objectively, to integrate and scale up such disparate studies to the national scale, using this generalised framework. It also suggests the potential for a landscape ecology approach to bird-habitat analyses. Such developments will be important steps in building models to develop and test the sustainable management of landscapes for birds.  相似文献   

10.
Nature-based tourism and recreation within and close to protected areas may have negative environmental impacts on biodiversity due to urban development, landscape fragmentation, and increased disturbance. We conducted a 3-year study of disturbances of birds induced by nature-based tourism over a recreational gradient in the Pallas-Yllästunturi National Park and its surroundings in northern Finland. Bird assemblages were studied in highly disturbed areas close to the park (a ski resort, villages, and accommodation areas) and in campfire sites, along hiking routes (recreational areas) and in a forest (control area) within the park. Compared with the forest, the disturbed urbanized areas had higher abundances of human-associated species, corvid species, cavity and building nesters, and edge species. The abundances of managed forest species were higher in campfire sites than in the forest. Hiking trails and campfire sites did not have a negative impact on open-nesting bird species. The most likely reason for this outcome is that most campfire sites were situated at forest edges; this species group prefers managed forests and forest edge as a breeding habitat. The abundances of virgin forest species did not differ among the areas studied. The results of the study suggest that the current recreation pressure has not caused substantial changes in the forest bird communities within the National Park. We suggest that the abundances of urban exploiter species could be used as indicators to monitor the level and changes of urbanization and recreational pressure at tourist destinations.  相似文献   

11.
/ Fish and macroinvertebrate assemblage composition, instream habitat features and surrounding land use were assessed in an agriculturally developed watershed to relate overall biotic condition to patterns of land use and channel structure. Six 100-m reaches were sampled on each of three first-order warm-water tributaries of the River Raisin in southeastern Michigan. Comparisons among sites and tributaries showed considerable variability in fish assemblages measured with the index of biotic integrity, macroinvertebrate assemblages characterized with several diversity indexes, and both quantitative and qualitative measurements of instream habitat structure. Land use immediate to the tributaries predicted biotic condition better than regional land use, but was less important than local habitat variables in explaining the variability observed in fish and macroinvertebrate assemblages. Fish and macroinvertebrates appeared to respond differently to landscape configuration and habitat variables as well. Fish showed a stronger relationship to flow variability and immediate land use, while macroinvertebrates correlated most strongly with dominant substrate. Although significant, the relationships between instream habitat variables and immediate land use explained only a modest amount of the variability observed. A prior study of this watershed ascribed greater predictive power to land use. In comparison to our study design, this study covered a larger area, providing greater contrast among subcatchments. Differences in outcomes suggests that the scale of investigation influences the strength of predictive variables. Thus, we concluded that the importance of local habitat conditions is best revealed by comparisons at the within-subcatchment scale. KEY WORDS: Stream; Biomonitoring; Land use; Scale; Habitat; Fish; Macroinvertebrates  相似文献   

12.
Many living resources in the Chesapeake Bay estuary have deteriorated over the past 50 years. As a result, many governmental committees, task forces, and management plans have been established. Most of the recommendations for implementing a bay cleanup focus on reducing sediments and nutrient flow into the watershed. We emphasize that habitat requirements other than water quality are necessary for the recovery of much of the bay's avian wildlife, and we use a waterbird example as illustration. Some of these needs are: (1) protection of fast-eroding islands, or creation of new ones by dredge deposition to improve nesting habitat for American black ducks(Anas rubripes), great blue herons(Ardea herodias), and other associated wading birds; (2) conservation of remaining brackish marshes, especially near riparian areas, for feeding black ducks, wading birds, and wood ducks(Aix sponsa); (3) establishment of sanctuaries in open-water, littoral zones to protect feeding and/or roosting areas for diving ducks such as canvasbacks(Aythya valisineria) and redheads(Aythya americana), and for bald eagles(Haliaeetus leucocephalus); and (4) limitation of disturbance by boaters around nesting islands and open-water feeding areas. Land (or water) protection measures for waterbirds need to include units at several different spatial scales, ranging from “points” (e.g., a colony site) to large-area resources (e.g., a marsh or tributary for feeding). Planning to conserve large areas of both land and water can be achieved following a biosphere reserve model. Existing interagency committees in the Chesapeake Bay Program could be more effective in developing such a model for wildlife and fisheries resources.  相似文献   

