首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The biodiversity challenge: Expanded hot-spots analysis   总被引:16,自引:0,他引:16  
Summary This paper aims to throw light on the mass extinction that is overtaking Earth's species. Using an analytic methodology developed for an earlier partial assessment, it focuses on a series of hot-spot areas, these being areas that (a) feature exceptional concentrations of species with high levels of endemism, and (b) face exceptional threats of destruction. The paper identifies another eight such areas, four of them in tropical forests and four in Mediterranean-type zones. The analysis reveals that the four tropical-forest areas contain at least 2,835 endemic plant species in 18,700 km2, or 1.1 percent of Earth's plant species in 0.013 percent of Earth's land surface; and that the four Mediterranean-type areas contain 12,720 endemic plan: species in 435,700 km2, or 5.1 percent of Earth's plant species in 0.3 percent of the Earth's land surface. Taken together, these eight hot-spot areas contain 15,555 endemic plant species in 454,400 km2, or 6.2 percent of Earth's plant species in 0.3 percent of Earth's land surface. This is to be compared with the earlier hot-spots analysis of 10 tropical-forest areas, with 34,400 endemic plant species in 292,000 km2, or 13.8 percent of Earth's plant species in 0.2 percent of Earth's land surface.Taking all 18 hot-spot areas together, we find they support 49,955 endemic plant species, or 20 percent of Earth's plant species, in 746,400 km2, or 0.5 percent of Earth's land surface. This means that one fifth of Earth's plant species are confined to half of one percent of the Earth's land surface — and they occur in habitats that are mostly threatened with imminent destruction.By concentrating on these hot-spot areas where needs are greatest and where the pay-off from safeguard measures would be greatest, conservationists can engage in a more systematised response to the challenge of large scale impending extinctions.Dr Norman Myers is a consultant in environment and development, a member of this journal's Advisory Board, and a regular contributor to the journal. He is a Senior Fellow of World Wildlife Fund — US. This paper enlarges on an important theme developed by Dr Myers in a contribution which appeared inThe Environmentalist,8(3), 187–208. The research for this paper has been supported by the MacArthur Foundation, Chicago, USA.  相似文献   

2.
Summary A broad-spectrum mercury-resistant bacterial strain was isolated from contaminated water and was identified as Bacillus pasteurii strain DR2. It could volatilize Hg-compounds including organomercurials from its growth media. It utilized several aromatic compounds as a sole source of carbon. The bacterial strain eliminated HgCl2 from sterile river water and the presence of benzene, toluene, naphthalene and nitrobenzene at 1 mM concentration in the system increased the rate of mercury volatilization, the volatilization rate being highest with benzene. When 1.7×107 cells of this bacterial strain were added per ml of non-sterile water the bacterial strain volatilized more than 90 percent of mercury from mercuric chloride and organo-mercurials like PMA, thiomersol and methoxy ethyl mercuric chloride (MEMC). In the absence of this bacterial strain the volatilization of PMA and MEMC due to the presence of other Hg-resistant organisms in nonsterile polluted water ranged between 20–25 percent and of HgCl2 was about 40 percent. However, in the presence of B. pasteurii DR2 volatilization of these Hg-compounds from non-sterile water increased by 20–40 percent. In the presence of 1 mM benzene the rate of mercury volatilization was even higher. In all the cases the rate of volatilization was higher in the first seven days than in the next seven days.Professor A. Mandal, MSc, PhD is Head of the Department of Biochemistry at the University College of Science, 35 Ballygunge Circular Road, Calcutta 700019, to whom correspondence should be addressed. His co-workers are Dr K. Pahan, Postdoctoral Associate, Department of Cell Biology and Paediatrics, Medical University of South Carolina, USA; Dr J. Chaudhuri, Senior Lecturer, Department of Molecular Biology, BKC College, Calcutta, India; Dr D.K. Ghosh, Postdoctoral Associate, Department of Biochemistry, University College of Science, Calcutta, India; Dr R. Gachhui, Postdoctoral Associate, The Cleveland Clinic Foundation, Cleveland, USA; and Dr S. Ray, Postdoctoral Associate, The Johns Hopkins University School of Hygiene and Public Health, Department of Biochemistry, Baltimore, USA.  相似文献   

