首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Estrogenic potencies of the effluents or water samples from wastewater treatment plants (WWTPs), industries and hospitals and some receiving rivers in Beijing city were estimated by using a human estrogen receptor recombinant yeast assay. Estrogenic activity of industrial wastewaters was found to range from 0.1 to 13.3 ng EEQ/L and decreased to the range of 0.03-1.6 ng EEQ/L after treatment. Estrogenic activity in WWTP influent ranged from 0.3 to 1.7 ng EEQ/L and decreased to the range of 0.05-0.5 ng EEQ/L after treatment. In the receiving river waters, the estrogenic effect range was 0.1-4.7 ng EEQ/L. These data suggest that treated industrial effluents and WWTP effluents of concern are not the only source of estrogenic pollution in surface waters in Beijing city. EEQ levels in Beijing river water are likely attributable to untreated municipal and industrial wastewaters discharged directly into the river.  相似文献   

2.
Five estrogenic hormones (unconjugated?+?conjugated fractions) and 10 beta blockers were analyzed in three wastewater treatment plant (WWTP) effluents and receiving river waters in the area of Lyon, France. In the different samples, only two estrogens were quantified: estrone and estriol. Some beta blockers, such as atenolol, acebutolol, and sotalol, were almost always quantified, but others, e.g., betaxolol, nadolol, and oxprenolol were rarely quantified. Concentrations measured in river waters were in the nanogram per liter range for estrogens and between 0.3 and 210 ng/L for beta blockers depending on the substance and the distance from the WWTP outfall. The impact of the WWTP on the receiving rivers was studied and showed a clear increase in concentrations near the WWTP outfall. For estrogens, the persistence in surface waters was not evaluated given the low concentrations levels (around 1 ng/L). For beta blockers, concentrations measured downstream of the WWTP outfall were up to 16 times higher than those measured upstream. Also, the persistence of metoprolol, nadolol, and propranolol was noted even 2 km downstream of the WWTP outfall. The comparison of beta blocker fingerprints in the samples collected in effluent and in the river also showed the impact of WWTP outfall on surface waters. Finally, a tentative environmental risk evaluation was performed on 15 sites by calculating the ratio of receiving water concentrations to predicted non-effect concentrations (PNEC). For estrogens, a total PNEC of 5 ng/L was considered and these substances were not linked to any potential environmental risk (only one site showed an environmental risk ratio above 1). Unfortunately, few PNECs are available and risk evaluation was only possible for 4 of the 10 beta blockers studied: acebutolol, atenolol, metoprolol, and propranolol. Only propranolol presented a ratio near or above 1, showing a possible environmental risk for 4 receiving waters out of 15.  相似文献   

3.
Changes in pollutant loads in relatively dynamic river sediments, which contain very complex mixtures of compounds, can play a crucial role in the fate and effects of pollutants in fluvial ecosystems. The contamination of sediments by bioactive substances can be sensitively assessed by in vitro bioassays. This is the first study that characterizes detailed short- and long-term changes in concentrations of contaminants with several modes of action in river sediments. One-year long monthly study described seasonal and spatial variability of contamination of sediments in a representative industrialized area by dioxin-like and endocrine disruptive chemicals. There were significant seasonal changes in both antiandrogenic and androgenic as well as dioxin-like potential of river sediments, while there were no general seasonal trends in estrogenicity. Aryl hydrocarbon receptor-dependent potency (dioxin-like potency) expressed as biological TCDD-equivalents (BIOTEQ) was in the range of 0.5–17.7 ng/g, dry mass (dm). The greatest BIOTEQ levels in sediments were observed during winter, particularly at locations downstream of the industrial area. Estrogenicity expressed as estradiol equivalents (EEQ) was in the range of 0.02–3.8 ng/g, dm. Antiandrogenicity was detected in all samples, while androgenic potency in the range of 0.7–16.8 ng/g, dm dihydrotestosterone equivalents (DHT-EQ) was found in only 30 % of samples, most often during autumn, when antiandrogenicity was the least. PAHs were predominant contaminants among analyzed pollutants, responsible, on average, for 13–21 % of BIOTEQ. Longer-term changes in concentrations of BIOTEQ corresponded to seasonal fluctuations, whereas for EEQ, the inter-annual changes at some locations were greater than seasonal variability during 1 year. The inter- as well as intra-annual variability in concentrations of both BIOTEQ and EEQ at individual sites was greater in spring than in autumn which was related to hydrological conditions in the river. This study stresses the importance of river hydrology and its seasonal variations in the design of effective sampling campaigns, as well as in the interpretation of any monitoring results.  相似文献   

