首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Isotopic ratios of Pu and Np measured in sediment cores from 5 locations in the Ob River drainage basin show clear evidence of input from sources other than global fallout (non-fallout sources). Historical contaminant records obtained by combining isotopic ratio information with chronological information indicate that non-fallout inputs are from several sources that have varied significantly over the past 50 years. Unique isotopic signatures observed in sediments from tributaries that drain areas containing known or suspected sources of non-fallout contamination are used to identify the source of materials in sediments collected at downstream locations. These data can lead to a better understanding of the transport behavior, fate, and relative importance of particle reactive, weapons related contaminants originating from the nuclear facilities Mayak. Tomsk-7, and Semipalitinsk, which lie within the drainage basin. From our work to date, we draw the following conclusions: (1) Persistent non-fallout contamination is observed in the Ob River above its confluence with the Irtysh River, indicating contamination from the Tomsk-7 facility. (2) Non-fallout contamination in the Tobol River above its confluence with the Irtysh River indicates contamination from the Mayak facility. (3) Non-fallout contamination in the Irtysh River above its confluence with the Tobol River indicates contamination from the Semipalitinsk weapons test site. (4) The occurrence of isotopic ratios in Ob Delta sediments that are similar to those observed in source tributaries suggests that contamination from at least two sources has been transported along the length of the river system. (5) Global fallout, a result of high-yield atmospheric weapons tests conducted by the FSU and USA primarily, is the dominant source of Pu and Np to the region; however, there have been brief periods when inputs from non-fallout sources exceeded those from global fallout.  相似文献   

2.
Data on the current radioecological situation in the Techa-Iset' river system, which was contaminated by radioactive wastes from the Mayak Production Association in the 1940s and 1950s, are discussed. Mathematical models are presented that describe the decrease in the contamination of water, bottom sediments, hydrobionts, and floodplain soils with an increase in the distance from the discharge site. The amounts of90Sr,99Tc,137Cs, and transuranium elements in the main components of the ecosystem are estimated.  相似文献   

3.
Previous discharges of radioactivity from the Mayak Production Association plant in the Urals have resulted in considerable radionuclide contamination of the Techa River, and consequent high radiation doses during the late 1940s and 1950s to residents of villages along the Techa river. The most contaminated villages close to the site were evacuated in the period 1954-1962. The objective of this recent study was to conduct a preliminary assessment of the current radioactive contamination of soil, vegetation and foodstuffs in the two remaining villages closest to the Mayak site, Muslyumovo and Brodokalmak. The highest contamination levels in soil were found in the floodplain at 5.5 MBq m(-2) for 137Cs and 1.0 MBq m(-2) for 90Sr. Radionuclide contamination in soil of the villages was much lower, but exceeded that expected from global fallout. Data from 1207 measurements of 137Cs in milk and 1180 for 90Sr in milk for the period 1992-1999 were collated. There was no change with time in the 90Sr or 137Cs activity concentration in milk over the measured period. There were significantly higher 137Cs activity concentrations in milk sampled during the housed winter period in Muslyumovo compared with the grazing summer period, but compared to that for Brodokalmak or for either settlement for 90Sr. The highest measured activity concentrations in food products of 137Cs and 90Sr were found in river fish, waterfowl, poultry and milk. The measured activity concentrations of 137Cs and 90Sr in some animal products were higher than that expected from soil and vegetation from fields and pasture in the villages (not including the floodplain) confirming that the highly contaminated floodplains are contributing to contamination of some animal products.  相似文献   

4.
The total amounts of 137Cs and 90Sr transported from Finland by rivers into the Gulf of Finland, Gulf of Bothnia and Archipelago Sea since 1986 were estimated. The estimates were based on long-term monitoring of 137Cs and 90Sr in river and other surface waters and on the statistics of water discharges from Finnish rivers to the above sub-areas of the Baltic Sea. The total amounts of 137Cs and 90Sr removed from Finland into the Baltic Sea during 1986-1996 were estimated to be 65 and 10 TBq, respectively. The results show that, although the deposition of 137Cs was much higher than that of 90Sr after the Chernobyl accident, the amount of 137Cs removed from Finland is only six times as high as that of 90Sr. This emphasizes the importance of 90Sr while considering radiation doses from surface waters and 137Cs while estimating doses via pathways from catchment soil, lake sediments and biota after a fallout situation.  相似文献   