3.
Summary The present investigation was carried out in 1986, and is based upon about 20 years of river discharge data (1960s to 1980s). There are three important river-systems in Nepal - Sapt Kosi River system in East Nepal, Sapt Gandaki River system in mid- Nepal, and Karnali River system in West Nepal. The average annual highest rainfall is 3,685 mm yr–1, and the greatest mean annual suspended sediment load (1.434 g L–1) was recorded in Sapt Gandaki, while the water discharge from Sapt Kosi (1,747 m3 s–1) was the highest and so also was the silt discharge (0.4 million ton day–1). The correlation between water discharge and silt discharge was found to be statistically highly significant as verified by correlation and regression analyses.An abatement of human interference in the catchment areas of these rivers, and fodder/fuelwood plantation through the active participation of local people in their marginal land to decrease the human pressure on natural forests, are considered the two major easy, effective and economic methods to control the siltation hazard that is causing extensive deterioration to the environment in Nepal.Dr Govind P.S. Ghimire is Reader and Associate Professor in the Central Department of Botany at Tribhuvan University. Mr B.K. Uprety is an ecologist working on the Environmental Impact Study Project of His Majesty's Government, Nepal.  相似文献   

4.
Summary It has been established that the electrodes of the dialyser in a chloro-alkali plant in Eastern India release mercury beyond the permissible limits into the River Koel. Mercury in elemental form, as well as certain organo-mercury compounds, including methyl mercury, have been detected at a distance of 25 km from the discharge point. Even at a distance of 5–10 km, the mercury content of the sediment may be as high as 0.6–3.2 mg kg–1 above the value of sediment upstream of the plant. This sediment itself is contaminated, probably by battery and paint factories, etc., still further upstream. Thus, the chloro-alkali factory has contributed 60–320 times above the permissible limit (0.01 mg kg–1) of mercury release, at a distance of 5–10 km from the point of release. Furthermore, various phytoplankton and zooplankton have been contaminated, leading to very high mercury contents in certain fish. This food chain, therefore, threatens man himself.Dr Sajalendu Nanda is currently a Research Associate at Bangur Institute of Neurology in Calcutta. He possesses an MSc in Environmental Biology and a PhD in Ecology. His address for correspondence is c/o Dr P.K. Tapaswi, Professor-in-Charge at the Biological Sciences Division of the Indian Statistical Institute.  相似文献   

5.
Summary The ability of fly ash to remove Zn(II) from water by adsorption has been tested at different concentrations, temperatures and pH of the solution. It was found that low adsorbate concentration, small particle size of adsorbent and higher temperature favoured the removal of Zn(II) from aqueous solution. The Langmuir isotherm was used to represent the equilibrium data at different temperatures. The apparent heat of adsorption has been found to be 17.325 Kcal mol–1, which indicates the process to be endothermic. The uptake of Zn(II) is diffusion controlled and the mass transfer coefficient is 3.56 × 10–5 cm s –1.The maximum removal was noted at pH 7.5. Dr V.N. Singh is Professor and Head of the Department of Applied Chemistry, Dr A.K. and Prof. D.P. Singh are members of the Department of Mining Engineering; all are situated in the Institute of Technology at Banaras Hindu University.  相似文献   

6.
Growth responses of herbaceous mimosa (Mimosa strigillosa Torr. and Gray), a potential new reclamation species in the SE USA and Mexico, to nine soil pH scales were studied under a controlled environment at Nacogdoches, TX, USA. Twenty seeds were planted in each of 40 (nine scales plus one control in four replicates) 20.3-cm pots filled with Tonkawa sandy soil. These pots were treated with H2SO4 or Ca(OH)2 to adjust each pot to its designated pH level. After 15 days of seeding, the emergence rate was at best about 50–70% for pH 4.7–6.6. The plant can survive and grow at soil pH as low as 4.7, but the optimum growth seems to be on soils with pH ranging from 6.2 to 7.1. At this pH range, the plant exhibits higher values of green and dry biomass, longer shoot growth and lower root/shoot weight and length ratios. The survival rate was greater than 90% for all treatments, except for pH 4.1. There were no nutrient deficiencies in plant tissues on soil pH 4.7 or higher. The plant allocated more growth to the shoot under optimum conditions, but more growth to the roots under environmental stress. It is not suitable for herbaceous mimosa to grow on soils with pH 4.1 or less.  相似文献   