4.
In this study, the occurrence of trace amounts of natural and synthetic steroid estrogens in the aquatic environment was studied using liquid chromatography coupled with electrospray mass spectrometry, following solid-phase extraction (SPE). The SPE was performed with C18 and NH2 cartridges. The first objective was to develop a reliable method for analyzing steroid estrogens (resulting from human and animal excretions) in different matrices. The method developed was then applied to quantify the occurrence of natural and synthetic hormones (estrone [E1], 17beta-estradiol [betaE2], 17alpha-estradiol [alphaE2], estriol [E3], and 17alpha-ethinylestradiol [EE2]) in environmental samples in surface water and wastewater treatment plant (WWTP) influent and effluent. In the WWTP influents, betaE2, alphaE2, and E3 were identified as ranging up to 72.6 ng/L in WWTP influent and to 16 ng/L in WWTP effluent. Analysis o f surface wa ter sampled upstream from the WWTP revealed the presence of all five estrogens, at levels up to 19.8 ng/L. These concentrations of estrogens pose an issue for large and small communities, because they are higher than the recommended guidelines for estrogen-active compounds and because a lot of communities use surface water as drinking-water sources.  相似文献   

5.

The concentrations and distribution of β-blockers, lipid regulators, and psychiatric and cancer drugs in the influent and effluent of the municipal wastewater treatment plant (WWTP) and the effluent of 16 hospitals that discharge into the wastewater treatment plant mentioned in this study at two sampling dates in summer and winter were examined. The pharmaceutical contribution of hospitals to municipal wastewater was determined. The removal of target pharmaceuticals was evaluated in a WWTP consisting of conventional biological treatment using activated sludge. Additionally, the potential environmental risk for the aquatic receiving environments (salt lake) was assessed. Beta-blockers and psychiatric drugs were detected in high concentrations in the wastewater samples. Atenolol (919 ng/L) from β-blockers and carbamazepine (7008 ng/L) from psychiatric pharmaceuticals were detected at the highest concentrations in hospital wastewater. The total pharmaceutical concentration determined at the WWTP influent and effluent was between 335 and 737 ng/L in summer and between 174 and 226 ng/L in winter. The concentrations detected in hospital effluents are higher than the concentrations detected in WWTP. The total pharmaceutical contributions from hospitals to the WWTP in summer and winter were determined to be 2% and 4%, respectively. Total pharmaceutical removal in the WWTP ranged from 23 to 54%. According to the risk ratios, atenolol could pose a high risk (risk quotient > 10) for fish in summer and winter. There are different reasons for the increase in pharmaceutical consumption in recent years. One of these reasons is the COVID-19 pandemic, which has been going on for 2 years. In particular, hospitals were operated at full capacity during the pandemic, and the occurrence and concentration of pharmaceuticals used for the therapy of COVID-19 patients has increased in hospital effluent. Pandemic conditions have increased the tendency of people to use psychiatric drugs. It is thought that beta-blocker consumption has increased due to cardiovascular diseases caused by COVID-19. Therefore, the environmental risk of pharmaceuticals for aquatic organisms in hospital effluent should be monitored and evaluated.

