首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rainfall samples were collected during the 2003 and 2004 growing seasons at four agricultural locales across the USA in Maryland, Indiana, Nebraska, and California. The samples were analyzed for 21 insecticides, 18 herbicides, three fungicides, and 40 pesticide degradates. Data from all sites combined show that 7 of the 10 most frequently detected pesticides were herbicides, with atrazine (70%) and metolachlor (83%) detected at every site. Dacthal, acetochlor, simazine, alachlor, and pendimethalin were detected in more than 50% of the samples. Chlorpyrifos, carbaryl, and diazinon were the only insecticides among the 10 most frequently detected compounds. Of the remaining pesticide parent compounds, 18 were detected in fewer than 30% of the samples, and 13 were not detected. The most frequently detected degradates were deethylatrazine; the oxygen analogs (OAs) of the organophosphorus insecticides chlorpyrifos, diazinon, and malathion; and 1-napthol (degradate of carbaryl). Deethylatrazine was detected in nearly 70% of the samples collected in Maryland, Indiana, and Nebraska but was detected only once in California. The OAs of chlorpyrifos and diazinon were detected primarily in California. Degradates of the acetanilide herbicides were rarely detected in rain, indicating that they are not formed in the atmosphere or readily volatilized from soils. Herbicides accounted for 91 to 98% of the total pesticide mass deposited by rain except in California, where insecticides accounted for 61% in 2004. The mass of pesticides deposited by rainfall was estimated to be less than 2% of the total applied in these agricultural areas.  相似文献   

2.
ABSTRACT: The predominant mixtures of pesticides found in New York surface waters consist of five principal components. First, herbicides commonly used on corn (atrazine, metolachlor, alachlor, cyanazine) and a herbicide degradate (deethylatrazine) were positively correlated to a corn‐herbicide component, and watersheds with the highest corn‐herbicide component scores were those in which large amounts of row crops are grown. Second, two insecticides (diazinon and carbaryl) and one herbicide (prometon) widely used in urban and residential settings were positively correlated to an urban/residential component. Watersheds with the highest urban/residential component scores were those with large amounts of urban and residential land use. A third component was related to two herbicides (EPTC and cyanazine) used on dry beans and corn, the fourth to an herbicide (simazine) and an insecticide (carbaryl) commonly used in orchards and vineyards, and the fifth to an herbicide (DCPA). Results of this study indicate that this approach can be used to: (1) identify common mixtures of pesticides in surface waters, (2) relate these mixtures to land use and pesticide applications, and (3) indicate regions where these mixtures of pesticides are commonly found.  相似文献   

3.
Saleh, Dina K., David L. Lorenz, and Joseph L. Domagalski, 2010. Comparison of Two Parametric Methods to Estimate Pesticide Mass Loads in California’s Central Valley. Journal of the American Water Resources Association (JAWRA) 00(0):1‐11. DOI: 10.1111/j.1752‐1688.2010.00506.x Abstract: Mass loadings were calculated for four pesticides in two watersheds with different land uses in the Central Valley, California, by using two parametric models: (1) the Seasonal Wave model (SeaWave), in which a pulse signal is used to describe the annual cycle of pesticide occurrence in a stream, and (2) the Sine Wave model, in which first‐order Fourier series sine and cosine terms are used to simulate seasonal mass loading patterns. The models were applied to data collected during water years 1997 through 2005. The pesticides modeled were carbaryl, diazinon, metolachlor, and molinate. Results from the two models show that the ability to capture seasonal variations in pesticide concentrations was affected by pesticide use patterns and the methods by which pesticides are transported to streams. Estimated seasonal loads compared well with results from previous studies for both models. Loads estimated by the two models did not differ significantly from each other, with the exceptions of carbaryl and molinate during the precipitation season, where loads were affected by application patterns and rainfall. However, in watersheds with variable and intermittent pesticide applications, the SeaWave model is more suitable for use on the basis of its robust capability of describing seasonal variation of pesticide concentrations.  相似文献   

