首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper the grid data of total ozone mapping spectrograph (TOMS) installed on Nimbus 7 satellite (1978 to 1994) was used and the spatial and temporal distribution of total ozone over China was analyzed. The research indicates that the Qinghai Tibet Plateau destroyed the latitudinal distribution of total ozone of China and the low value closed center emerged over Qinghai Tibet Plateau. Long time change trends of seasonal total ozone of Qinghai Tibet Plateau are provided. It shows that the most obvious decrease of total ozone occurs in winter (Jan.), then in summer (Jul.), the relevant slow change occurs in autumn (Oct.) and spring (Apr.).  相似文献   

2.
1 IntroductionOzoneisoneofthetracegasesinatmosphere.Itcanabsorbnearlyallsolarultravioletradiation(UVB)rangedfrom0-20—0-35μm.Thechangeofstratosphericozoneconcentrationanditsverticalstructurewillinfluencethetemperaturestructureofstratosphere.Thedecrea…  相似文献   

3.
用10 a(2003~2012年)的MACC(monitoring atmospheric composition and climate)再分析臭氧资料与同期中国大陆6个地面观测站的臭氧数据,以及AIRS(atmospheric infrared sounder)卫星资料反演的大气臭氧数据进行对比分析.结果表明,MACC臭氧柱浓度与所有地面站臭氧柱浓度相对偏差基本控制在17%之内,相关系数在0. 79~0. 97之间,MACC臭氧柱浓度与地面站臭氧柱浓度具有很好的一致性.对于多年平均臭氧柱浓度空间分布,MACC再分析与AIRS卫星反演臭氧柱浓度的相对偏差在-3%~5%之间,MACC臭氧柱浓度相比AIRS柱浓度在青藏高原、南部沿海地区偏高,在东北地区偏低.各季节空间变化,MACC臭氧柱浓度与AIRS基本一致.在瓦里关站,MACC近地面臭氧与地面观测臭氧浓度月平均变化趋势存在一致性. MACC再分析近地面臭氧数据可以反映春季、夏季和秋季地面臭氧浓度的变化趋势,但冬季MACC近地层臭氧资料出现了较大的偏差.  相似文献   

4.
青藏高原东北部气候变化的异质性及其成因   总被引:1,自引:1,他引:1  
利用1961-2016年西宁等青藏高原东北部13个气象台站气温、降水等气象资料以及国家气候中心发布的南海季风指数、西伯利亚高压指数等大气环流特征量数据,分析近56年来气候变化与高原主体的差异性及其可能的气候成因。研究表明:近56年来青藏高原东北部气候变暖趋势十分显著,年平均气温气候倾向率高达0.39 ℃/10 a,呈现出三次明显的阶梯性增高态势,并于1994年前后发生了由冷到暖的突变,同时具有明显的空间差异性;年降水量及四季降水量均没有明显变化趋势,虽然经历了2002年左右由少到多的变化,但并未出现明显突变,年降水量具有3年、5年的准周期,而年降水日数微弱减少,降水强度呈增加趋势;该区域气候变化的年际波动主要受到东亚季风、高原季风和南海季风的年际振荡及其相互作用的影响,而西风环流的作用并不明显,植被覆盖的恢复既是对2002年以来降水量增加的具体反应,同时也对于气候变暖趋势起到了一定的缓和作用。  相似文献   

5.
开展气候变化背景下中国降水时空变化特征及对地表干湿状况影响研究,对揭示陆地表层系统对气候变化的动态响应与变化规律以及防灾减灾具有重要意义。基于1961-2010年地面气象观测资料,分析我国降水与地表干湿状况时空格局;在此基础上,采用敏感性与贡献度分析,定量评估降水变化对干湿状况的影响。结果表明:过去50年间我国年降水量呈轻微增加趋势,其中,青藏高原(高原亚寒带、高原温带)、西北(中温带西部、暖温带西部)和南方地区(亚热带、热带)呈增加趋势,东北(寒温带、中温带东部)和华北地区(中温带中东部、暖温带东部)呈减少趋势。就地表干湿状况而言,华北和东北地区以干旱化趋势为主,西北、青藏高原及南方地区主要呈湿润化趋势。地表干湿状况对降水变化响应较为敏感(全国多年平均敏感系数:-1.13),干湿指数和降水呈负相关。内陆干旱地区降水对干湿状况变化的贡献高于湿润地区,局部地区降水贡献度超过60%。  相似文献   