  相似文献   

6.
Water samples were collected from wastewater treatment plant (WWTP), drain water (DW), major tributaries (MT), and main course of the Yangtze River (MY) in areas of three industrial parks (IPs) in Chongqing city in the Three Gorges Reservoir (TGR). Sixteen EPA priority polycyclic aromatic hydrocarbon (PAH) pollutants were quantified to identify the effects of industrial activities on water quality of the TGR. The results showed that 11 individual PAHs were quantified and 5 PAHs (naphthalene (Nap), acenaphthylene (Acy), benzo[k]fluoranthene (BkF), indeno[1,2,3-cd]pyrene (InP), and benzo[g,h,i]perylene (BgP)) were under detection limits in all of the water samples. Three-ring and four-ring PAHs were the most detected PAHs. Concentrations of individual PAHs were in the range of not detected (nd) to 24.3 ng/L. Total PAH concentrations for each site ranged from nd to 42.9 ng/L and were lower compared to those in other studies. The mean PAH concentrations for sites WWTP, DW, MT, and MY showed as follows: DW (25.9 ng/L) > MY (15.5 ng/L) > MT (14.0 ng/L) > WWTP (9.3 ng/L), and DW contains the highest PAH concentrations. Source identification ratios showed that petroleum and combustion of biomass coal and petroleum were the main sources of PAHs. The results of potential ecosystem risk assessment indicated that, although PAH concentrations in MT and MY are likely harmless to ecosystem, contaminations of PAHs in DW were listed as middle levels and some management strategies and remediation actions, like strengthen clean production processes and banning illegal sewage discharging activities, etc., should be taken to lighten the ecosystem risk caused by PAHs especially risks caused by water discharging drains.  相似文献   

7.
The occurrence and removal of six pharmaceuticals and personal care products (PPCPs) including caffeine (CF), N, N-diethyl-meta-toluamide (DEET), carbamazepine, metoprolol, trimethoprim (TMP), and sulpiride in a municipal wastewater treatment plant (WWTP) in Shanghai, China were studied in January 2013; besides, grab samples of the influent were also taken every 6 h, to investigate the daily fluctuation of the wastewater influent. The results showed the concentrations of the investigated PPCPs ranged from 17 to 11,400 ng/L in the WWTP. A low variability of the PPCP concentrations in the wastewater influent throughout the day was observed, with the relative standard deviations less than 25 % for most samples. However, for TMP and CF, the slight daily fluctuation still reflected their consumption patterns. All the target compounds except CF and DEET, exhibited poor removal efficiencies (<40 %) by biological treatment process, probably due to the low temperature in the bioreactor, which was unfavorable for activated sludge. While for the two biodegradable PPCPs, CF, and DEET, the anaerobic and oxic tank made contributions to their removal while the anoxic tank had a negative effect to their elimination. The tertiary UV treatment removed the investigated PPCPs by 5–38 %, representing a crucial polishing step to compensate for the poor removal by the biologic treatment process in winter.  相似文献   

8.
We investigated contamination by endocrine-disrupting chemicals in drinking water from 35 major Italian cities and five popular Italian brands of bottled mineral water. The quality of Italian drinking water was assessed by combing chemical analysis with bioassay to quantify specific estrogenic contaminants and to characterize the actual biological effect of the mixture of chemicals present in drinking water including the contribution of not targeted compounds. The selected contaminants were natural and synthetic steroid estrogens, alkylphenols and bisphenol A, linuron, triazine herbicides, and their metabolites. A specific analytical method was developed based on solid phase extraction of 1 L of water and concentration to 100 μL for quantification by electrospray ionization liquid chromatography tandem mass spectrometry, achieving quantification limits of 0.05–0.36 ng/L for herbicides and 0.64–7.70 ng/L for steroids and phenols. No steroid estrogens were detected in any of the samples, while bisphenol A and nonylphenols were detected in the ranges of 0.82–102.00 and 10.30–84.00 ng/L respectively. Herbicides and their degradation products, when present, were found from slightly above the quantification limits up to 49.91 ng/L, mainly from cities in northern Italy. Chemical analyses were complemented by the performance of a bioassay for the determination of the estrogenic activity in the extracts based on the transactivation of estrogen receptor α-transfected reporter HeLa-ERE-Luciferase-Neomycin cell line. Activity was generally low with maximum estrogenicity of 13.6 pg/L estradiol equivalents.  相似文献   

