首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
When the cone of influence of a pumping well reaches a nearby river, the resulting hydraulic gradient can induce enhanced seepage of streamflow into the aquifer. The rate of seepage is often modeled using analytical solutions that are simple to apply but may not reproduce field data due to mathematical assumptions not being met in the field. Furthermore, the appropriateness of such models has not been investigated in detail due to difficulty in measuring streamflow loss in the field. In this study, a field experiment was conducted on a reach of the South Platte River near Denver, Colorado to estimate pumping‐induced streamflow loss. A network of stream gauges, monitoring wells, and in situ measurements was used to observe streamflow rates, groundwater levels, and temperature to assess if pumping wells have a significant impact on streamflow, and to compare observed streamflow depletion against analytical solutions. Data collected suggest that pumping wells have a noticeable impact on streamflow. The analytical solutions proved accurate if streamflow was low and constant but performed poorly if streamflow was high and variable. Therefore, for this reach, the use of analytical solutions to predict streamflow may only be appropriate under low‐flow, constant‐flow conditions. Methods and results can be used to guide other streamflow depletion studies and to inform cases of pumping‐induced streamflow depletion, particularly in regard to water rights.  相似文献   

2.
ABSTRACT: The stability of the Neosho River channel downstream from John Redmond Dam, in southeast Kansas, was investigated using multiple‐date aerial photographs and stream‐gage information. Bankfull channel width was used as the primary indicator variable to assess pre‐ and post‐dam channel change. Five sin‐mile river reaches and four stream gages were used in the analysis. Results indicated that, aside from some localized channel widening, the overall channel change has been minor with little post‐dam change in bankfull channel width. The lack of a pronounced post‐dam channel change may be attributed to a substantial reduction in the magnitude of the post‐dam annual peak discharges in combination with the resistance to erosion of the bed and bank materials. Also, the channel may have been overwidened by a series of large floods that predated construction of the dam, including one with an estimated 500‐year recurrence interval.  相似文献   

3.
ABSTRACT: In Yegua Creek, a principal tributary of the Brazos River in Texas, surveys of a 19 km channel reach downstream of Somerville Dam show that channel capacity decreased by an average of 65 percent in a 34 year period following dam closure. The decrease corresponds with an approximately 85 percent reduction in annual flood peaks. Channel depth has changed the most, decreasing by an average of 61 percent. Channel width remained stable with an average decrease of only 9 percent, reflecting cohesive bank materials along with the growth of riparian vegetation resulting from increased low flows during dry summer months. Although large changes in stream channel geometry are not uncommon downstream of dams, such pronounced reductions in channel capacity could have long‐term implications for sediment delivery through the system.  相似文献   

4.
ABSTRACT: This study evaluates the streamflow characteristics of the upper Allegheny River during the periods preceding (1936 to 1965) and following (1966 to 1997) completion of the Kinzua Dam in northwestern Pennsylvania. Inter‐period trends in seasonal patterns of discharge and peak flow at three downstream sites are compared to those at two upstream sites to determine the influence of this large dam on surface water hydrology. Climatic records indicate that significant changes in annual total and seasonal precipitation occurred over the twentieth century. Increased runoff during the late summer through early winter led to increased discharge both upstream and downstream during these months, while slightly less early‐year rainfall produced minor reductions in spring flood peaks since 1966. The Kinzua Dam significantly enhanced these trends downstream, creating large reductions in peak flow, while greatly augmenting low flow during the growing season. This reduction in streamflow variability, coupled with other dam‐induced changes, has important biodiversity implications. The downstream riparian zone contains numerous threatened/endangered species, many of which are sensitive to the type of habitat modifications produced by the dam. Flood dynamics under the current post‐dam conditions are likely to compound the difficulties of maintaining their long‐term viability.  相似文献   