6.
利用2006~2017年的MERRA-2再分析数据、CALIPSO卫星反演数据以及欧洲中心(ECMWF)提供的ERA5再分析资料研究了西南地区吸收性气溶胶的时间变化趋势及空间分布特征.结果表明2006~2017年吸收性气溶胶四川盆地与云南南部整体呈下降趋势,同时存在季节性差异.CALIPSO反演的烟尘气溶胶(主要由强吸收性的碳质气溶胶组成)的三维时空分布及演变趋势表明,云贵高原的黑碳气溶胶消光系数最大,四川盆地次之;从高度分布上来看,黑碳气溶胶在青藏高原的夏季能够被抬升至8~10km(海平面高度以上)左右,而云贵高原黑碳气溶胶主要分布在2~4km左右,四川盆地则集中在1~3km左右.  相似文献   

7.
青藏高原湖泊细菌种群结构的研究综述   总被引:1,自引:0,他引:1  
青藏高原东北地区位于我国东部季风区、西北干旱区和青藏高原高寒区的交汇地带,人为影响较少,是研究人为影响与生物种群组成的理想场所。随着分子生物学技术的迅速发展,高原湖泊菌种群结构多样性研究越来越受到人们的重视并取得了重要成果。本文从青藏高原上应用的技术方法、细菌种群结构研究成果以及区域性的重要影响因素3个方面概述了湖泊细菌种群结构多样性研究在青藏高原上取得的进展。简单地讨论了种群多样性和影响因素的关系,对比发现,微生物种群结构的主要限制性因素会随着环境的变化发生改变。同时,微生物种群结构随着环境的变化实际上是其生理结构适应的结果。  相似文献   

8.
利用遥感监测青藏高原上空臭氧总量30 a的变化   总被引:2,自引:0,他引:2  
肖钟湧  江洪 《环境科学》2010,31(11):2569-2574
利用多源卫星遥感数据,分析了自1979年以来青藏高原上空臭氧总量的时空动态特征.结果表明,青藏高原上空的臭氧总量还在持续下降,而且下降速度高于全球和北半球平均水平,青藏高原、全球和北半球每年大约平均减少0.23%、0.19%、0.12%.但是自2000年后,下降的速度有所减缓,1979~1989、1990~1999和2000~2008年3个时期每年减少大约分别为0.51%、0.49%、0.31%.30a来青藏高原上空臭氧总量低于240DU的天数有34d.在2005年后,没有出现大面积的臭氧总量低值区(低于240DU);臭氧总量的季节变化呈正弦曲线变化,最大和最小值分别出现在3和10月,平均值分别大约为304.59和265.45DU.但是每年的极小值常出现在11月或12月.臭氧总量波动最大和最小分别出现在2月和9月,标准差为17.28和5.88DU;臭氧总量与海拔高度呈反相关,低值区出现在高海拔的上空,特别是在青藏高原区,与同纬度圈的平均值相比,青藏高原臭氧总量大约低了19DU,形成臭氧低谷.  相似文献   