5.
The spatial and temporal distributions of the anthropogenic radionuclides 137Cs and 90Sr, originating from nuclear bomb testing, the Sellafield reprocessing plant in the Irish Sea (UK), and from the Ob and Yenisey river discharges to the Arctic Ocean, have been simulated using the global version of the Miami Isopycnic Coordinate Ocean Model (MICOM). The physical model is forced with daily atmospheric re-analysis fields for the period of 1948–1999. Comparison of the temporal evolution of the observed and the simulated concentrations of 90Sr has been performed in the Kara Sea. The relative contributions of the different sources on the temporal and spatial distributions of the surface 90Sr are quantified over the simulated period. It follows that the Ob river discharge dominated the surface 90Sr over most of the Arctic Ocean and along the eastern and western coasts of Greenland before 1960. During the period of 1980–1990, the atmospheric fallout and the Ob river discharge were equally important for the 90Sr distribution in the Arctic Ocean. Furthermore, an attempt has been made to explore the possible dispersion of accidental released 90Sr from the Ob and Yenisey rivers under a global warming scenario (2 × CO2). The difference between the present-day and the global warming scenario runs indicates that more of the released 90Sr from the Ob and Yenisey rivers is confined to the Arctic Ocean in the global warming run, particularly in the near coastal, non-European part of the Arctic Ocean.  相似文献   

6.
Changes of the (137)Cs activity concentrations in the southern Baltic Sea waters were investigated over the period 2000-2004 and distribution of the (90)Sr concentrations was determined in 2004. In the discriminated period further decrease of (137)Cs concentrations was observed. The average activity concentration of (137)Cs declined from 59.4Bq/m(3) in 2000 to 45.1Bq/m(3) in 2004. The greatest changes of (137)Cs activities occurred in 2003 as a consequence of the medium-size inflow of a saline waters from the North Sea. This inflow affected (137)Cs activities as well as its distribution in the Baltic Sea. Changes in (90)Sr activity concentrations proceeded at much slower rate. The average activity concentration of (90)Sr was equal to 8.7Bq/m(3) in 2004. The annual fluvial (137)Cs fluxes from the Vistula river were also estimated. In 2000, the (137)Cs load from Vistula was of an order of 0.15TBq/year, and in 2004 0.05TBq/year.  相似文献   

7.
Chemical analyses and radioecological methods were combined in order to estimate the sediment accumulation rate in the upper 20 cm depth of the Palmones River estuary. Organic matter, total carbon, C:N and (137)Cs vertical profiles showed changes at 13 cm depth. These changes could be associated with the decrease in river input since 1987 when a dam situated in the upper part of the estuary started to store water. Using 1987 as reference to date the sediment, accumulation rate was 1.2 cm yr(-1). As alternative method, two layer model of (210)Pb(xs) vertical distribution showed a sedimentation rate of 0.7 cm yr(-1) with a surface mixing layer of 7 cm thickness. The high ammonium, potassium and sodium content in pore water and the strong correlation between (137)Cs activities and organic matter in dry sediment suggests that (137)Cs (the only anthropogenic product detected) is mainly accumulated in the estuary associated with the particulate organic material from the catchment area.  相似文献   

8.
The sources and levels of radioactive contamination of the Techa River are analyzed. Dose assessments are made for humams and biota. The highest radionuclide concentrations in the river water were observed in the period 1950–1951. In 1951, at a distance of 78 km from the site of radioactive discharges, the content of 90Sr in the water was 2.7 × 104 Bq l−1 and that of 137Cs was 7.5 × 103 Bq l−1. Subsequently, the radionuclide activity in the river water decreased considerably. In the period 1991–1994, the average annual content of 90Sr in the water varied between 6 and 20 Bq l−1. The average annual content of 137Cs in the river water varied from 0.06 to 0.23 Bq l−1, i.e. was lower than that of 90Sr approximately by two orders of magnitude. The concentration of 239,240Pu in the water varied between 0.004 and 0.019 Bq l−1. The radioactive contamination of the Techa floodplain is highly nonuniform. With increasing distance from the river sources, the contamination density of the floodplain decreases, remaining, however, considerably higher than the background values.At present, the average annual dose rates in contaminated areas are (0.1–2) × 10−3 Sv year−1, which is considerably lower than in the periods of ‘acute’ exposure (1950–1951). The doses to aquatic biota were much higher than those to humans.  相似文献   