7.
We investigated the influence of long-term (56 years) grazing on organic and inorganic carbon (C) and nitrogen (N) contents of the plant–soil system (to 90 cm depth) in shortgrass steppe of northeastern Colorado. Grazing treatments included continuous season-long (May–October) grazing by yearling heifers at heavy (60–75% utilization) and light (20–35% utilization) stocking rates, and nongrazed exclosures. The heavy stocking rate resulted in a plant community that was dominated (75% of biomass production) by the C4 grass blue grama (Bouteloua gracilis), whereas excluding livestock grazing increased the production of C3 grasses and prickly pear cactus (Opuntia polycantha). Soil organic C (SOC) and organic N were not significantly different between the light grazing and nongrazed treatments, whereas the heavy grazing treatment was 7.5 Mg ha–1 higher in SOC than the nongrazed treatment. Lower ratios of net mineralized N to total organic N in both grazed compared to nongrazed treatments suggest that long-term grazing decreased the readily mineralizable fraction of soil organic matter. Heavy grazing affected soil inorganic C (SIC) more than the SOC. The heavy grazing treatment was 23.8 Mg ha–1 higher in total soil C (0–90 cm) than the nongrazed treatment, with 68% (16.3 Mg ha–1) attributable to higher SIC, and 32% (7.5 Mg ha–1) to higher SOC. These results emphasize the importance in semiarid and arid ecosystems of including inorganic C in assessments of the mass and distribution of plant–soil C and in evaluations of the impacts of grazing management on C sequestration.  相似文献   

8.
The distribution of environmental pollutant, sulphur, over Kano municipality was monitored on the basis of the chemical analysis of Scots Pine (Pinus sylvestris L.) needles collected from randomly selected sampling points over the period 1995–1996. Of the five zones in which the municipal area was subdivided, two could be regarded as least polluted, two as moderately polluted and one zone as heavily polluted. The mean value of all measurements in the metropolis amounted to 1940 gg–1 S with a co-efficient of variation of 38 percent.  相似文献   

9.
Soil and plant characteristics of landfill sites near Merseyside,England   总被引:2,自引:0,他引:2  
An ecological survey of the plant and soil characteristics was carried out on three landfill sites near Merseyside, England. It was discovered that bare ground at two of the landfill areas had high levels of methane contained in the soil air (Sefton Meadows landfill: 6–8% at 35 cm and 16–35% at 65 cm below soil surface; Coalgate Lane landfill: 1–24% at 35 cm and 39–45% at 40 cm below soils surface), causing the appearance of dark grey reduced regions in the soil, a phenomenon similar to flooded soil. The wellvegetated areas at the two sites had lower levels of methane (under 7%).In areas relatively free of methane, the concentrations of mineralized N and NO3 had significant correlations with the dry weights of vegetation (r = 0.71 withp<0.01;r=0.61 withp<0.02 accordingly), indicating the necessity of applying available nitrogen fertilizer.  相似文献   

10.
In the semiarid Horqin sandy land of northern China, establishment of artificial sand-fixing shrubs on desertified sandy lands is an effective measure to control desertification and improve the regional environment. Caragana microphylla Lam. and Artemisia halodendron Turcz. ex Bess. are two of the dominant native shrub species, which are adapted well to windy and sandy environments, and thus, are widely used in revegetation programs to control desertification in Horqin region. To assess the effects of artificially planting these two shrub species on restoration of desertified sandy land, soil properties and plant colonization were measured 6 years after planting shrubs on shifting sand dunes. Soil samples were taken from two depths (0–5 cm and 5–20 cm) under the shrub canopy, in the mid-row location (alley) between shrub belts, and from nonvegetated shifting sand dune (as a control). Soil fine fractions, soil water holding capacity, soil organic C and total N have significantly increased, and pH and bulk density have declined at the 0–5-cm topsoil in both C. microphylla and A. halodendron. At the 5–20 cm subsurface soil, changes in soil properties are not significant, with exception of bulk density and organic C concentration under the canopy of A. halodendron and total N concentration under the canopy of C. microphylla. Soil amelioration processes are initiated under the shrub canopies, as higher C and N concentrations were found under the canopies compared with alleys. At the same time, the establishment of shrubs facilitates the colonization and development of herbaceous species. A. halodendron proved to have better effects in fixing the sand surface, improving soil properties, and restoring plant species in comparison to C. microphylla.  相似文献   