5.
ABSTRACT: The use of reservoirs and land treatments to manage streamflow for the maintenance or enhancement of instream flow values is a valid concept. Historically, large reservoirs have been used for flood control and water-supply regulation. Smaller structures have enjoyed widespread use for soil and water conservation in headwater areas. Where reservoir releases can be controlled, it is technically feasible to regulate flows for the enhancement of instream values. However, institutional and political obstacles may preclude the operation of some reservoirs for this purpose. Retention and detention structures and land treatments, implemented for soil and water conservation purposes, have often had favorable effects on the streamflow hydrograph. Decreases in peak flows and increases in low flows have been documented. Design concepts for runoff-control structures are discussed in relation to instream flow management objectives. Hydro-logic simulation is offered as a potential tool for project design and feasibility analysis.  相似文献   

6.
The regulation and management of stream ecosystems worldwide have led to irreversible loss of wildlife species. Due to recent scrutiny of water policy and dam feasibility, there is an urgent need for fundamental research on the biotic integrity of streams and riparian zones. Although riverine turtles rely on stream and riparian zones to complete their life cycle, are vital producers and consumers, and are declining worldwide, they have received relatively little attention. I review the literature on the impacts of contemporary stream management on freshwater turtles. Specifically, I summarize and discuss 10 distinct practices that produce five potential biological repercussions. I then focus on the often-overlooked use of riparian zones by freshwater turtles, calculate a biologically determined riparian width, and offer recommendations for ecosystem management. Migration data were summarized on 10 species from eight US states and four countries. A riparian zone encompassing the majority of freshwater turtle migrations would need to span 150 m from the stream edge. Freshwater turtles primarily chose high, open sandy habitats to nest. Nests in North America contained eggs and hatchlings during April through September and often through the winter. In addition, freshwater turtles utilized diverse riparian habitats for feeding, nesting, and overwintering. Additional documentation of stream and riparian habitat use by turtles is needed.  相似文献   

7.
ABSTRACT: Bank erosion along a river channel determines the pattern of channel migration. Lateral channel migration in large alluvial rivers creates new floodplain land that is essential for riparian vegetation to get established. Migration also erodes existing riparian, agricultural, and urban lands, sometimes damaging human infrastructure (e.g., scouring bridge foundations and endangering pumping facilities) in the process. Understanding what controls the rate of bank erosion and associated point bar deposition is necessary to manage large alluvial rivers effectively. In this study, bank erosion was proportionally related to the magnitude of stream power. Linear regressions were used to correlate the cumulative stream power, above a lower flow threshold, with rates of bank erosion at 13 sites on the middle Sacramento River in California. Two forms of data were used: aerial photography and field data. Each analysis showed that bank erosion and cumulative effective stream power were significantly correlated and that a lower flow threshold improves the statistical relationship in this system. These correlations demonstrate that land managers and others can relate rates of bank erosion to the daily flow rates of a river. Such relationships can provide information concerning ecological restoration of floodplains related to channel migration rates as well as planning that requires knowledge of the relationship between flow rates and bank erosion rates.  相似文献   

8.
ABSTRACT: In Virginia, as in many states, priority to streamflow is held by riparian landowners who are predominantly agricultural users. The streamfiow may also have a high potential value to non-agricultural users who do not have riparian rights. The potential benefits of transferring streamfiow priority rights from agricultural to non-agricultural use were evaluated using simulation for an eastern Virginia watershed. Lowering irrigators' priority to streamflow reduced crop yields and irrigated returns in some years because of inadequate water supplies. However, the transfer of priorities increased the likelihood that the urban reservoir would be able to withdraw water from the stream without interruption. As a result, priority trades reduced the size of reservoir needed to meet a given water requirement by municipal users. The resulting savings in reservoir construction and maintenance costs more than offset the losses to irrigators. Net savings could be achieved even if the reservoir were required to release water periodically to maintain a minimum level of instream flow. The conclusion is that the state should encourage trading of access to streamflow in order to increase the use efficiency of streamfiows. Alternative means by which the state can facilitate water exchanges are discussed.  相似文献   