9.
The mobility of radiostrontium within the Arctic environment and surrounding area has been studied by analysing the mobility of 90Sr in river catchments that are within Finland. The environmental mobility of 90Sr deposited by both nuclear weapons testing and the Chernobyl accident has been investigated in five Finnish river catchments. Different models assessing the time-dependent mobility of 90Sr have been evaluated. No significant differences were found between the mobility of 90Sr from nuclear weapons tests and from the Chernobyl accident. Model parameters obtained by fitting to the measurements of the deposition and runoff rates of the nuclear weapons test fallout gave predictions which were consistent with the mid- and long-term contamination by the Chernobyl fallout. A comparison of 90Sr with 137Cs showed that they had similar mobility on deposition but, as time passed, the relative mobility of 90Sr increased with respect to 137Cs over a period of 5-8 years. Once the relative migration of 90Sr with respect to 137Cs reached equilibrium, its runoff rate was, on average, approximately an order of magnitude greater than 137Cs.  相似文献   

10.
The contents of 90Sr and 137Cs and the pattern of their redistribution in the soil and plant cover of floodplain ecosystems have been assessed. It is shown that the radionuclide distribution across the floodplain and along the river flow is determined by the formation of a barrier to their migration near the river channel, at which less mobile 137Cs accumulates. The soil and plant cover of the central floodplain are enriched with 90Sr. Differences in radionuclide migration in floodplain soils and their input into plants are determined by the relationship between the processes of their immobilization and migration with soil water.  相似文献   

11.
The paper summarizes impacts of the Temelín Nuclear Power Plant (NPP) on the Vltava and Labe River basins. The study is based on the results of long-term monitoring carried out before the plant operation (1989–2000), and subsequently during the plant operation (2001–2005). In the first period, the main objective was to determine background radionuclide levels remaining in the environment after global fallout and due to the Chernobyl accident. A decrease in the concentrations of 90Sr, 134Cs and 137Cs, which was observed before the plant operation, continued also during the subsequent period. Apart from tritium, the results of the observation did not indicate any impacts of the plant on the concentrations of activation and fission products in the hydrosphere. The annual average tritium concentrations in the Vltava River were in agreement with predicted values. The maximum annual average tritium concentration (13.5 Bq L−1) was observed in 2004 downstream from the wastewater discharge in the Vltava River at Solenice. Estimated radiation doses for adults due to intakes of river water as drinking water contaminated by tritium are below 0.1 μSv y−1.  相似文献   

12.
The radioecological situation in Lake Tygish is described. The lake is situated on the central axis of the Eastern Ural Radioactive Trace (EURT), which was formed after the nuclear accident in the Southern Urals in 1957. The distributions of 90Sr and 137Cs among the main components of the water body and the results of the measurement of tritium concentration in the water are presented. Mathematical models are described that have made it possible to estimate changes in the concentrations of radionuclides and their amounts accumulated in the water and bottom sediments of the lake during the long period after the accident and to predict the development of the radioecological situation in the lake until 2057. Based on the mathematical models, more accurate data on the initial ecological situation in the lake in the year of the accident have been obtained.  相似文献   

13.
This paper presents a new general sub-model for fixation in catchment areas to be used within the framework of a river model for substances such as radionuclides and metals from continuous and single-pulse fallouts. The model has been critically tested using data from 27 European river sites covering a very wide geographical area and contaminated by radiocesium and radiostrontium from the Chernobyl accident and from the nuclear weapons tests (NWT fallout). This modelling approach gives radionuclide concentrations in water (total, dissolved and particulate phases) at defined sites on a monthly basis. The overall river model is based on processes in the upstream river stretch and in the catchment area. The catchment area is differentiated into inflow (approximately dry land) areas and outflow (approximately wetland) areas. The model has a general structure, which can be used for all radionuclides or substances. It is simple to apply in practice since all driving variables may be readily accessed from maps and standard monitoring programs. The driving variables are: latitude, altitude, catchment area, mean annual precipitation and fallout. Note that for large catchments, this model does not require data on the characteristic soil type or the percentage of outflow areas (wet lands) in the catchment, as in most previous models, since in practice it is very difficult to obtain reliable data on characteristic soil type or percentage of outflow areas, especially in large and topographically complex catchments. Modelled values have been compared to empirical data from rivers sites covering a wide domain (catchment areas from 3000 to 3,000,000 km2, precipitation from 400 to 1700 mm/year; fallouts from 1600 to 280,000 Bq/m2; altitudes from 0 to 1000 m.a.s.l. and latitudes from 41 degrees to 72 degrees N). The river model with its sub-model for fixation predicts close to the uncertainty factors given by the empirical data, which have been shown to be about a factor of 1.6 for 137Cs and a factor of 2.2 for 90Sr in river water. The obtained characteristic uncertainty factors for 137Cs from the Chernobyl fallout is 2.4, for 137Cs from the NWT fallout it is 1.3 and for the 90Sr results from the NWT fallout it is 3 using the new model.  相似文献   