9.
利用来自世界臭氧与紫外辐射数据中心的中国区域6个地基观测站点数据,对多传感器再分析遥感数据进行验证,并基于验证后的遥感数据分析了1971~2020年中国区域臭氧总量不同尺度的时空变化特征.结果表明,50a来中国区域臭氧总量呈现轻微的下降趋势.年平均臭氧总量在1978年和1993年分别出现最大值(347.5±53.8) DU和最小值(291.9±29.5) DU,在1971~1978年、1978~1993年、1993~2020年,这3个时段年平均臭氧总量在整个中国区域分别是增长、减少、增长.月平均臭氧总量随季节变化呈现出正弦曲线形态,在3月和10月分别出现峰值(约338DU)和谷值(约285DU).中国区域臭氧总量在空间上呈现由东北向西南递减的纬向条带状分布.在40°N以北的东北部地区,该值可达360DU以上.中国区域50a月平均臭氧总量同样呈现纬向条带状分布.此外,时间变异系数和空间变异系数随季节的变化规律相似,夏季最小,接着依次是秋季和春季,冬季最大.即臭氧总量的变化和空间差异在夏季都最小.50a期间,不同时段、不同区域臭氧总量的变化趋势各不相同.在1971~1978年,臭氧总量的增长量和增长率都呈现由北向南递减的纬向条带状分布.在40°N以北的相对高值地区最大增加了56DU,约为16%;而在30°N以南的相对低值地区,最小增加了12DU,约为5%.在1978~1993年,减少量和减少率也呈现由北向南递减的纬度地带性.在40°N以北的相对高值地区最大减少了93DU,约为22%;而在30°N以南的相对低值地区,最小减少了11DU,约为4%.在1993~2020年,西北地区出现最大增长,增长量为18DU,约为6%;东南地区出现最小增长,增长量为4DU,约为1%.  相似文献   

10.
青藏高原表土重金属污染评价与来源解析   总被引:21,自引:19,他引:2  
杨安  王艺涵  胡健  刘小龙  李军 《环境科学》2020,41(2):886-894
为了解青藏高原表层土壤重金属的污染特征、空间分布及污染来源,沿东北-西南方向对青藏高原表土(0~20 cm)样品进行了采集,对土壤中的Ba、Cd、Co、Cr、Cu、Fe、Mn、Mo、Ni、Pb、Sb、Sc和Zn等13种重金属总量进行了分析,并利用主成分分析-绝对主成分分数-多元线性回归(PCA-APCS-MLR)受体模型初步定量解析了重金属的潜在来源.结果表明Cd和Sb均显著超标,分别是20世纪70年代青藏高原土壤背景值的2. 13与1. 52倍.富集因子(EF)、地累积指数(I_(geo))和Nemero综合指数(PN)分析同样表明青藏高原表土主要以Cd和Sb污染为主,但污染程度普遍不高.在空间分布方面,青藏高原中部、东南部及东北部均呈不同程度污染,但中部及东南部污染相对较重. PCA-APCS-MLR分析表明,青藏高原土壤重金属主要有3个来源,分别为自然、交通和采矿等综合因素. Co、Cr、Cu、Fe、Mn、Ni和Sc主要受自然因素影响,Ba、Cd、Mo和Pb主要受交通因素影响,Zn主要受自然和交通因素共同影响,Sb主要受采矿、自然和交通等综合因素影响.青藏高原土壤重金属污染防治过程中应着重考虑受交通、采矿等综合因素影响下的Cd和Sb污染.  相似文献   

11.
近50a气候变化背景下我国玉米生产潜力时空演变特征   总被引:10,自引:1,他引:9  
以2010年我国耕地空间分布遥感监测数据为基础,在1960—2010年的长时间序列气象数据、土壤数据等数据基础上,采用GAEZ(Global Agro-Ecological Zones)模型综合考虑光、温、水、CO2浓度、农业气候限制、土壤、地形等多方面因素,估算了中国玉米生产潜力,进而分析了近50 a来气候变化背景下我国玉米生产潜力的时空格局特征。研究表明:12010年中国玉米生产潜力总量是8.34×108t,玉米生产潜力空间差异显著,总体呈现东高西低的趋势,东北平原区的玉米生产潜力总量最高,达到1.97×108t,青藏高原区玉米生产潜力总量最小;2近50 a来中国玉米单产潜力和生产潜力总量整体呈现减少的趋势;3中国玉米单产潜力和生产潜力总量变化的区域差异较大,东北平原区的平均玉米单产潜力和生产潜力总量的增长趋势都最为明显,其他各区的变化趋势都相对较小。研究揭示了近50 a来气候变化背景下我国玉米生产潜力的时空演变特征,这为探究如何适应气候变化、提高中国玉米产量水平、科学指导玉米生产经营提供了科学依据。  相似文献   