4.
ABSTRACT: Pesticides in stormwater runoff, within the Sacramento River Basin, California, were assessed during a storm that occurred in January 1994. Two organophosphate insecticides (diazinon and methidathion), two carbamate pesticides (molinate and carbofuran), and one triazine herbicide (simazine) were detected. Organophosphate pesticide concentrations increased with the rising stage of the hydrographs; peak concentrations were measured near peak discharge. Diazinon oxon, a toxic degradation product of diazinon, made up approximately 1 to 3 percent of the diazinon load. The Feather River was the principal source of organophosphate pesticides to the Sacramento River during this storm. The concentrations of molinate and carbofuran, pesticides applied to rice fields during May and June, were relatively constant during and after the storm. Their presence in surface water was attributed to the flooding and subsequent drainage, as a management practice to degrade rice stubble prior to the next planting. A photo-degradation product of molinate, 4-keto molinate, was in all samples where molinate was detected and made up approximately 50 percent of the total molinate load. Simazine, a herbicide used in orchards and to control weeds along the roadways, was detected in the storm runoff, but it was not possible to differentiate the two sources of that pesticide to the Sacramento River.  相似文献   

5.
Abstract: A parametric regression model was developed for assessing the variability and long‐term trends in pesticide concentrations in streams. The dependent variable is the logarithm of pesticide concentration and the explanatory variables are a seasonal wave, which represents the seasonal variability of concentration in response to seasonal application rates; a streamflow anomaly, which is the deviation of concurrent daily streamflow from average conditions for the previous 30 days; and a trend, which represents long‐term (inter‐annual) changes in concentration. Application of the model to selected herbicides and insecticides in four diverse streams indicated the model is robust with respect to pesticide type, stream location, and the degree of censoring (proportion of nondetections). An automatic model fitting and selection procedure for the seasonal wave and trend components was found to perform well for the datasets analyzed. Artificial censoring scenarios were used in a Monte Carlo simulation analysis to show that the fitted trends were unbiased and the approximate p‐values were accurate for as few as 10 uncensored concentrations during a three‐year period, assuming a sampling frequency of 15 samples per year. Trend estimates for the full model were compared with a model without the streamflow anomaly and a model in which the seasonality was modeled using standard trigonometric functions, rather than seasonal application rates. Exclusion of the streamflow anomaly resulted in substantial increases in the mean‐squared error and decreases in power for detecting trends. Incorrectly modeling the seasonal structure of the concentration data resulted in substantial estimation bias and moderate increases in mean‐squared error and decreases in power.  相似文献   

6.
To improve understanding of the factors affecting pesticide occurrence in ground water, patterns of detection were examined for selected herbicides, based primarily on results from the National Water-Quality Assessment (NAWQA) program. The NAWQA data were derived from 2,227 sites (wells and springs) sampled in 20 major hydrologic basins across the USA from 1993 to 1995. Results are presented for six high-use herbicides--atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), cyanazine (2-[4-chloro-6-ethylamino-1,3,5triazin-2-yl]amino]-2-methylpropionitrile), simazine (2-chloro-4,6-bis-[ethylamino]-s-triazine), alachlor (2-chloro-N-[2,6-diethylphenyl]-N-[methoxymethyl]acetamide), acetochlor (2-chloro-N-[ethoxymethyl]-N-[2-ethyl-6-methylphenyl]acetamide), and metolachlor (2-chloro-N-[2-ethyl-6-methylphenyl]-N-[2-methoxylethyl]acetamide)--as well as for prometon (2,4-bis[isopropylamino]-6-methoxy-s-triazine), a nonagricultural herbicide detected frequently during the study. Concentrations were <1 microg L(-1) at 98% of the sites with detections, but exceeded drinking-water criteria (for atrazine) at two sites. In urban areas, frequencies of detection (at or above 0.01 microg L(-1)) of atrazine, cyanazine, simazine, alachlor, and metolachlor in shallow ground water were positively correlated with their nonagricultural use nationwide (P < 0.05). Among different agricultural areas, frequencies of detection were positively correlated with nearby agricultural use for atrazine, cyanazine, alachlor, and metolachlor, but not simazine. Multivariate analysis demonstrated that for these five herbicides, frequencies of detection beneath agricultural areas were positively correlated with their agricultural use and persistence in aerobic soil. Acetochlor, an agricultural herbicide first registered in 1994 for use in the USA, was detected in shallow ground water by 1995, consistent with previous field-scale studies indicating that some pesticides may be detected in ground water within 1 yr following application. The NAWQA results agreed closely with those from other multistate studies with similar designs.  相似文献   