14.
Ample factual data has been used to analyze the long-term dynamics of 90Sr and 137Cs concentrations in moss-lichen cover. The stocks of radionuclides in lichens, mosses, and the moss-lichen cover of northern regions of the Urals and Siberia has been estimated for the first time. The data on recent ranges of 90Sr and 137Cs concentrations in lichens and mosses can serve as a basis for determining the background levels of radionuclide contamination for long-term monitoring and prognostic radioecological studies.  相似文献   

15.
The contents of 137Cs and 90Sr have been determined in 29 samples of live and dead reindeer lichens (genera Cladonia) collected at the "Kraton-3" underground nuclear explosion site (65.9 degrees N 112.3 degrees E, event year--1978) in Yakutia, Russia in 2002. The area contamination was within the range of 0.36-700 and 0.13-770 kBq m(-2) for 137Cs and 90Sr, respectively. The dead organisms were on average much more contaminated than the live ones. Vertical fractionation of the live lichen carpet demonstrated maximal activity concentrations of both radionuclides in the lower older section of the plants, while for the dead lichens the maximal activity concentrations of 137Cs were detected in the upper part. The vertical distribution of 90Sr was more or less homogeneous in the cushions of dead lichens. Elevated levels of 137Cs and 90Sr activity concentrations were also detected in the re-establishing young lichens growing over the residua of some dead lichens.  相似文献   

16.
A near field study was set up to follow the effects of the Temelin nuclear power plant construction. Reference levels of artificial radionuclides were monitored in the Vltava River upper course and its tributaries in the period 1990-2001. Monitoring continued even after the waste water release startup during the pilot operation in 2002. The assessment of the (90)Sr and (137)Cs concentrations histories in ground water, river bottom sediments and fish showed a decreasing trend. This trend was not influenced by the nuclear power plant pilot operation. In the case of tritium, trend of increasing concentration had been already observed since the pilot operation startup. The monitoring of changes in concentrations of artificial and natural radionuclides in influenced and uninfluenced profiles will be maintained to assess the possible influence of the operation of the Temelin nuclear power plant.  相似文献   

17.
Radioecological conditions have been estimated in Lake Chervyanoe located on the central axis of the Eastern Ural Radioactive Trace (EURT) about 100–110 km northeast of the Mayak Production Association. Data on the 90Sr and 137Cs contents in the main components of the lake, the distribution of these radionuclides over the profile of bottom sediments, and their amounts in the lake are presented. The experimental data have been used to construct mathematical models for estimating changes in the radionuclide concentrations and amounts in the water and bottom sediments of the lake over a long period after the nuclear accident, as well as the tritium content of the lake water in different periods of time.  相似文献   

18.
A rapid method for the determination of 90Sr in the presence of 137Cs using the Cherenkov radiation technique is described. The contribution of 137Cs to gross Cherenkov radiation (90Y + 137Cs) was examined for 137Cs /90Sr ratios ranging from 0.09 to 2.50 for 137Cs activities ranging from 2 to 1,211 Bq. Results from direct Cherenkov radiation measurement and results after radiochemical separation of 90Y from 90Sr for samples containing both 90Sr and 137Cs were compared. Errors below 5% were obtained for 137Cs /90Sr ratios lower than 1, when no separation was performed, independently of the activity level. However, errors between 10% and 35% were obtained for 137Cs/90Sr ratios higher than 1. In order to determine 90Sr activity in the presence of 137Cs using the Cherenkov technique, a multiple linear regression analysis model was established to correct the data for 137Cs content. The mathematical correction proposed was validated using 66 artificially contaminated lettuce samples in a laboratory experiment by taking into account the activity levels of 137Cs and 90Sr and the radionuclide ratios. Comparison of mathematically corrected radionuclide ratios with the results obtained without correction shows that, for radionuclide ratios higher than 1, error values for measuring 90Sr activity using the mathematical model were much smaller than when no radiochemical separation was performed. On the other hand, for ratios lower than 1, error values when measuring 90Sr activity with radiochemical separation were smaller than when mathematical correction was performed. In spite of this, the mathematical correction is an appropriate way of reducing the time needed to determine radiostrontium using the Cherenkov radiation technique. The method proposed could be a powerful tool for environmental research whenever the contents of 90Sr and 137Cs have to be determined.  相似文献   