13.
Although the utility of using either fish or benthic invertebrates as biomonitors of stream quality has been clearly shown, there is little comparative information on the usefulness of the groups in any particular situation. We compared fish to invertebrate assemblages in their ability to reflect habitat quality of sediment-impacted streams in agricultural regions of northeast Missouri, USA. Habitat quality was measured by a combination of substrate composition, riparian type, buffer strip width, and land use. Invertebrates were more sensitive to habitat differences when structural measurements, species diversity and ordination, were used. Incorporating ecological measurements, by using the Index of Biological Integrity, increased the information obtained from the fish assemblage. The differential response of the two groups was attributed to the more direct impact of sediments on invertebrate life requisites; the impact of sedimentation on fish is considered more indirect and complex, affecting feeding and reproductive mechanisms.The Unit is sponsored by the US Fish and Wildlife Service, the Missouri Department of Conservation and the University of Missouri.  相似文献   

14.
Several hypotheses, including habitat degradation and variation in fluvial geomorphology, have been posed to explain extreme spatial and temporal variation in Clinch River mollusk assemblages. We examined associations between mollusk assemblage metrics (richness, abundance, recruitment) and physical habitat (geomorphology, streambed composition, fish habitat, and riparian condition) at 10 sites selected to represent the range of current assemblage condition in the Clinch River. We compared similar geomorphological units among reaches, employing semi‐quantitative and quantitative protocols to characterize mollusk assemblages and a mix of visual assessments and empirical measurements to characterize physical habitat. We found little to no evidence that current assemblage condition was associated with 54 analyzed habitat metrics. When compared to other sites in the Upper Tennessee River Basin (UTRB) that once supported or currently support mollusk assemblages, Clinch River sites were more similar to each other, representing a narrower range of conditions than observed across the larger geographic extent of the UTRB. A post‐hoc analysis suggested stream size and average boundary shear stress at bankfull stage may have historically limited species richness in the UTRB (p < 0.001). Associations between mollusk assemblages and physical habitat in the UTRB and Clinch River currently appear obscured by other factors limiting richness, abundance, and recruitment.  相似文献   

15.
Water extraction from dryland rivers is often associated with declines in the health of river and floodplain ecosystems due to reduced flooding frequency and extent of floodplain inundation. Following moderate flooding in early 2008 in the Narran River, Murray-Darling Basin, Australia, 10,423 ML of water was purchased from agricultural water users and delivered to the river to prolong inundation of its terminal lake system to improve the recruitment success of colonial waterbirds that had started breeding in response to the initial flooding. This study examined the spatial and temporal patterns of fish assemblages in river and floodplain habitats over eight months following flooding to assess the possible ecological benefits of flood extension. Although the abundances of most fish species were greater in river channel habitats, the fish assemblage used floodplain habitats when inundated. Young-of-the-year (4–12 months age) golden perch (Macquaria ambigua) and bony bream (Nematalosa erebi) were consistently sampled in floodplain sites when inundated, suggesting that the floodplain provides rearing habitat for these species. Significant differences in the abundances of fish populations between reaches upstream and downstream of a weir in the main river channel indicates that the effectiveness of the environmental water release was limited by restricted connectivity within the broader catchment. Although the seasonal timing of flood extension may have coincided with sub-optimal primary production, the use of the environmental water purchase is likely to have promoted recruitment of fish populations by providing greater access to floodplain nursery habitats, thereby improving the ability to persist during years of little or no flow.  相似文献   

16.
We examined the impact of single-tree selective logging and fuel reduction burns on the abundance of hollow-nesting bird species at a regional scale in southeastern Queensland, Australia. Data were collected on species abundance and habitat structure of dry sclerophyll production forest at 36 sites with known logging and fire histories. Sixteen bird species were recorded with most being resident, territorial, obligate hollow nesters that used hollows that were either small (<10 cm diameter) or very large (>18 cm diameter). Species densities were typically low, but combinations of two forest management and three habitat structural variables influenced the abundances of eight bird species in different and sometimes conflicting ways. The results suggest that habitat tree management for biodiversity in production forests cannot depend upon habitat structural characteristics alone. Management histories appear to have independent influence (on some bird species) that are distinguishable from their impacts on habitat structure per se. Rather than managing to maximize species abundances to maintain biodiversity, we may be better off managing to avoid extinctions of populations by identifying thresholds of acceptable fluctuations in populations of not only hollow-nesting birds but other forest dependent wildlife relative to scientifically valid forest management and habitat structural surrogates.  相似文献   