7.
ABSTRACT: Regression models were developed for estimating stream concentrations of the herbicides alachlor, atrazine, cyanazine, metolachior, and trilluralin from use‐intensity data and watershed characteristics. Concentrations were determined from samples collected from 45 streams throughout the United States during 1993 to 1995 as part of the U.S. Geological Survey's National Water‐Quality Assessment (NAWQA). Separate regression models were developed for each of six percentiles (10th, 25th, 50th, 75th, 90th, 95th) of the annual distribution of stream concentrations and for the annual time‐weighted mean concentration. Estimates for the individual percentiles can be combined to provide an estimate of the annual distribution of concentrations for a given stream. Agricultural use of the herbicide in the watershed was a significant predictor in nearly all of the models. Several hydrologic and soil parameters also were useful in explaining the variability in concentrations of herbicides among the streams. Most of the regression models developed for estimation of concentration percentiles and annual mean concentrations accounted for 50 percent to 90 percent of the variability among streams. Predicted concentrations were nearly always within an order of magnitude of the measured concentrations for the model‐development streams, and predicted concentration distributions reasonably matched the actual distributions in most cases. Results from application of the models to streams not included in the model development data set are encouraging, but further validation of the regression approach described in this paper is needed.  相似文献   

8.
ABSTRACT: Several factors affect the occurrence and transport of pesticides in surface waters of the 29,400 km2 White River Basin in Indiana. A relationship was found between pesticide use and the average annual concentration of that pesticide in the White River, although this relationship varies for different classes of pesticides. About one percent of the mass applied of each of the commonly used agricultural herbicides was transported from the basin via the White River. Peak pesticide concentrations were typically highest in late spring or early summer and were associated with periods of runoff following application. Concentrations of diazinon were higher in an urban basin than in two agricultural basins, corresponding to the common use of this insecticide on lawns and gardens in urban areas. Concentrations of atrazine, a corn herbicide widely used in the White River Basin, were higher in an agricultural basin with permeable, well‐drained soils, than in an agricultural basin with less permeable, more poorly drained soils. Although use of butylate and cyanazine was comparable in the White River Basin between 1992 and 1994, concentrations in the White River of butylate, which is incorporated into soil, were substantially less than for cyanazine, which is typically applied to the soil surface.  相似文献   

9.
Occurrence and fate of 45 pesticides and 40 pesticide degradates were investigated in four contrasting agricultural settings--in Maryland, Nebraska, California, and Washington. Primary crops included corn at all sites, soybeans in Maryland, orchards in California and Washington, and vineyards in Washington. Pesticides and pesticide degradates detected in water samples from all four areas were predominantly from two classes of herbicides--triazines and chloroacetanilides; insecticides and fungicides were not present in the shallow ground water. In most samples, pesticide degradates greatly exceeded the concentrations of parent pesticide. In samples from Nebraska, the parent pesticide atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine] was about the same concentration as the degradate, but in samples from Maryland and California atrazine concentrations were substantially smaller than its degradate. Simazine [6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine], the second most detected triazine, was detected in ground water from Maryland, California, and Washington. Metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] rarely was detected without its degradates, and when they were detected in the same sample metolachlor always had smaller concentrations. The Root-Zone Water-Quality Model was used to examine the occurrence and fate of metolachlor at the Maryland site. Simulations accurately predicted which metolachlor degradate would be predominant in the unsaturated zone. In analyses of relations among redox indicators and pesticide variance, apparent age, concentrations of dissolved oxygen, and excess nitrogen gas (from denitrification) were important indicators of the presence and concentration of pesticides in these ground water systems.  相似文献   