9.
ABSTRACT: Forestation of riparian areas has long been promoted to restore stream ecosystems degraded by agriculture in central North America. Although trees and shrubs in the riparian zone can provide many benefits to streams, grassy or herbaceous riparian vegetation can also provide benefits and may be more appropriate in some situations. Here we review some of the positive and negative implications of grassy versus wooded riparian zones and discuss potential management outcomes. Compared to wooded areas, grassy riparian areas result in stream reaches with different patterns of bank stability, erosion, channel morphology, cover for fish, terrestrial runoff, hydrology, water temperature, organic matter inputs, primary production, aquatic macroinvertebrates, and fish. Of particular relevance in agricultural regions, grassy riparian areas may be more effective in reducing bank erosion and trapping suspended sediments than wooded areas. Maintenance of grassy riparian vegetation usually requires active management (e.g., mowing, burning, herbicide treatments, and grazing), as successional processes will tend ultimately to favor woody vegetation. Riparian agricultural practices that promote a dense, healthy, grassy turf, such as certain types of intensively managed livestock grazing, have potential to restore degraded stream ecosystems.  相似文献   

10.
Forest harvesting can increase solar radiation in the riparian zone as well as wind speed and exposure to air advected from clearings, typically causing increases in summertime air, soil, and stream temperatures and decreases in relative humidity. Stream temperature increases following forest harvesting are primarily controlled by changes in insolation but also depend on stream hydrology and channel morphology. Stream temperatures recovered to pre‐harvest levels within 10 years in many studies but took longer in others. Leaving riparian buffers can decrease the magnitude of stream temperature increases and changes to riparian microclimate, but substantial warming has been observed for streams within both unthinned and partial retention buffers. A range of studies has demonstrated that streams may or may not cool after flowing from clearings into shaded environments, and further research is required in relation to the factors controlling downstream cooling. Further research is also required on riparian microclimate and its responses to harvesting, the influences of surface/subsurface water exchange on stream and bed temperature regimes, biological implications of temperature changes in headwater streams (both on site and downstream), and methods for quantifying shade and its influence on radiation inputs to streams and riparian zones.  相似文献   

11.
ABSTRACT: Irrigation has expanded in parts of the eastern United States. In some areas, the adjoining surface (riparian) water is the most economical source of irrigation water. Expanded demand for riparian water may lead to conflict among irrigators and other streamflow users. Accurate information on the potential for and impacts of riparian irrigation expansion is needed to decide if control of such expansion is necessary. In this study, a stochastic economic model to evaluate the impacts of potential irrigation expansion is presented. The model considers the soil, location, and land use characteristics of individual sites, as well as weather and streamflow patterns. The application of the model to an eastern Virginia watershed indicates that, with maximum potential expansion, water availability becomes limited and yields will be reduced in some years. As a result, the expected net returns from irrigation and the probability of breaking even on the investment are reduced substantially. The results suggest the need to consider regulation of surface water allocation for irrigation development in riparian watersheds.  相似文献   

12.
ABSTRACT: Streams are dynamic systems, so steady state does not exist for any appreciable period of time. Streams in dynamic equilibrium respond quickly to change, regaining a new equilibrium. From the response system it follows that there is a causative reason why a stream meanders or degrades or aggrades its bed. These actions represent adjustment processes. If humans interfere with them, other adjustment processes will be initiated. In contrast, if humans work with the ongoing processes, success will be attainable with less efforts and at a lower cost. Local base level change represents one of the most influential channel changes, especially the lowering of this level. Loss of base level may cause degradation throughout a stream network, because the main stem is the base level for all its tributaries. Often, degradation causes bank instability and lowering of streamside water tables that, in turn, endanger the riparian ecosystem. Judging from check dam systems, a rise of the local base level does not raise the bed throughout a stream or network; instead, aggradation stops at a given distance. Preventing local base level changes of a stream network, therefore, is a cost-effective measure. Examples are presented of treatments causing new critical situations and measures to correct them.  相似文献   