12.
中国极端强降水事件年内非均匀性特征分析   总被引:9,自引:0,他引:9  
基于中国314个台站逐日降水资料,根据百分位值法定义了极端强降水阈值,引入了表征时间分配特征的新参数--极端强降水事件集中度和集中期,对中国极端强降水事件年内非均匀性进行了分析,结果表明:中国年极端强降水事件集中度与集中期自西北向东南均呈“低-高-低”的分布特点,其异常空间分布也存在很大的区域差异;从区域平均来看,西北西部是中国年极端强降水事件最分散的区域,东北是最集中的区域。东北、西北东部、华北以及青藏高原年极端强降水事件集中期相当,明显迟于其它区域,而长江中下游是最早的区域;另外各区域年极端强降水事件的集中度与集中期的长期趋势并不一致,而它们均存在着较一致的周期振荡。  相似文献   

13.
利用SAGE Ⅱ卫星资料分析青藏高原上空臭氧垂直廓线   总被引:5,自引:0,他引:5  
利用1985-2002年SAGE Ⅱ卫星资料获取青藏高原地区上空大气臭氧垂直廓线,分析其变化规律.结果表明:①卫星资料与地面臭氧探空资料有很好的一致性;②青藏高原上空大气臭氧垂直廓线存在南北间的差异和季节变化,夏秋季臭氧廓线极大值出现的位置比冬春季高出1~2 km(高原南部)和2~3 km(高原北部);③臭氧数浓度在10~20 km的高度存在明显季节和南北区域差异;④与同纬度其他地区的平均值相比,夏季(6-9月)臭氧低值主要出现在15~20 km的高原对流层顶附近,最低值出现在18 km附近,而冬季这种差异相对较小.   相似文献   

14.
全球变化背景下,青藏高原作为我国乃至全球气候变化的“天然实验室”,植被生态系统发生了深刻变化。引入重心模型等方法分析和探讨2000—2015年青藏高原植被NPP时空变化格局及其驱动机理,并定量区分NPP变化过程中气候变化和人类活动的相对作用。研究发现:(1)2000—2015年,青藏高原植被NPP年均值总体上呈现从东南向西北递减的趋势。在年际变化方面,近16年植被NPP呈现波动上升趋势,其中在2005年出现上升陡坡,并在2005—2015年表现为高位波动的态势。(2)青藏高原植被NPP增加区(变化率>10%)主要集中于三江源地区、横断山区北部、雅鲁藏布江中下游以及那曲地区的中东部,而植被NPP减小区(变化率<-10%)则主要分布于雅鲁藏布江上游和阿里高原。(3)近16年青藏高原植被NPP重心总体向西南方向移动,表明西南部植被NPP在增量和增速上大于东北部。(4)青藏高原植被NPP与气候因子相关性的地区差异显著,其中植被NPP与降水显著相关的区域主要位于青藏高原中部、青藏高原东南部及雅鲁藏布江流域中下游,而植被NPP与气温显著相关的区域主要位于藏南地区、横断山区北部、青藏高原中部和北部。(5)气候变化和人类活动在青藏高原植被NPP变化过程中的相对作用存在显著的时空差异性,在空间上呈现“四线—五区”的格局。研究成果能够为揭示青藏高原区域生态系统对全球变化的响应机制提供理论和方法支撑。  相似文献   

