首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 160 毫秒
1.
采用电动力修复技术处理Pb、Cd复合污染土壤,考察了柠檬酸和乙二胺四乙酸二钠(EDTA)作为电解液对棕壤(ZR)和红壤(HR)两种我国典型壤质中Pb、Cd去除效果的影响。实验结果表明:在电压梯度为2 V/cm,修复时间为4 d的条件下,ZR的最佳电解液为EDTA,Pb、Cd平均去除率为13.2%和17.8%,HR的最佳电解液为柠檬酸,Pb、Cd的平均去除率为20.0%和33.8%;延长修复时间至10 d能显著提高HR中Pb、Cd的去除率,电解液为柠檬酸时Cd平均去除率达91.1%,电解液为EDTA时Pb平均去除率达63.2%,修复后土壤中Cd和Pb含量均低于建筑用地土壤污染风险筛选值。综合考虑能耗及修复效果,EDTA是高效且经济的修复电解液。  相似文献   

2.
气化炉渣的重金属浸出特性及化学形态分析   总被引:2,自引:0,他引:2       下载免费PDF全文
分别采用硫酸硝酸法、水平振荡法和醋酸缓冲溶液法制取气化炉渣的浸出液,考察了不同提取方式对浸出液中重金属质量浓度的影响。采用改进BCR连续提取法对气化炉渣中的重金属Cr,Zn,Cu,Pb,Ni,As,Cd的化学形态进行了分析。实验结果表明:煤气化工艺中的气化炉渣属第Ⅰ类一般工业固体废物;在3种提取方式中,醋酸缓冲溶液法的重金属浸出种类最多,且浸出量最大;Cd和Cr对环境具有较高的潜在危害性,Cu次之,Zn,Pb,Ni,As主要以残渣态形式存在,对环境的直接危害性较低。  相似文献   

3.
根据电子废弃物拆解场地的污染特征,以复合重金属(Cu,Cd,Pb)污染高岭土为研究对象,考察了电动技术对污染土壤的修复效果。实验结果表明:在电压梯度为1 V/cm、阳极液为自来水、阴极液为柠檬酸-柠檬酸钠缓冲液(pH=5)、靠近阴极设置活性炭渗透反应墙(PRB)的条件下电动修复96 h后,Cu,Cd,Pb的平均去除率分别可达79.93%,99.43%,39.36%;土壤的酸碱性对电动修复效果影响显著,通过在阴极添加缓冲液维持土壤偏酸性条件,有利于重金属污染物的电动去除;在靠近阴极设置活性炭PRB可富集重金属,减少阴极液的污染;迁移率大的酸可提取态重金属较易去除,残渣态重金属稳定性强,去除率较低。  相似文献   

4.
陈逸斌  吴明红  杨洁  王旌  徐刚  姜勇 《化工环保》2019,39(5):532-537
以一水合柠檬酸(CA)为洗涤剂,分别采用吐温80(TW80)、十二烷基磺酸钠(SDS)、β-环糊精(BCD)和腐植酸(HA)4种表面活性剂与CA联合洗涤高黏性土壤中的重金属,考察表面活性剂与CA的联合洗脱效果。实验结果表明:添加4种表面活性剂均可提高CA对Cu、Zn和Pb的去除率;处理时无需调节体系pH;在表面活性剂与CA的混合液与土壤的液固比为10:1(mL/g)的条件下,采用一次洗涤即可。经4种表面活性剂与CA联合洗涤后,土壤中Cu、Zn和Pb的离子交换态、碳酸盐结合态和铁锰氧化结合态的占比均下降,而硫化物及有机结合态和残渣态的占比有所提升。  相似文献   

5.
以重金属污染土壤为研究对象,比较了铁屑、蒙脱石、碳酸钙和羟基磷灰石4种稳定剂对土壤中Pb,Zn,Cd,Cu 4种重金属的稳定效果。实验结果表明,4种稳定剂稳定效率的大小顺序为:羟基磷灰石﹥碳酸钙﹥蒙脱石﹥铁屑。当稳定剂质量分数为10%时,羟基磷灰石、碳酸钙、蒙脱石和铁屑对Pb,Zn,Cd,Cu 4种重金属的平均稳定效率分别为99.63%,98.53%,97.15%,86.95 %。未加稳定剂时,土壤中的Pb以残渣态为主,Zn以残渣态和可交换态为主,Cd以残渣态为主,Cu以残渣态和可交换态为主;加入稳定剂后,土壤中4种金属可交换态的所占比例(简称占比)均显著降低,还原态的占比明显增大,残渣态的占比略有增大,氧化态的占比基本保持不变。  相似文献   