10.
ABSTRACT: Concentrations of nitrite plus nitrate, ammonia, orthophosphate, and atrazine were measured in streams and ground water beneath the streams at 23 sites in the South Platte River basin of Colorado, Nebraska, and Wyoming to assess: (1) the role of ground water as a source of nutrients and atrazine to streams in the basin, and (2) the effect of land-use setting on this process. Concentrations of nitrite plus nitrate, ammonia, orthophosphate, and atrazine were higher in ground water than in the overlying streams at 2, 12, 12, and 3 of 19 sites, respectively, where there was not a measurable hydraulic gradient directed from the stream to the ground water. Orthophosphate was the only constituent that had a significantly higher (p ≤ 0.05) concentration in ground water than in surface water for a given land-use setting (range land). Redox conditions in ground water were more important than land-use setting in influencing whether ground water was a source of elevated nitrite plus nitrate concentrations to streams in the basin. The ratios of nitrite plus nitrate in ground water/surface were were significantly lower (p ≤ 0.05) at sites having concentrations of dissolved oxygen in ground water ≤ 0.5 mg/L than at sites having dissolved oxygen concentrations ≥ 0.5 mg/L. Elevated concentrations of ammonia or atrazine in ground water occurred at sites in close proximity to likely sources of ammonia or atrazine, regardless of land-use setting. These results indicate that land-use setting is not the only factor that influences whether ground water is a source of elevated nutrient and atrazine concentrations to streams in the South Platte River Basin.  相似文献   

11.
ABSTRACT: Pesticide runoff from dormant sprayed orchards is a major water quality problem in California's Central Valley. During the past several years, diazinon levels in the Sacramento and San Joaquin Rivers have exceeded water quality criteria for aquatic organisms. Orchard water management, via post‐application irrigation, and infiltration enhancement, through the use of a vegetative ground cover, are management practices that are believed to reduce pesticide loading to surface waters. Field experiments were conducted in Davis, California, to measure the effectiveness of these management practices in reducing the toxicity of storm water runoff. Treatments using a vegetative ground cover significantly reduced peak concentrations and cumulative pesticide mass in runoff for first flush experiments compared with bare soil treatments. Post‐application irrigation was found to be an effective means of reducing peak concentrations and cumulative mass in runoff from bare soil treatments, but showed no significant effect on vegetated treatments.  相似文献   

12.
Stone, Wesley W. and Robert J. Gilliom, 2012. Watershed Regressions for Pesticides (WARP) Models for Predicting Atrazine Concentrations in Corn Belt Streams. Journal of the American Water Resources Association (JAWRA) 48(5): 970‐986. DOI: 10.1111/j.1752‐1688.2012.00661.x Abstract: Watershed Regressions for Pesticides (WARP) models, previously developed for atrazine at the national scale, are improved for application to the United States (U.S.) Corn Belt region by developing region‐specific models that include watershed characteristics that are influential in predicting atrazine concentration statistics within the Corn Belt. WARP models for the Corn Belt (WARP‐CB) were developed for annual maximum moving‐average (14‐, 21‐, 30‐, 60‐, and 90‐day durations) and annual 95th‐percentile atrazine concentrations in streams of the Corn Belt region. The WARP‐CB models accounted for 53 to 62% of the variability in the various concentration statistics among the model‐development sites. Model predictions were within a factor of 5 of the observed concentration statistic for over 90% of the model‐development sites. The WARP‐CB residuals and uncertainty are lower than those of the National WARP model for the same sites. Although atrazine‐use intensity is the most important explanatory variable in the National WARP models, it is not a significant variable in the WARP‐CB models. The WARP‐CB models provide improved predictions for Corn Belt streams draining watersheds with atrazine‐use intensities of 17 kg/km2 of watershed area or greater.  相似文献   