11.
We investigated the effects of herbage removal on three subalpine meadow plant communities in the Rock Creek drainage of Sequoia National Park, California, USA. In the xericCarex exserta Mkze. (short-hair sedge) type, annual aboveground productivity averaged 19 g/m2 in control plots (clipped once after plant senescence in late September) over a five-year period. Annual aboveground productivity was enhanced about 30%–35% when plots in this community type were clipped more frequently (i.e., additional herbage removal in the early, mid, and late seasons) during each of four treatment years but was reduced by 13%–19% during a fifth (recovery) year in which all but late September clipping was suspended. In a moderately mesicEleocharis pauciflora (Lightf.) Link. (few-flowered spike rush)-Calamagrostis breweri Thurb. (short-hair grass) type, control plot productivity averaged 115 g/m2/yr and was reduced by 20–30% by the additional herbage removal. A more mesicDeschampsia caespitosa (L.) Beauv. (tufted hairgrass)-Carex rostrata Stokes, (beaked sedge) type had the greatest mean above-ground productivity (169 g/m2/yr) but also showed damage (i.e., decrease in productivity by 15%–20%) caused by the additional herbage removal. These data suggest that longterm, intensive herbage removal may be more detrimental to moderately mesic and mesic subalpine meadow community types than to xeric types.  相似文献   

12.
In Rocky Mountain National Park (RMNP), aspen (Populus tremuloides Michx.) has been observed to be declining on elk (Cervus elaphus nelsoni) winter range for many decades. To support elk management decisions, the SAVANNA ecosystem model was adapted to explore interactions between elk herbivory and aspen dynamics. The simulated probability of successful vegetative regeneration for senescent aspen stands declines sharply when elk densities reach levels of 3–5 elk/km2, depending on model assumptions for the seasonal duration of elk foraging activities. For aspen stands with a substantial component of younger trees, the simulated regeneration probability declines more continuously with increasing elk density, dropping below 50% from densities at 8–14 elk/km2.At the landscape scale, simulated aspen regeneration probability under a scenario of extensive seasonal use was little affected by elk population level, when this level was above 300–600 elk (25%–50% current population) over the ca. 107 km2 winter range. This was because elk distribution was highly aggregated, so that a high density of elk occupied certain areas, even at low population levels overall. At approximately current elk population levels (1000–1200 elk), only 35%–45% of senescent aspen stands are simulated as having at least a 90% probability of regeneration, nearly all of them located on the periphery of the winter range. Successful management for aspen persistence on core winter range will likely require some combination of elk population reduction, management of elk distribution, and fencing to protect aspen suckers from elk browsing.  相似文献   

13.
The livers and kidneys of freshwater fish species, Oreochromis niloticus and Clarias lazera, collected from sewage polluted sites (Ismailia and El-Bahr El-Azam) and industrial polluted sites (Shubra and El-Tebin) of Nile River were analyzed for different antioxidant defense enzymes. The liver and kidney glutathione transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GPx) were higher in O. niloticus captured from all the polluted areas compared to the control. Low GST activities were found in 33.3%, 60% and 53% in the livers and 100%, 80% and 53% in the kidneys of C. lazera captured from El-Bahr El-Azam, Shubra and El-Tebin. GR and GPx activities increased in livers and kidneys of C. lazera collected from all areas except for Shubra, in which, GPx of livers and kidneys were low in 100% of C. lazera. Metals Ni, Co, Cr, Se, Cd and Pb resulting from industrial wastes and metal mining wastes were enhanced at the polluted sites. SDS-PAGE of liver and kidney of O. niloticus and C. lazera indicated the increase in bands number and intensity of protein bands with subunit molecular weights between 30–20 KDa in polluted areas. Several enzymes from glutathione system (activity and protein) constitute a sensitive biochemical indicator of chemical pollution. Relative changes of glutathione-dependent enzymes in both fish species suggest a different susceptibility to toxins.  相似文献   