9.
In this study, surface water samples from the Wenyu River and the North Canal, effluent from major wastewater treatment plants (WWTPs) in Beijing, and wastewater from open sewers that discharge directly into the river system were collected and analyzed for 16 priority USEPA polycyclic aromatic hydrocarbons (PAHs). Concentrations of these 16 PAHs ranged from 193 to 1790 ng/L in river surface waters, 245 to 404 ng/L in WWTP effluents, and 431 to 2860 ng/L in the wastewater from the small sewers. The WWTP effluent was the main contributor of dissolved PAHs to the river, while wastewater from the small sewers contributed both dissolved and suspended particulate matter-associated PAH to the river as indicated by the high dissolved organic carbon and suspended particulate matter contents in the wastewater. Although the flow from each open sewer was small, a PAH discharge as high as 44 kg/year could occur into the river from these types of sewers. This amount was equivalent to about 22 % of the PAH loads discharged into the North Canal downstream from Beijing, whereas the remainder was mainly released by the major WWTPs in Beijing.  相似文献   

10.
Two types of integrative sampling approaches (passive samplers and biomonitors) were tested for their sampling characteristics of selected endocrine disrupting compounds (EDCs). Chemical analyses (LC/MS/MS) were used to determine the amounts of five EDCs (nonylphenol, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol) in polar organic chemical integrative samplers (POCIS) and freshwater mussels (Unio pictorum); both had been deployed in the influent and effluent of a municipal wastewater treatment plant (WWTP) in Genoa, Italy. Estrogenicity of the POCIS samples was assessed using the yeast estrogen screen (YES). Estradiol equivalent values derived from the bioassay showed a positive correlation with estradiol equivalents calculated from chemical analyses data. As expected, the amount of estrogens and EEQ values in the effluent were lower than those in the influent. Passive sampling proved to be the preferred method for assessing the presence of these compounds since employing mussels had several disadvantages both in sampling efficiency and sample analyses.  相似文献   

11.
The objective of the Control of Hazardous Substances in the Baltic Sea (COHIBA) project is to support the implementation of the HELCOM Baltic Sea Action Plan regarding hazardous substances by developing joint actions to achieve the goal of “a Baltic Sea with life undisturbed by hazardous substances”. One aim in the project was to identify the most important sources of 11 hazardous substances of special concern in the Baltic Sea. Among them are perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). In this study, four perfluorinated alkyl acids (PFAAs) were studied: PFOA, PFOS, perfluorohexanoic acid (PFHxA) and perfluorodecanoic acid (PFDA). The occurrence of PFAAs in municipal and industrial wastewater treatment plant effluents (MWWTP1-3, IWWTP1), target industry effluent, storm water, landfill leachate and sludge was studied. Effluents were analysed six times and storm water, leachate and sludge were analysed twice, once in the warm season and once in the cold, during a 1-year sampling campaign. PFOS prevailed in two municipal effluents (MWWTP1 and 3) and industrial effluent (IWWTP1; 7.8–14, 8.0–640 and 320–1,300 ng/l, respectively). However, in one municipal effluent (MWWTP2) PFOA was, in a majority of sampling occasions, the predominant PFAA (9–15 ng/l) followed by PFOS (3.8–20 ng/l). The highest PFAA loads of the municipal effluents were found in the MWWTP3 receiving the biggest portion of industrial wastewater. In storm water the highest concentration was found for PFHxA (17 ng/l). The highest concentration of PFOS and PFOA were 9.9 and 5.1 ng/l, respectively. PFOS, PFOA and PFHxA were detected in every effluent, storm water and landfill leachate sample, whereas PFDA was detected in most of the samples (77 %). In the target industry, PFOS concentrations varied between 1,400 and 18,000 μg/l. In addition, on one sampling occasion PFOA and PFHxA were found (0.027 and 0.009 μg/l, respectively). For effluents, PFAA mass flows into the Baltic Sea were calculated. For municipal wastewater treatment plants average mass flows per day varied for PFOS between 1,073 and 38,880 mg/day, for PFOA 960 and 2,700 mg/day, for PFHxA 408 and 1,269 mg/day and for PFDA 84 and 270 mg/day. In IWWTP mass flows for PFOS, PFOA, PFHxA and PFDA were 495 mg/d, 28 mg/d, 23 mg/d and 0.6 mg/g, respectively.  相似文献   