15.
青藏高原典型流域土壤重金属分布特征及其生态风险评价   总被引:4,自引:4,他引:0  
青藏高原属于环境极端脆弱区和人类活动敏感区,近年来在该区域检测到越来越多的人为干扰.本研究基于甘南"一江三河"和西藏"一江两河"两个流域,分析了Cr、Ni、Cu、Zn、As、Cd和Pb这7种重金属的空间分布关系及其生态风险.结果表明,甘南"一江三河"流域7种重金属的空间分布呈东部高西部低的特点,平均含量均超过青藏高原背景值,以Cd (4.50倍)和As (2.83倍)较显著,Cd和Pb的高值主要分布在水域、城镇及农村居民用地和工交建设用地;西藏"一江两河"流域7种重金属的空间分布呈沿江一线重金属含量较低、高海拔地区重金属含量较高的特点,Ni、Zn、As和Cd的平均含量超过青藏高原背景值,以Cd (3.13倍)较显著,Cd的高值主要分布在水域覆盖区.地累积指数法和潜在生态风险指数法表明,在甘南"一江三河"流域以As和Cd的污染程度较高,且在水域覆盖区潜在生态风险最高;西藏"一江两河"流域以Cd的污染程度较高,水域覆盖区潜在生态风险最高.本研究对青藏高原不同土地利用方式下土壤环境保护和可持续开发利用具有指导意义.  相似文献   

16.
东亚地区大气整层臭氧浓度的时空变化   总被引:6,自引:1,他引:6  
从TOMS臭氧全球网格资料截取主要包含中国大陆的东亚地区 (6 9 375°E— 1 39 375°E ;1 4 5°N— 5 4 5°N)的数据 ,分析大气整层臭氧浓度的变化特征 .结果表明 ,区域多年平均臭氧浓度约为 30 7DU(多卜森单位 :DobsonUnit) ;一年中 ,平均臭氧浓度有明显的季节变化 ,春季 (3月 )达最大值 ,秋季 (1 0月 )最小 ,变化幅度约 5 0DU .区域内臭氧浓度具有很强的空间 (纬向 )变化 ,低纬度地区臭氧浓度低 ,较高纬度地区臭氧浓度高 .各地臭氧浓度变化的概率分布基本为单峰型 ,低纬度地区分布较窄而高纬度地区宽 .从 1 978至 1 994年的十多年中 ,区域平均浓度呈明显的下降趋势 ,下降幅度约 1 0DU .对应于此 ,区域内各等级的臭氧浓度值以大致均匀的速率变化 ,低值的出现概率增加 ,而高值的出现概率减小 .  相似文献   

17.
1961—2017年青藏高原极端降水特征分析   总被引:1,自引:0,他引:1  
基于青藏高原78个气象站点的逐日降水数据,采用百分位阈值法确定极端降水阈值,计算极端降水指数并分析其时空分布特征,以期为区域气候变化预测及防灾减灾对策的制定提供参考。结果表明:(1)1961—2017年青藏高原年降水量表现出上升趋势,上升速率为8.06 mm/10 a,多年平均降水量达472.36 mm。78个站点的年降水量倾向率最小值为-25.46 mm/10 a,最大值为43.02 mm/10 a,有15.38%的站点降水在下降,较为集中地分布在高原的东部和南部,其余84.62%的站点降水量在上升。(2)青藏高原各站点极端降水阈值的平均值为23.11 mm,取值范围为7.84~51.90 mm。高值中心出现在横断山区的贡山和木里,低值中心出现在柴达木盆地及昆仑山北翼区。(3)青藏高原各站点的极端降水量、极端降水日数和极端降水贡献率均表现出了明显的上升趋势,极端降水强度虽然也在上升但趋势并不明显,表明青藏高原极端降水量的上升并非是极端降水的强度引起的,而是由极端降水频次的上升引起的。柴达木盆地的极端降水量和极端降水日数虽然并没有表现出高值水平,但该地区的极端降水贡献率却表现出较高水平,表明该区域虽然降水量较少,但是降水往往以极端降水的形式产生。  相似文献   