13.
The environmental fate of herbicides in estuaries is poorly understood. Estuarine physical transport processes and the episodic nature of herbicide release into surface waters complicate interpretation of water concentration measurements and allocation of sources. Water concentrations of herbicides and two triazine degradation products (CIAT [6-amino-2-chloro-4-isopropylamino-s-triazine] and CEAT [6-amino-2-chloro-4-ethylamino-s-triazine]) were measured in surface water from four sites on 40 d from 4 Apr. through 29 July 19% in the Patuxent River estuary, part of the Chesapeake Bay system. Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) was most persistent and present in the highest concentrations (maximum = 1.29 microg/L). Metolachlor [2-chloro-6'-ethyl-N-(2-methoxy-1-methylethyl)-o-acetoluidide], CIAT, CEAT, and simazine (1-chloro-3,5-bisethylamino-2,4,6-triazine) were frequently detected with maximum concentration values of 0.61, 1.1, 0.76, and 0.49 microg/L, respectively. A physical transport model was used to interpret atrazine concentrations in the context of estuarine water transport, giving estimates of in situ degradation rates and total transport. The estimated half-life of atrazine in the turbid, shallow upper estuary was t(1/2) = 20 d, but was much longer (t(1/2) = 100 d) in the deeper lower estuary. Although most (93%) atrazine entered the estuary upstream via the river, simulations suggested additional inputs directly to the lower estuary. The total atrazine load to the estuary from 5 April to 15 July was 71 kg with 48% loss by degradation and 31% exported to the Chesapeake Bay. Atrazine persistence in the estuary is directly related to river flows into the estuary. Low flows will increase atrazine residence time in the upper estuary and increase degradation losses.  相似文献   

14.
Abstract: Measured atrazine concentrations in Nebraska surface water have been shown to exceed water‐quality standards, posing risks to humans and to the ecosystem. To assess this risk, atrazine runoff was simulated at the field‐scale in Nebraska based on the pesticide component of the AGNPS model. This project’s objective was to determine the frequency that the atrazine concentration at the field outlet exceeded three different atrazine water‐quality criteria. The simulation was conducted for different farm management practices, soil moisture conditions, and five Nebraska topographic regions. If the criteria were exceeded, a risk to the drinking water consumer or freshwater aquatic life was hypothesized to exist. Three pesticide fate and transport processes were simulated with the model. Degradation was simulated using first‐order kinetics. Adsorption/desorption was modeled assuming a linear soil‐water partitioning coefficient. Advection (runoff) was based primarily on the USDA‐NRCS curve number method. Daily rainfall from the National Weather Service was used to compute the soil moisture conditions for the 1985‐2000 growing seasons. After each runoff event, the pesticide runoff concentration was compared with each of the three atrazine water‐quality criteria. The results show that environmental receptors (i.e., freshwater aquatic species) are exposed to unacceptable atrazine runoff concentrations in 20‐50% of the runoff events.  相似文献   