12.
Wastewater treatments can eliminate or remove a substantial amount of pharmaceutical active compounds (PhACs), but there may still be significant concentrations of them in effluents discharged into surface water bodies. Beirolas wastewater treatment plant (WWTP) is located in the Lisbon area and makes its effluent discharges into Tagus estuary (Portugal). The main objective of this study is to quantify a group of 32 PhACs in the different treatments used in this WWTP. Twelve sampling campaigns of wastewater belonging to the different treatments were made in 2013–2014 in order to study their removal efficiency. The wastewaters were analysed by solid phase extraction (SPE) and ultra-performance liquid chromatography coupled with tandem mass detection (UPLC–MS/MS). The anti-diabetics were the most frequently found in wastewater influent (WWI) and wastewater effluent (WWE) (208 and 1.7 μg/L, respectively), followed by analgesics/antipyretics (135 μg/L and < LOQ, respectively), psychostimulants (113 and 0.49 μg/L, respectively), non-steroidal anti-inflammatory drugs (33 and 2.6 μg/L, respectively), antibiotics (5.2 and 1.8 μg/L, respectively), antilipidemics (1.6 and 0.24 μg/L, respectively), anticonvulsants (1.5 and 0.63 μg/L, respectively) and beta blockers (1.3 and 0.51 μg/L, respectively). A snapshot of the ability of each treatment step to remove these target PhACs is provided, and it was found that global efficiency is strongly dependent on the efficiency of secondary treatment. Seasonal occurrence and removal efficiency was also monitored, and they did not show a significant seasonal trend.  相似文献   

13.
Occurrence, distribution, spatial and seasonal variations, and partitioning between aqueous phase and suspended particulate matters (SPM) of triclocarban (TCC) and triclosan (TCS) in Xiaoqing River, which receives wastewater treatment plant (WWTP) effluents, were studied. The distribution of the total TCC and TCS levels in surface water and sediments along the river were discussed. The highest TCC and TCS concentrations were both found near the discharge port of WWTPs, and the TCC and TCS levels decreased downstream of the WWTPs as a result of their distances from the source of WWTP discharges. The mean values of TCC and TCS in low-flow season were 1.62 and 1.80 times, respectively, as much as in high-flow season in surface water. The study on partitioning of TCC and TCS between aqueous phase and SPM shown the mean level of dissolved TCC accounted for about 10 % of the total level in surface water, whereas the TCS level was about 30 %. The TCC concentrations detected in the surface sediment samples (0 to 5 cm) ranged from 226 to 1,956 ng/g, with a mean value of 733 ng/g. The TCS levels were between 85 and 705 ng/g, with a mean value of 255 ng/g. The distribution and variations of TCC and TCS in sediments along the river were highly consistent with those in the water phase. The TCC and TCS levels in deep sediments (5 to 10 cm) were significantly lower than those in surface sediments. The mean TCC level in surface sediments was about 2.4 times as much as in deep sediments, and the TCS level in surface sediments was 3.1 times as much as in deep sediments.  相似文献   