13.
Although dams have beneficial effects, they are also acknowledged as having serious environmental repercussions if they are not properly managed. The objective of this work was to examine the impact of the Barekese Dam in Ghana on the health status of three riparian communities downstream against a control. The environmental health status of the communities was analysed with reference to traditional endemic communicable water-related diseases in the catchment area, which were identified as malaria, urinary schistosomiasis, infectious hepatitis, diarrhoeal diseases and scabies. Case-control study was then conducted in the three phases of the dam (pre-construction, at the end of the construction and in the late operational phases) to analyse the health status of the communities as a function of the phases of the dam. The results showed that the control community consistently had a much better health status than two of the riparian communities, which were closer to the dam in all the three phases. However, it had a better health status than the third riparian community, which was farthest downstream, only in the first two phases. This community maintained a fairly constant health status retrospectively and did not appear to have been affected by the presence of the dam. On contrary, the health status of the two communities in close proximity to the dam deteriorated in the late operational phase. The study therefore showed that there was a strong association between the presence of the dam and poorer health status of the downstream communities in close proximity to it.  相似文献   

14.
Abstract: Managers, regulators, and researchers of aquatic ecosystems are increasingly pressed to consider large areas. However, accurate stream maps with geo‐referenced attributes are uncommon over relevant spatial extents. Field inventories provide high‐quality data, particularly for habitat characteristics at fine spatial resolutions (e.g., large wood), but are costly and so cover relatively small areas. Recent availability of regional digital data and Geographic Information Systems software has advanced capabilities to delineate stream networks and estimate coarse‐resolution hydrogeomorphic attributes (e.g., gradient). A spatially comprehensive coverage results, but types of modeled outputs may be limited and their accuracy is typically unknown. Capitalizing on strengths in both field and regional digital data, we modeled a synthetic stream network and a variety of hydrogeomorphic attributes for the Oregon Coastal Province. The synthetic network, encompassing 96,000 km of stream, was derived from digital elevation data. We used high‐resolution but spatially restricted data from field inventories and streamflow gauges to evaluate, calibrate, and interpret hydrogeomorphic attributes modeled from digital elevation and precipitation data. The attributes we chose to model (drainage area, mean annual precipitation, mean annual flow, probability of perennial flow, channel gradient, active‐channel width and depth, valley‐floor width, valley‐width index, and valley constraint) have demonstrated value for stream research and management. For most of these attributes, field‐measured, and modeled values were highly correlated, yielding confidence in the modeled outputs. The modeled stream network and attributes have been used for a variety of purposes, including mapping riparian areas, identifying headwater streams likely to transport debris flows, and characterizing the potential of streams to provide high‐quality habitat for salmonids. Our framework and models can be adapted and applied to areas where the necessary field and digital data exist or can be obtained.  相似文献   

15.
ABSTRACT: There is a pressing need for tools to predict the rates, magnitudes, and mechanisms by which sediment is removed from a reservoir following dam removal, as well as for tools to predict where this sediment will be deposited downstream and how it will impact downstream channel morphology. In the absence of adequate empirical data, a good initial approach is to examine the impacts of dam removal within the context of the geomorphic analogies of channel evolution models and sediment waves. Channel changes at two dam breaching sites in Wisconsin involved a succession of channel forms and processes consistent with an existing channel evolution model. Sediment transported downstream after removal of other dams suggests that reservoir sediment may be translated downstream either as a distinct wave or gradually eroded away. More extensive data collection on existing dam removals is warranted before undertaking the removal of a large number of dams. However, if removal is to proceed based on current knowledge, then geomorphic analogies can be used as the foundation for sediment management and stabilization schemes.  相似文献   

16.
This study quantitatively explores whether land cover changes have a substantive impact on simulated streamflow within the tropical island setting of Puerto Rico. The Precipitation Runoff Modeling System (PRMS) was used to compare streamflow simulations based on five static parameterizations of land cover with those based on dynamically varying parameters derived from four land cover scenes for the period 1953‐2012. The PRMS simulations based on static land cover illustrated consistent differences in simulated streamflow across the island. It was determined that the scale of the analysis makes a difference: large regions with localized areas that have undergone dramatic land cover change may show negligible difference in total streamflow, but streamflow simulations using dynamic land cover parameters for a highly altered subwatershed clearly demonstrate the effects of changing land cover on simulated streamflow. Incorporating dynamic parameterization in these highly altered watersheds can reduce the predictive uncertainty in simulations of streamflow using PRMS. Hydrologic models that do not consider the projected changes in land cover may be inadequate for water resource management planning for future conditions.  相似文献   