6.
孙晓  钱枫  魏新鲜  严军 《化工环保》2016,36(2):205-210
选取CaO作为吸附剂,探究了不同燃烧温度下添加CaO对重金属元素在燃煤灰渣中富集效果的影响规律。实验结果表明:添加CaO对重金属元素Cr未起到富集作用,而对Mn,Ni,Cu,Zn,As,Cd,Pb 7种重金属元素的富集效果显著;随燃烧温度的升高,CaO对各赋存形态的Mn,Ni,Cu,Zn,As的富集效果先变好而后变差,对各赋存形态的Cd和Pb的富集效果越来越好;CaO添加比(预处理后的CaO颗粒与预处理后的原煤的质量比)越大,CaO对Mn,Ni,Cu,Zn,As,Cd,Pb的富集效果越好,燃烧温度为850℃时的最佳CaO添加比为4%。  相似文献   

7.
柠檬酸淋洗去除电子垃圾污染土壤中的重金属   总被引:1,自引:0,他引:1       下载免费PDF全文
采用柠檬酸溶液对模拟电子垃圾污染土壤(简称污染土壤)中Cu,Pb,Cd 3种重金属进行淋洗实验,考察了柠檬酸溶液的浓度、柠檬酸溶液的pH、淋洗时间等对污染土壤中Cu,Pb,Cd的淋洗效果,探讨了柠檬酸溶液淋洗前后污染土壤中Cu,Pb,Cd 3种重金属各形态含量的变化。研究结果表明,在柠檬酸溶液的浓度0.100 mol/L、柠檬酸溶液的pH 5、淋洗时间1 440 min的适宜条件下,对污染土壤中Cu,Pb,Cd的去除率分别达到89.37%,72.11%,86.39%。柠檬酸溶液对3种重金属的去除主要是通过洗出酸可提取态(R1)和酸可还原态(R2)来实现的,每种重金属的R1和R2之和均占到其淋出总量的95%以上,而酸可氧化态(R3)和残渣态(R4)的含量淋洗前后基本无变化。  相似文献   

8.
为研究Zn^2+/TiO2薄膜光催化剂对NO的去除效果,以钛酸四正丁酯和Zn(NO3)2为前驱体、石英玻璃片为基片,用在溶胶中进行浸渍提拉的方法,于500℃下煅烧制备出Zn^2+加入量不同的Zn^2+/TiO2薄膜光催化剂,重点考察了Zn^2+加入量对NO去除率的影响。实验结果表明,Zn^2+的加入可进一步提高NO的去除率,当Zn^2+加入量为4%时,NO最高去除率为89%。对各种试样的扫描电镜和X射线衍射表征结果表明,适当加入Zn^2+可改善纳米TiO2的分散状态,减小粒径尺寸,从而达到提高NO去除率的目的。  相似文献   

9.
分步沉淀法处理酸性矿山废水   总被引:1,自引:0,他引:1  
采用分步沉淀工艺处理酸性矿山废水,考察了工艺条件对废水中有价金属元素回收效果的影响。实验结果表明:Ca(OH)_2为适宜的废水pH调节剂;调节废水pH至4.00左右并投加0.05 mL/L的H_2O_2,可首先去除Fe~(2+)及Fe~(3+),得到富Fe渣(w(Fe)=51.00%);调节废水pH至6.00~6.50,先投加50 mg/L的Na_2S,去除废水中的Cu~(2+),获得富Cu渣(w(Cu)=10.89%),再将Na_2S的投加量增至100 mg/L,去除废水中的Zn与Mn,获得富Zn-Mn渣(w(Cu)=2.37%,w(Mn)=6.79%,w(Pb)=1.61%);进一步调节废水pH至8.40,可去除剩余的Zn、Mn及其他重金属。分步沉淀工艺处理后的废水可达标排放,产生的富Fe渣、富Cu渣及富Zn-Mn渣可直接出售或具有利用价值。分步沉淀工艺可实现有价金属元素的高效回收,大幅度降低废水处理的实际成本,值得工程应用与推广。  相似文献   

10.
武跃  袁圆  张静  李芳  白长岭 《化工环保》2015,35(3):236-240
采用亚临界湿式氧化法及金属络合剂协同亚临界湿式氧化法去除含油污泥中的重金属,考察了去除效果,优化了反应条件,并探讨了脱除重金属的含量上限。实验结果表明:在1 L反应釜内加入200 g含油污泥,在反应温度200℃、反应时间60 min、液固比(去离子水与含油污泥的质量比)0.30的优化条件下,Cu和Zn的去除率分别可达67.3%和22.0%;加入金属络合剂后,各重金属的去除率均有明显提高;在金属络合剂加入量为0.05mol/L的优化条件下,应用金属络合剂协同亚临界湿式氧化法可将2.5倍于CJ/T 309—2009《城镇污水处理厂污泥处置农用泥质》B级标准的重金属含量降至标准范围内。  相似文献   