14.
Three municipal wastewater treatment plants (WWTPs) in southeastern Pennsylvania were sampled to determine the presence and concentrations of 12 natural and synthetic estrogen hormones in the wastewater influent and effluent. The target estrogens were 17alpha-estradiol, estrone, estriol, equilin, 17alpha-dihydroequilin, 17beta-estradiol, 17alpha-ethinyl estradiol, gestodene, norgestrel, levonorgestrel, medrogestone, and trimegestone. One WWTP uses a biofilm reactor (packed-bed trickling filter),and the other two use suspended-growth media (continuously stirred activated sludge reactor and sequential batch reactor). Estrone was detected in all the three plants; estriol and estradiol were detected at two WWTPs; and 17 alpha-dihydroequilin and 17 alpha-ethinyl estradiol were detected at one WWTP. The concentration of estrogens in the influent and effluent of the three treatment plants ranged from 1.2 to 259 ng/L and 0.5 to 49 ng/L, respectively. The percentage removal of estrogens from the aqueous phase ranged from 41 to 99%, except in the case of 17alpha-dihydroequilin; the removal of 17alpha-dihydroequilin was negligible. The suspended-growth media systems showed higher removal efficiencies for estrogens than the biofilm system. The analytical method uses a Varian C-18 solid-phase extraction (Varian Inc., Palo Alto, California), followed by a derivatization with bis(trimethylsilyl)trifluoroacetamide. The detection limits for the estrogen compounds ranged from 0.1 to 10 ng/L using a sample size of 1 L. The method recoveries ranged from 71 to 120%, and the relative standard deviation ranged from 6 to 14% for all the hormones.  相似文献   

15.
Ibuprofen is amongst the most worldwide consumed pharmaceuticals. The present work presents the first data in the occurrence of ibuprofen in Portuguese surface waters, focusing in the north area of the country, which is one of the most densely populated areas of Portugal. Analysis of ibuprofen is based on pre-concentration of the analyte with solid phase extraction and subsequent determination with liquid chromatography coupled to fluorescence detection. A total of 42 water samples, including surface waters, landfill leachates, Wastewater Treatment Plant (WWTP), and hospital effluents, were analyzed in order to evaluate the occurrence of ibuprofen in the north of Portugal. In general, the highest concentrations were found in the river mouths and in the estuarine zone. The maximum concentrations found were 48,720 ng?L?1 in the landfill leachate, 3,868 ng?L?1 in hospital effluent, 616 ng?L?1 in WWTP effluent, and 723 ng?L?1 in surface waters (Lima river). Environmental risk assessment was evaluated and at the measured concentrations only landfill leachates reveal potential ecotoxicological risk for aquatic organisms. Owing to a high consumption rate of ibuprofen among Portuguese population, as prescribed and non-prescribed medicine, the importance of hospitals, WWTPs, and landfills as sources of entrance of pharmaceuticals in the environment was pointed out. Landfill leachates showed the highest contribution for ibuprofen mass loading into surface waters. On the basis of our findings, more studies are needed as an attempt to assess more vulnerable areas.  相似文献   

16.
The removal of estrogenic chemicals during wastewater reclamation has been a great concern. Current advanced treatment processes are inefficient for the removal of estrogenic chemicals from secondary effluents of municipal wastewater treatment plants (WWTPs) due to the coexistence of other pollutants with less environmental significance which are also removed simultaneously. The search for highly selective and low-cost removal methods is warranted. Therefore, surface-molecular-imprinted polymer-modified TiO2 nanotube (S-MIP-TiO2 NT) photocatalysts were fabricated, characterized, and tested for the removal of estrogenic pollutants from wastewater in this study for the first time. Scanning electron microscopy and Fourier-transform infrared spectroscopy studies showed that the TiO2 NTs (with an average diameter of 60 nm) were successfully imprinted with functional groups (i.e., carboxyl). The adsorption selectivity and photocatalytic activity of the S-MIP-TiO2 NTs towards template compound (17β-estradiol, E2) were improved, compared with neat TiO2 NTs. Interestingly, S-MIP-TiO2 NTs exhibited higher adsorption intensity and photocatalytic selectivity at low concentrations (from 10 ng/L to 100 μg/L, as normal estrogenic chemical concentrations in secondary effluents) of E2 than that at high concentrations (from 10 to 1,000 mg/L). It was also found that some representative estrogenic chemicals and estrogenic activity could be selectively and rapidly removed from secondary effluents of municipal wastewater treatment plants using S-MIP-TiO2 NTs as photocatalysts. In addition, S-MIP-TiO2 NT photocatalysts exhibited excellent regeneration characteristics. Photocatalytic treatment using S-MIP-TiO2 NTs could be a promising approach for the effective removal of estrogenic chemicals from secondary effluents of municipal WWTPs.  相似文献   