18.
Spatiotemporal variations of ozone (O3) taken from the Copernicus Atmosphere Monitoring Service (CAMS) and the second Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) were intercompared and evaluated with ground and ozone-sonde observations over China in 2018 and 2019. Intercomparison of the surface ozone from CAMS and MERRA-2 reanalysis showed significant negative bias (CAMS minus MERRA-2, same below) at Tibetan Plateau of up to 80 µg/m3, and the average R2 was about 0.6 across China. Evaluated with the ground observations from China National Environmental Monitoring Center (CNEMC), we found that CAMS and MERRA-2 reanalysis were capable of capturing the key patterns of monthly and diurnal variations of surface ozone over China except for the western region, and MERRA-2 overestimated the observations compared to CAMS. Vertically, the CAMS profiles overestimated the ozone-sonde from the World Ozone and Ultraviolet Radiation Data Center (WOUDC) above 200 hPa with the magnitude reaching up to 150 µg/m3, while little bias was found between the reanalysis and observations below 200 hPa. Intercomparison drawn from the vertical distribution between CAMS and MERRA-2 reanalysis showed that the negative bias appeared throughout the troposphere over China, while the positive bias emerged in the upper troposphere and lower stratosphere (UTLS) with high order of magnitude exceeding 100 µg/m3, indicating large uncertainties at higher altitudes. In summary, we concluded that CAMS reanalysis showed better agreement with the observations in contrast to MERRA-2, and the large discrepancy especially at higher altitudes between these two reanalysis datasets could not be ignored.  相似文献   

19.
东亚边界层臭氧时空分布的数值模拟研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用嵌套网格空气质量预报模式系统(NAQPMS)对2010年东亚地区边界层臭氧(O3)的时空分布进行了数值模拟,并评估了东亚边界层光化学反应的活性.结果表明,NAQPMS模式与观测结果较为一致,站点观测与模拟的日均值(月均值)相关系数达到0.56~0.91,模式能合理再现东亚地区地面O3的时空分布特征.东亚地区冬季边界层O3低值区出现在中国东部;春季O3浓度增加,西北太平洋沿岸地区O3浓度达60μL/m3左右;夏季东亚中纬度35°N附近大陆地区O3由于强烈的光化学反应呈现出一浓度高值带,浓度达60μL/m3以上;秋季东亚大部分地区O3浓度维持在40~45μL/m3左右.夏季中国京津冀和长江三角洲部分地区光化学净生成率已超过30×10-9/d.  相似文献   

20.
为揭示中国自然背景地区臭氧浓度变化特征,并以其为自然背景值指导人为活动导致的臭氧污染控制工作,该研究通过汇总统计中国15个典型自然背景地区与337个地级及以上城市2016—2020年环境空气臭氧自动监测数据,比较分析中国自然背景地区臭氧浓度的年度、季节、日内变化规律与空间分布规律. 结果表明:2016—2020年,中国自然背景地区臭氧年均浓度明显高于城市区域,但臭氧日最大8小时平均浓度的第90百分位数(简称“臭氧年90百分位浓度”)明显低于城市,自然背景地区和城市区域臭氧年均浓度同步快速提升,年均增长分别为1.5和2.0 μg/m3. 中国自然背景地区臭氧浓度季节性变化规律与城市区域存在较大差异,自然背景地区臭氧平均浓度最高值出现在春季,夏、秋、冬三季臭氧平均浓度差异不明显,与东亚环太平洋背景地区臭氧浓度季节性变化规律(春季最高、夏季最低)存在明显差异. 部分自然背景地区受人为活动排放的影响较小,臭氧浓度不存在明显的日内峰谷差,全天臭氧浓度基本保持相同水平;部分自然背景地区可能受邻近城市人为活动排放的臭氧前体物影响,臭氧浓度日内变化规律与邻近城市较为一致,存在明显的日内峰谷差. 研究显示,中国自然背景地区臭氧浓度变化规律与城市区域存在显著差异,臭氧浓度年均值升高迅速,部分自然背景地区臭氧浓度变化规律可能受邻近城市人为活动排放的臭氧前体物传输的影响.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号