17.
Abstract: Spatio‐temporal linkages between hydrologic and ecologic dimensions of watersheds play a critical role in conservation policies. Habitat potential is influenced by variation along longitudinal and lateral gradients and land use disturbance. An assessment of these influences provides critical information for protecting watershed ecosystems and in making spatially explicit, conservation decisions. We use an ecohydrologic approach that focuses on interface between hydrological and ecological processes. This study focuses on changes in watershed habitat potentials along lateral (riparian), and longitudinal (stream order) dimensions and disturbance (land use). The habitat potentials were evaluated for amphibians, reptiles, mammals, and birds in the Westfield River Watershed of Massachusetts using geographic information systems and multivariate analysis. We use a polynomial model to study nonlinear effects using robust regression. Various spatial policies were modeled and evaluated for influence on species diversity. All habitat potentials showed a strong influence along spatial dimensions and disturbance. The habitat potential for all vertebrate groups studied decreased as the distance from the riparian zone increased. Headwaters and lower order subwatersheds had higher levels of species diversity compared to higher order subwatersheds. It was observed that locations with the least disturbance also had higher habitat potential. The study identifies three policy criteria that could be used to identify critical areas within a watershed to conserve habitat suitable for various species through management and restoration activities. A spatially variable policy that is based on stream order, riparian distance, and land use can be used to maximize watershed ecological benefits. Wider riparian zones with variable widths, protection of headwaters and lower order subwatersheds, and minimizing disturbance in riparian and headwater areas can be used in watershed policy. These management objectives could be achieved using targeted economic incentives, best management practices, zoning laws, and educational programs using a watershed perspective.  相似文献   

18.
Adaptive management (AM) is a rigorous approach to implementing, monitoring, and evaluating actions, so as to learn and adjust those actions. Existing AM projects are at risk from climate change, and current AM guidance does not provide adequate methods to deal with this risk. Climate change adaptation (CCA) is an approach to plan and implement actions to reduce risks from climate variability and climate change, and to exploit beneficial opportunities. AM projects could be made more resilient to extreme climate events by applying the principles and procedures of CCA. To test this idea, we analyze the effects of extreme climatic events on five existing AM projects focused on ecosystem restoration and species recovery, in the Russian, Trinity, Okanagan, Platte, and Missouri River Basins. We examine these five case studies together to generate insights on how integrating CCA principles and practices into their design and implementation could improve their sustainability, despite significant technical and institutional challenges, particularly at larger scales. Although climate change brings substantial risks to AM projects, it may also provide opportunities, including creating new habitats, increasing the ability to quickly test flow‐habitat hypotheses, stimulating improvements in watershed management and water conservation, expanding the use of real‐time tools for flow management, and catalyzing creative application of CCA principles and procedures.  相似文献   

19.
Assessments of vertebrate disturbance to plant and animal assemblages often contrast grazed versus ungrazed meadows or other larger areas of usage, and this approach can be powerful. Random sampling of such habitats carries the potential, however, for smaller, more intensely affected patches to be missed and for other responses that are only revealed at smaller scales to also escape detection. We instead sampled arthropod assemblages and vegetation structure at the patch scale (400–900 m2 patches) within subalpine wet meadows of Yosemite National Park (USA), with the goal of determining if there were fine-scale differences in magnitude and directionality of response at three levels of grazing intensity. Effects were both stronger and more nuanced than effects evidenced by previous random sampling of paired grazed and ungrazed meadows: (a) greater negative effects on vegetation structure and fauna in heavily used patches, but (b) some positive effects on fauna in lightly grazed patches, suggested by trends for mean richness and total and population abundances. Although assessment of disturbance at either patch or landscape scales should be appropriate, depending on the management question at hand, our patch-scale work demonstrated that there can be strong local effects on the ecology of these wetlands that may not be detected by comparing larger scale habitats.  相似文献   

20.
Foraging guilds of North American birds   总被引:2,自引:0,他引:2  
We propose a foraging guild classification for North American inland, coastal, and pelagic birds. This classification uses a three-part identification for each guild—major food, feeding substrate, and foraging technique—to classify 672 species of birds in both the breeding and nonbreeding seasons. We have attempted to group species that use similar resources in similar ways. Researchers have identified foraging guilds generally by examining species distributions along one or more defined environmental axes. Such studies frequently result in species with several guild designations. While the continuance of these studies is important, to accurately describe species' functional roles, managers need methods to consider many species simultaneously when trying to determine the impacts of habitat alteration. Thus, we present an avian foraging classification as a starting point for further discussion to aid those faced with the task of describing community effects of habitat change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号