17.
From 2010 to 2012, the Yangtze River and Hanjiang River (Wuhan section) were monitored for estrogenic activities during various water level periods. Using a recombinant yeast estrogen screen (YES) assay, 54 water samples were evaluated over the course of nine sampling campaigns. The mean 17β-estradiol equivalent (EEQ) value of raw water from the Yangtze River was 0–5.20 ng/L; and the EEQ level from the Hanjiang River was 0–3.22 ng/L. In Wuhan, drinking water treatment plants (DWTPs) using conventional treatments reduced estrogenic activities by more than 89 %. In general, water samples collected during the level period showed weaker estrogenic activities compared to those collected during the dry period. The samples collected in 2010 showed the strongest estrogenic activities of the 3-year period. The lack of correlations between estrogenic activities and selected common water quality parameters showed that estrogenic activity cannot be tied to common water quality parameters.  相似文献   

18.
Background, aim, and scope

Pharmaceutically active substances are a class of emerging contaminants, which has led to increasing concern about potential environmental risks. After excretion, substantial amounts of unchanged pharmaceuticals and their metabolites are discharged into domestic wastewaters. The absence of data on the environmental exposure in Eastern Europe is significant, since use patterns and volumes differ from country to country. In Romania, the majority of wastewater, from highly populated cities and industrial complex zones, is still discharged into surface waters without proper treatment or after inefficient treatment. In respect to this, it is important to determine the environmental occurrence and behavior of pharmaceuticals and personal care products (PPCPs) in wastewaters and surface waters. The objective of the present study was to investigate the occurrence of selected PPCPs during the transport in the Somes River by mass flow analysis before and after upgrading a municipal wastewater treatment plant (WWTP) in Cluj-Napoca, which serves 350,000 inhabitants and is the largest plant discharging into the Somes River. The concentrations of PPCPs at Cluj-Napoca can be correlated with the high population and a high number of hospitals located in the catchment area leading to higher mass flows. The results of this study are expected to provide information, with respect to the Romanian conditions, for environmental scientists, WWTP operators, and legal authorities. The data should support the improvement of existing WWTPs and implementation of new ones where necessary and, therefore, minimize the input of contaminants into ambient waters.

Materials and methods

The PPCPs were selected on the basis of consumption at the regional scale, reported aquatic toxicity, and the suitability of the gas chromatography/mass spectrometry (GC/MS) method for the determination of the compounds at trace levels. The studied PPCPs, caffeine (stimulant), carbamazepine (antiepileptic), pentoxifylline (anticoagulant), cyclophosphamide (cytostatic), ibuprofen (analgesic), and galaxolide (musk fragrance), were determined in samples of the Somes River. The analytes were enriched by solid-phase extraction and subsequently determined by GC/MS. Caffeine, pentoxifylline, and galaxolide were determined underivatized, whereas the acidic pharmaceuticals carbamazepine, cyclophosphamide, and ibuprofen were determined after derivatization with N-methyl-N-(trimethylsilyl)-trifluoroacetamide.