15.
An inventory survey conducted to determine pesticide usage in a sub-catchment of the Nzoia sugarcane belt found a variety of pesticides used in the sub-catchment, which are reported in this paper. Analysis of soil samples from seven fallow experimental field plots left uncultivated for various periods from 3 to 96?months after cultivation with pesticide application indicated persistence of high concentrations of pesticide residues in the soil, with estimated soil half-lives (in years) ranging from 0.72 to 57.75 for organochlorines and from 1.13 to 8.25 for herbicides. The mean water concentrations (in ??g/L) of the pesticide residues in River Kuywa, which flows through the Nzoia Nucleus Estate sugarcane farms, ranged from 0.12 (lindane) to 1.36 (p,p??-DDT) for organochlorines and from 0.14 (atrazine) to 1.75 (diuron) for herbicides during the heavy rains period in August 2008 while the mean sediment concentrations (in ??g/g) ranged from 0.28 (lindane) to 1.87 (endrin) for organochlorines and 0.39 (hexazinone) to 4.61 (alachlor) for herbicides. The mean concentrations of residues in water during the light rain period in December 2008 ranged from 0.17 (p,p??-DDT) to 0.71 (aldrin) for organochlorines and 0.01 (atrazine) to 1.74 (alachlor) for herbicides while the sediment concentrations ranged from 0.38 (p,p??-DDT) to 1.145 (aldrin) for organochlorines and 0.74 (atrazine) to 1.98 (alachlor) for herbicides. Although DDT, aldrin, dieldrin, and endrin were not reported in the survey, their presence in the fallow experimental field plot soils and in River Kuywa water and sediment could indicate previous application, lack of recorded data or illegal usage since 1997 when they were banned. Notably, the concentrations of alachlor, diuron, cypermethrin, and hexazinone in the water column were substantial indicating their extensive usage and residual persistence in the sub-catchment, with subsequent wash-off and leaching into River Kuywa. The concentration levels of some of the individual pesticides exceeded the EU limit requirements for drinking water and indicated potential risk to humans and cattle if the water is used without treatment.  相似文献   

16.
ABSTRACT: Spatial and temporal variability in rainfall concentrations of nutrients, major ions, and herbicides was monitored at 7 locations in or near the Conodoguinet Creek watershed in south-central Pennsylvania from 1991.1993. Results were used to (1) compare precipitation quality in forested, agricultural and urban areas, and (2) assess the practicality of using volunteer citizen monitoring in such a study. As indicated in previous studies, sulfate and nitrogen concentrations in precipitation were linked to sample pH. Concentrations of major ions in precipitation appeared to relate more to regional influences rather than local influences. However, concentrations of herbicides in precipitation may have been influenced by both regional and local use which caused compounds like atrazine, deethylatrazine, propazine, simazine, metolachior, alachlor, ametryn, and prometon to be present in detectable concentrations in rainfall. Seasonality was evident in nitrogen, sulfate, pH, and herbicide data and was suggested in calcium, iron, manganese, magnesium, orthophosphate, and chloride data. Agricultural weed control activities were probably responsible for the seasonal pattern in pesticide data which peaked in May and June. Tropical storm Danielle may have caused the apparent seasonal patterns for the other nine parameters. This storm did not follow the typical west to east movement pattern and consequently produced rainfall of relative high quality. A variety of quality assurance checks indicated that trained volunteer citizen monitors were successful participants in this intensive and extensive scientific study, collecting good quality samples in a timely manner. Without this kind of volunteer help, it is extremely difficult to complete studies that require sampling in response to natural events such as rainfall.  相似文献   

17.
ABSTRACT: The use of glyphosate has increased rapidly, and there is limited understanding of its environmental fate. The objective of this study was to document the occurrence of glyphosate and the transformation product aminomethylphosphonic acid (AMPA) in Midwestern streams and to compare their occurrence with that of more commonly measured herbicides such as acetochlor, atrazine, and metolachlor. Water samples were collected at sites on 51 streams in nine Midwestern states in 2002 during three runoff events: after the application of pre-emergence herbicides, after the application of post-emergence herbicides, and during harvest season. All samples were analyzed for glyphosate and 20 other herbicides using gas chromatography/mass spectrometry or high performance liquid chromatography/mass spectrometry. The frequency of glyphosate and AMPA detection, range of concentrations in runoff samples, and ratios of AMPA to glyphosate concentrations did not vary throughout the growing season as substantially as for other herbicides like atrazine, probably because of different seasonal use patterns. Glyphosate was detected at or above 0.1 μg/1 in 35 percent of pre-emergence, 40 percent of post-emergence, and 31 percent of harvest season samples, with a maximum concentration of 8.7 μg/1. AMPA was detected at or above 0.1 μg/1 in 53 percent of pre-emergence, 83 percent of post-emergence, and 73 percent of harvest season samples, with a maximum concentration of 3.6 μg/1. Glyphosate was not detected at a concentration at or above the U.S. Environmental Protection Agency's maximum contamination level (MCL) of 700 μg/1 in any sample. Atrazine was detected at or above 0.1 μg/1 in 94 percent of pre-emergence, 96 percent of post-emergence, and 57 percent of harvest season samples, with a maximum concentration of 55 μg/1. Atrazine was detected at or above its MCL (3 μg/1) in 57 percent of pre-emergence and 33 percent of post-emergence samples.  相似文献   