17.
As the number of proposals to divert streamflow for power production has increased in recent years, interest has grown in predicting the impacts of flow reductions on riparian vegetation. Because the extent and density of riparian vegetation depend largely on local geomorphic and hydrologic setting, site-specific geomorphic and hydrologic information is needed. This article describes methods for collecting relevant hydrologic data, and reports the results of such studies on seven stream reaches proposed for hydroelectric development in the eastern Sierra Nevada, California, USA. The methods described are: (a) preparing geomorphic maps from aerial photographs, (b) using well level records to evaluate the influence of streamflow on the riparian water table, (c) taking synoptic flow measurements to identify gaining and losing reaches, and (d) analyzing flow records from an upstream-downstream pair of gages to document seasonal variations in downstream flow losses. In the eastern Sierra Nevada, the geomorphic influences on hydrology and riparian vegetation were pronounced. For example, in a large, U-shaped glacial valley, the width of the riparian strip was highly variable along the study reach and was related to geomorphic controls, whereas the study reaches on alluvial fan deposits had relatively uniform geomorphology and riparian strip width. Flow losses of 20% were typical over reaches on alluvial fans. In a mountain valley, however, one stream gained up to 275% from geomorphically controlled groundwater contributions.  相似文献   

18.
The Pacific Northwest encompasses a range of hydrologic regimes that can be broadly characterized as either coastal (where rain and rain on snow are dominant) or interior (where snowmelt is dominant). Forest harvesting generally increases the fraction of precipitation that is available to become streamflow, increases rates of snowmelt, and modifies the runoff pathways by which water flows to the stream channel. Harvesting may potentially decrease the magnitude of hyporheic exchange flow through increases in fine sediment and clogging of bed materials and through changes in channel morphology, although the ecological consequences of these changes are unclear. In small headwater catchments, forest harvesting generally increases annual runoff and peak flows and reduces the severity of low flows, but exceptions have been observed for each effect. Low flows appear to be more sensitive to transpiration from vegetation in the riparian zone than in the rest of the catchment. Although it appears that harvesting increased only the more frequent, geomorphically benign peak flows in several studies, in others the treatment effect increased with return period. Recovery to pre‐harvest conditions appeared to occur within about 10 to 20 years in some coastal catchments but may take many decades in mountainous, snow dominated catchments.  相似文献   

19.
Evaluating stream restoration projects   总被引:2,自引:3,他引:2  
River and stream restoration projects are increasingly numerous but rarely subjected to systematic postproject evaluation. Without conducting such evaluation and widely disseminating the results, lessons will not be learned from successes and failures, and the field of river restoration cannot advance. Postproject evaluation must be incorporated into the initial design of each project, with the choice of evaluation technique based directly upon the specific project goals against which performance will be evaluated. We emphasize measurement of geomorphic characteristics, as these constitute the physical framework supporting riparian and aquatic ecosystems. Techniques for evaluating other components are briefly discussed, especially as they relate to geomorphic variables. Where possible, geomorphic, hydrologic, and ecological variables should be measured along the same transects. In general, postproject monitoring should continue for at least a decade, with surveys conducted after each flood above a predetermined threshold. Project design should be preceded by a historical study documenting former channel conditions to provide insights into the processes suggest earlier, potentially stable channel configurations as possible design models.  相似文献   

20.
ABSTRACT: The rehabilitation of urban stream channels and riparian areas involves a potentially large number of design alternatives. When substantial modifications are planned, water surface profile models (e.g., HEC-2) provide a means for a thorough and efficient evaluation of many design variations. The rehabilitation of a reach of Paradise Creek, Idaho, utilized the REC-2 model to verify the appropriateness of a new channel geometry and explore the consequences of variable floodplain geometries and excavation depths. The desirability of habitat diversity, coupled with the constraints of minimized earthwork costs and adequate flow capacity, framed the floodplain design question. The final design geometry was iteratively approached using the HEC-2 model to mimic the existing channel capacity. This modeling framework produces as output computed water surface elevations for the design channel and floodplain under any discharge. Hence, the method provides the means for demonstrating that rehabilitation designs will (or will not) cause increases in flood elevations, an assessment that is generally required for project approval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号