14.
The Potential Use of Chicken-Drop Micro-Organisms for Oil Spill Remediation   总被引:2,自引:0,他引:2  
An examination of chicken-drop micro-organisms for oil spill remediation is presented in this work. The chicken droppings contained aerobic heterotrophs (1.2×108 CFU g–1), total fungi (3.4×104 CFU g–1) and crude oil (transniger pipeline crude, TNP) degrading bacteria (1.5×106 CFU g–1). The crude oil degraders were identified as species of Micrococcus, Bacillus, Pseudomonas, Enterobacter, Proteus, Klebsiella, Aspergillus, Rhizopus, and Penicillium. Pseudomonas aeruginosa CDB-06 and species of Bacillus CDB-08 and Penicillium CDF-10 degraded the crude oil at exceedingly high rates. Pseuedomonas aeruginosa CDB-06 degraded 65.5 percent of the crude oil after 16 days, while Bacillus sp. CDB-08, and Penicillium sp. CDF-10 degraded 65.3 percent, and 53.3 percent, respectively of the crude oil over the same period. The chicken droppings also had a pH 7.3, 18.5 percent moisture content, 2.3 percent total nitrogen, and 0.5 percent available phosphorus. Addition of oil polluted soil (10 percent (v/w) pollution level) with chicken droppings enhanced degradation of the crude oil in the soil. 68.2 percent of the crude oil was degraded in the soil amended with chicken droppings, whereas only 50.7 percent of the crude oil was degraded in the unamended soil after 16 days. The amendment raised the acidic reaction (pH 5.7) of the oil-polluted soil to alkaline (pH 7.2) within 16 days. Chicken droppings could, therefore, be used in an integrated oil pollution abatement program.  相似文献   

15.
Decolorization and Complete Degradation of Methyl Red by a Mixed Culture   总被引:4,自引:0,他引:4  
Synthetic dyes, azo dyes in particular, are widely found in the effluents from textile industries. The persistence and toxicity of these compounds cause adverse impacts in the receiving streams. A mixed culture isolated from a domestic wastewater treatment plant was found to remove the colour of the azo dye, methyl red, efficiently. Total decolorization and degradation occurred within 18 h. The mixed culture could degrade 700 mgl–1 of methyl red efficiently in the presence of 200 mgl–1 of glucose, whereas in the absence of glucose it could degrade only 100 mgl–1 of methyl red. The mixed culture, when suspended in phosphate buffer along with methyl red at 100 mgl–1 concentration could degrade methyl red efficiently within 2 h of incubation. The pH of the medium decreased continuously during degradation. After the complete removal of initial methyl red, another 100 mgl–1 was added to the culture filtrate and incubated further. The mixed microbial cultures could degrade methyl red efficiently through three cycles but further degradation was not possible as the pH of the medium decreased to 3.5.  相似文献   

16.
National fuel-reduction programs aim to reduce the risk of wildland fires to human communities and to restore forest and rangeland ecosystems to resemble their historical structure, function, and diversity. There are a number of factors, such as seed bank dynamics, post-treatment climate, and herbivory, which determine whether this latter goal may be achieved. Here, we examine the short-term (2 years) vegetation response to fuel-reduction treatments (mechanical mastication, broadcast burn, and pile burn) and seeding of native grasses on understory vegetation in an upland piñon–juniper woodland in southeast Utah. We also examine how wildlife herbivory affects the success of fuel-reduction treatments. Herbaceous cover increased in response to fuel-reduction treatments in all seeded treatments, with the broadcast burn and mastication having greater increases (234 and 160 %, respectively) in herbaceous cover than the pile burn (32 %). In the absence of seeding, herbaceous cover only increased in the broadcast burn (32 %). Notably, fuel-reduction treatments, but not seeding, strongly affected herbaceous plant composition. All fuel-reduction treatments increased the relative density of invasive species, especially in the broadcast burn, which shifted the plant community composition from one dominated by perennial graminoids to one dominated by annual forbs. Herbivory by wildlife reduced understory plant cover by over 40 % and altered plant community composition. If the primary management goal is to enhance understory cover while promoting native species abundance, our study suggests that mastication may be the most effective treatment strategy in these upland piñon–juniper woodlands. Seed applications and wildlife exclosures further enhanced herbaceous cover following fuel-reduction treatments.  相似文献   