18.
The contamination of soil and runoff water by two herbicides, diuron [N'-(3,4-dichlorphenyl)-N,N-dimethylurea] and simazine (6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine), were monitored on two fields, one no-till and one tilled. Experiments were carried out in a 91.4-ha watershed in southern France during the 1997 growing season in order to understand the patterns of pesticide transport from field to watershed. The persistence of the herbicides in soil was prolonged due to the climatic conditions. At the field scale, annual herbicide loads were due to overland flow and amounted to 65.6 and 6.3 g ha(-1) of diuron for the no-till and tilled field, respectively, and to 29.6 and 1.83 g ha(-1) of simazine. Maximum herbicide concentrations exceeded 580 microg L(-1) during the first storm event after application and decreased thereafter but remained for 8 mo above 0.1 microg L(-1). At the watershed outlet, estimated annual loads amounted to 4.12 g ha(-1) of diuron and 0.56 g ha(-1) of simazine. Among them, 96% of the losses in diuron and 83% of those in simazine were caused by the fast transmission through the network of ditches of the overland flow exiting the fields. For diuron, which was sprayed over most of the vineyards, its in-stream concentrations during storm flow were close to those at the outlet of the fields. The herbicide loads in baseflow were smaller than 0.2 g ha(-1). The patterns of the loads at the field and watershed scales suggested that a major part of the herbicides leaving the fields reinfiltrated to the ground water by seepage through the ditches, and was there degraded or adsorbed.  相似文献   

19.
Abstract: Groundwater transport often complicates understanding of surface‐water contamination. We estimated the regional flux of nitrate and selected herbicides from groundwater to nontidal headwater streams of the Atlantic Coastal Plain (New Jersey through North Carolina) based on late‐winter or spring base‐flow samples from 174 streams. Sampled streams were selected randomly, and flux estimates are based on resulting population estimates rather than on empirical models, which have been used previously for similar estimates. Base‐flow flux in the estimated 8,834 headwater streams of the study area are an estimated 21,200 kg/day of nitrate (as N) and 5.83, 0.565, and 20.7 kg/day of alachlor, atrazine, and metolachlor (and selected degradates), respectively. Base‐flow flux of alachlor and metolachlor is <3% of the total base‐flow flux of those compounds plus degradates. Base‐flow flux of nitrate and herbicides as a percentage of applications is typically highest in well‐drained areas and lowest in areas with abundant poor drainage and anoxic conditions. In Coastal Plain watersheds of Albemarle and Pamlico Sounds, <2% of applied nitrogen reaches headwater streams as base flow. On the Delmarva Peninsula part of the Chesapeake Bay watershed, however, more than 10% of such applications are transported through groundwater to streams, and base‐flow nitrate flux represents 70% of total nitrogen flux in headwater streams.  相似文献   

20.
ABSTRACT: Trends in streamflow characteristics were analyzed for streams in southwestern Wisconsin's Driftless Area by using data at selected gaging stations. The analyses indicate that annual low flows have increased significantly, whereas annual flood peaks have decreased. The same trends were not observed for forested areas of northern Wisconsin. Streamflow trends for other streams in southeastern Wisconsin draining predominantly agricultural land were similar to trends for Driftless Area streams for annual low flows. The causes for the trends are not well understood nor are the effects. Trends in annual precipitation do not explain the observed trends in streamflow. Other studies have found that erosion rates decreased significantly in the Driftless Area, and have attributed this reduction to a change of agricultural practices, which increase infiltration, decrease flood peaks, and increase low flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号