Results and discussion

The concentrations in the Somes River varied from below 10 ng/L up to 10 μg/L. A substantial decrease of the exposure in the Somes River could be observed due to the upgrade of the municipal WWTP in Cluj-Napoca. The loads in the river stretch between Cluj-Napoca and Dej (Somes Mic) varied strongly: caffeine (400–2,000 g/day), carbamazepine (78–213 g/day), galaxolide (140–684 g/day), ibuprofen (84–108 g/day). After the upgrade of the WWTP Cluj-Napoca, the concentrations in the Somes of caffeine, pentoxifylline, cyclophosphamide, galaxolide, and tonalide were significantly reduced (over 75%). One might be cautious comparing both studies because the relative efficiency of the WWTP’s removal of PPCP was not evaluated. However, the significantly lower concentrations of most compounds after the upgrade of the WWTP Cluj-Napoca allow one to infer that the technical measures at the source substantially reduced inputs of contaminants to the receiving river. Dej loads of the poorly biodegradable substance carbamazepine increased by a factor of 2–3 as a result of wastewater discharges into the river. The disproportionate increase in caffeine loads by a factor of 4 below Cluj-Napoca indicates inputs of untreated wastewater from the Somes Mare due to the discharge of untreated wastewater derived from Bistrita, Nasaud, and Beclean (115,000 inhabitants).

Conclusions

The relative contribution of treated and untreated wastewater in surface water might be assessed by measuring chemical markers. Recalcitrant pharmaceuticals like carbamazepine are suitable as chemical markers for estimating the relative contribution of wastewater in surface water. The easily degradable caffeine might be a good indicator for raw sewage and hardly treated wastewaters.

Recommendations and perspectives

Municipal WWTPs have the potential of a significant contribution in reducing the load of contaminants to ambient waters. The efficiency of the wastewater treatment in Cluj-Napoca improved considerably after the upgrade of the WWTP. Therefore, it is crucial that several WWTPs must be implemented or improved in the Somes Valley Watershed in order to reduce the discharge of contaminants in the Somes River from these point sources.

  相似文献   

19.
Zeng X  Sheng G  Gui H  Chen D  Shao W  Fu J 《Chemosphere》2007,69(8):1305-1311
The occurrence and distributions of six polycyclic musks were studied in influent, primary and effluent waters from a municipal wastewater treatment plant (WWTP) in Guangdong. Five polycyclic musk compounds, 1,2,3,5,6,7-hexahydro-1,1,2,3,3-pentamethyl-4H-inden-4-one (DPMI), 4-acetyl-1,1-dimethyl-6-tert-butylindan (ADBI), 6-acetyl-1,1,2,3,3,5-hexamethylindan (AHMI), 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta(g)-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN) were found in wastewater in the WWTP. DPMI, HHCB and AHTN were measured at 0.38-0.69, 11.5-146, 0.89-3.47 microg/l, respectively, in influents. Meanwhile 0.06-0.10 microg/l DPMI, 0.95-2.05 microg/l HHCB, 0.10-0.14 microg/l AHTN were detected in effluents, ADBI and AHMI were also detected in some primary waters and effluents. The results suggested that wastewater from cosmetic plants cause high loadings of polycyclic musks to this WWTP. Under the currently applied treatment technology, the removal efficiencies achieved were 61-75% for DPMI, 86-97% for HHCB and 87-96% for AHTN by transfer to sludge as the main removal route.  相似文献   

20.
This paper investigated some selected estrogenic compounds (4-t-octylphenol: 4-t-OP; 4-nonylphenols: 4-NP; bisphenol-A: BPA; diethylstilbestrol: DES; estrone: E1; 17β-estradiol: E2; 17α-Ethinylestradiol: EE2; triclosan: TCS) and estrogenicity in the Liao River system using the combined chemical and in vitro yeast screen bioassay and assessed their ecological risks to aquatic organisms. The estrogenic compounds 4-t-OP, 4-NP, BPA, E1, E2 and TCS were detected in most of the samples, with their concentrations up to 52.1 2065.7, 755.6, 55.8, 7.4 and 81.3 ng/L in water, and up to 8.6, 558.4, 33.8, 7.9, <LOQ and 33.9 ng/g in sediment, respectively. However, DES and EE2 were not detected in the Liao River. The estrogen equivalents (EEQ) of the water and sediment samples were also measured by the bioassay. High estrogenic risks to aquatic organisms were found in the river sections of metropolitan areas and the lower reach of the river system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号