17.
Basic information on where nonnative plant species have successfully invaded is lacking. We assessed the vulnerability of 22 vegetation types (25 sets of four plots in nine study areas) to nonnative plant invasions in the north–central United States. In general, habitats with high native species richness were more heavily invaded than species-poor habitats, low-elevation areas were more invaded than high-elevation areas, and riparian zones were more invaded than nearby upland sites. For the 100 1000-m2 plots (across all vegetation types), 50% of the variation in nonnative species richness was explained by longitude, latitude, native plant species richness, soil total percentage nitrogen, and mean maximum July temperature (n = 100 plots; P < 0.001). At the vegetation-type scale (n = 25 sets of four 1000-m2 plots/type), 64% of the variation in nonnative species richness was explained by native plant species richness, elevation, and October to June precipitation (P < 0.001). The foliar cover of nonnative species (log) was strongly positively correlated with the nonnative species richness at the plot scale (r = 0.77, P < 0.001) and vegetation-type scale (r = 0.83, P < 0.001). We concluded that, at the vegetation-type and regional scales in the north–central United States, (1) vegetation types rich in native species are often highly vulnerable to invasion by nonnative plant species; (2) where several nonnative species become established, nonnative species cover can substantially increase; (3) the attributes that maintain high native plant species richness (high light, water, nitrogen, and temperatures) also help maintain nonnative plant species richness; and (4) more care must be taken to preserve native species diversity in highly vulnerable habitats.  相似文献   

18.
A model experiment on soil conservation utilising the plantation of certain herbaceous plants in a selected stretch of Majuli, the largest riverine island in the world, was carried out. The plantation followed work to establish the proper inclination for the river bank. The soil erosion in the experimental site was reduced to only about 2% compared with about 15–20% in the previous years. All the four species selected for the present study had excellent soil binding capacity and were thus helpful in stabilizing the highly vulnerable soil in the flood plain areas of the region.  相似文献   

19.
Coastal sandplains provide habitat for a suite of rare and endangered plant and wildlife species in the northeastern United States. These early successional plant communities were maintained by natural and anthropogenic disturbances including salt spray, fire, and livestock grazing, but over the last 150 years, a decrease in anthropogenic disturbance frequency and intensity has resulted in a shift towards woody shrub dominance at the expense of herbaceous taxa. This study quantified the effects of more than a decade of dormant season disturbance-based vegetation management (mowing and prescribed fire) on coastal sandplain plant community composition on Nantucket Island, Massachusetts, USA. We used time-series plant cover data from two similar sites to evaluate the effectiveness of disturbance management for restoring herbaceous species cover and reducing woody shrub dominance. Our results indicate that applying management outside of the peak of the growing season has not been effective in maintaining or increasing the cover of herbaceous species. While management activities resulted in significant (P < 0.01) increases in herbaceous species immediately after treatment, woody species recolonized and dominated treated sites within 3-years post treatment at the expense of graminoids and forbs. These results highlight the difficulties associated with directing ecological succession using disturbance-based management to maintain rare, herbaceous species in coastal sandplain systems that were once a prevalent landscape component under historically chronic anthropogenic disturbance. Further experimentation with growing season disturbance-based management and different combinations of management techniques could provide insights into management alternatives for maintaining herbaceous conservation targets in coastal sandplains.  相似文献   

20.
This study examined the spatial distribution of particulate air pollution in the Warri metropolis. This was done to ascertain the differences between the distribution of particulate matter (PM10) in the urban area and the surrounding rural areas. To achieve this, the study generated data from field measurement of PM10 levels for the year 2003. Analysis of variance, the U-test, and simple regression statistical techniques were used to analyze the data. The major finding of the study was that the Warri metropolitan area is polluted with PM10 levels of over 126 μg/m3, which is 81% over the 70 μg/m3 threshold of the World Health Organization. However the built-up area of the Warri metropolis is 150% more polluted with PM10 particulates than the surrounding rural areas. While the traffic-clogged area of Enerhen, Jakpa, Deco, and Estate Junctions are the most polluted areas with levels of 151 μg/m3, traditional areas had the lowest levels of 128 μg/m3. The daily distribution of PM10 showed that Mondays were the most polluted days with levels of 145 μg/m3 and Fridays were the least polluted days with levels of 141.5 μg/m3 in the built-up area, whereas in the rural area Wednesdays were the most polluted days with levels of 57.1 μg/m3 and Sundays were the least polluted days with levels of 53.5 μg/m3. Mondays generally recorded the highest PM10 values because of the large amount of industrial operation, heavy vehicular traffic in the peak period, and increased commercial activities. The study also showed significant variation in the level of PM10 particulates within the urban areas of the Warri metropolis with a calculated F-value (3.29), which is greater than the critical F-value of 3.14 at the 0.05 significance level. It is therefore recommended that urban environmental management policy should be vigorously pursued to curb the adverse consequences of increased PM10 levels in urban areas of the Warri metropolis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号