19.
Under an IAEA's Co-ordinated Research Project "Worldwide Marine Radioactivity Studies (WOMARS)" 90Sr, 137Cs and (239,240)Pu concentration surface water time series in the Pacific and Indian Oceans have been investigated. The Pacific and Indian Oceans were divided into 17 latitudinal boxes according to ocean circulation, global fallout patterns and the location of nuclear weapons test sites. The present levels and time trends in radionuclide concentrations in surface water for each box were studied and the corresponding effective half-lives were estimated. For the year 2000, the estimated average 90Sr, 137Cs and (239,240)Pu concentrations in surface waters of the Pacific and Indian Oceans varied from 0.1 to 1.5 mBq/L, 0.1 to 2.8 mBq/L, and 0.1 to 5.2 microBq/L, respectively. The mean effective half-lives for 90Sr and 137Cs in surface water were 12+/-1 years for the North, 20+/-1 years for the South and 21+/-2 years for the Equatorial Pacific. For (239,240)Pu the corresponding mean effective half-lives were 7+/-1 years for the North, 12+/-4 years for the South and 10+/-2 years for the Equatorial Pacific. For the Indian Ocean the mean effective half-lives of 137Cs and (239,240)Pu were 21+/-2 years and 9+/-1 years, respectively. There is evidence that fallout removal rates before 1970 were faster than those observed during recent decades. The estimated surface water concentrations of 90Sr, 137Cs and (239,240)Pu in latitudinal belts of the Pacific and Indian Oceans for the year 2000 may be used as the average levels so that any new contribution from nuclear facilities, nuclear weapons test sites, radioactive waste dumping sites and from possible nuclear accidents can be identified.  相似文献   

20.
The United States (US) conducted nuclear weapons testing from 1946 to 1958 at Bikini and Enewetak Atolls in the northern Marshall Islands. Based on previous detailed dose assessments for Bikini, Enewetak, Rongelap, and Utirik Atolls over a period of 28 years, cesium-137 (137Cs) at Bikini Atoll contributes about 85-89% of the total estimated dose through the terrestrial food chain as a result of uptake of 137Cs by food crops. The estimated integral 30, 50, and 70-year doses were based on the radiological decay of 137Cs (30-year half-life) and other radionuclides. However, there is a continuing inventory of 137Cs and 90Sr in the fresh water portion of the groundwater at all contaminated atolls even though the turnover rate of the fresh groundwater is about 5 years. This is evidence that a portion of the soluble fraction of 137Cs and 90Sr inventory in the soil is lost by transport to groundwater when rainfall is heavy enough to cause recharge of the lens, resulting in loss of 137Cs from the soil column and root zone of the plants. This loss is in addition to that caused by radioactive decay. The effective rate of loss was determined by two methods: (1) indirectly, from time-dependent studies of the 137Cs concentration in leaves of Pisonia grandis, Guettarda specosia, Tournefortia argentea (also called Messerschmidia), Scaevola taccada, and fruit from Pandanus and coconut trees (Cocos nucifera L.), and (2) more directly, by evaluating the 137Cs/90Sr ratios at Bikini Atoll. The mean (and its lower and upper 95% confidence limits) for effective half-life and for environmental-loss half-life (ELH) based on all the trees studied on Rongelap, Bikini, and Enewetak Atolls are 8.5 years (8.0 years, 9.8 years), and 12 years (11 years, 15 years), respectively. The ELH based on the 137Cs/90Sr ratios in soil in 1987 relative to the 137Cs/90Sr ratios at the time of deposition in 1954 is less than 17 years. The magnitude of the decrease below 17 years depends on the ELH for 90Sr that is currently unknown, but some loss of 90Sr does occur along with 137Cs. If the 15-year upper 95% confidence limit on ELH (corresponding to an effective half-life of 9.8 years) is incorporated into dose calculations projected over periods of 30, 50, or 70 years, then corresponding integral doses are 58, 46 and 41%, respectively, of those previously calculated based solely on radiological decay of 137Cs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号