11.
Fixation of heavy metals in the slag produced during incineration of sewage sludge will reduce emission of the metals to the atmosphere and make the incineration process more environmentally friendly. The effects of incineration conditions (incineration temperature 500-1100°C, furnace residence time 0-60min, mass fraction of water in the sludge 0-75%) on the fixation rates and species partitioning of Cd, Pb, Cr, Cu, Zn, Mn and Ni in slag were investigated. When the incineration temperature was increased from 500 to 1100°C, the fixation rate of Cd decreased from 87% to 49%, while the fixation rates of Cu and Mn were stable. The maximum fixation rates for Pb and Zn and for Ni and Cr were reached at 900 and 1100°C, respectively. The fixation rates of Cu, Ni, Cd, Cr and Zn decreased as the residence time increased. With a 20min residence time, the fixation rates of Pb and Mn were low. The maximum fixation rates of Ni, Mn, Zn, Cu and Cr were achieved when the mass fraction of water in the sludge was 55%. The fixation rate of Cd decreased as the water mass fraction increased, while the fixation rate of Pb increased. Partitioning analysis of the metals contained in the slag showed that increasing the incineration temperature and residence time promoted complete oxidation of the metals. This reduced the non-residual fractions of the metals, which would lower the bioavailability of the metals. The mass fraction of water in the sludge had little effect on the partitioning of the metals. Correlation analysis indicated that the fixation rates of heavy metals in the sludge and the forms of heavy metals in the incinerator slag could be controlled by optimization of the incineration conditions. These results show how the bioavailability of the metals can be reduced for environmentally friendly disposal of the incinerator slag.  相似文献   

12.
Variations of metal distribution in sewage sludge composting   总被引:4,自引:0,他引:4  
In the study, the variations of heavy metal distributions (of Cu, Mn, Pb, and Zn) during the sewage sludge composting process were investigated by sequential extraction procedures. The total content of Cu and Zn in the composted mixture increased after the composting process. Mn and Zn were mainly found in mobile fractions (exchangeable fraction (F1), carbonate fraction (F2), and Fe/Mn oxide fraction (F3)). Cu and Pb were strongly associated with the stable fractions (organic matter/sulfides fraction (F4) and residual fraction (F5)). These five metal fractions were used to calculate the metal mobility (bioavailability) in the sewage sludge and composted mixture. The mobility (bioavailability) of Mn, Pb, and Zn (but not Cu) increased during the composting process. The metal mobility in the composted mixture ranked in the following order: Mn>Zn>Pb>Cu.  相似文献   

13.
The aim of this study was to quantify the diffuse emissionsduring use of metal containing goods in the capital of Sweden,Stockholm. The following metals were studied: Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Mercury (Hg), Nickel (Ni) and Zinc (Zn).A major part of the metals are found in a protected environmentwhere degrading processes like corrosion are most limited. However, during the lifetime of some goods the metal release to the environment is significant. The quantitatively most dominant emissions were found for Cu and Zn. The tap water system and roofs/fronts (Cu) represent goods with large exposedareas but with relatively small release rates per unit. In contrast, brake linings, aerial lines and electrical grounding (Cu) and tyres, brake linings and chemicals (Zn) are allgoods with high release rates but mostly limited exposed stocks.High yearly emissions are also found for Pb, ammunition andsinkers dominate the calculated emissions totally. For Cr and Ni, stainless steel represent the major part of the stocks, butcorrosion was estimated to give only a minor contribution to the emissions. Potential emission sources, i.e. stabilisers,pigments and plated goods dominate the exposed Cd stock. Theseemissions were not quantified due to lack of data. Hg is currently phased out, but one major source of emission, i.e. the use of amalgam, will be continuously significant for several decades. The importance of the traffic sector is obvious. The emissionsfrom brake linings (Cu, Zn and Pb), tyres (Zn, Pb, Cr and Ni)and asphalt wear (Cu, Zn, Cr, Ni and Pb) are all of large importance for the total emission from respectively metal.  相似文献   

14.
In order to separate and reuse heavy and alkali metals from flue gas during sewage sludge incineration, experiments were carried out in a pilot incinerator. The experimental results show that most of the heavy and alkali metals form condensed phase at temperature above 600 degrees C. With the addition of 5% calcium chloride into sewage sludge, the gas/solid transformation temperature of part of the metals (As, Cu, Mg and Na) is evidently decreased due to the formation of chloride, while calcium chloride seems to have no significant influence on Zn and P. Moreover, the mass fractions of some heavy and alkali metals in the collected fly ash are relatively high. For example, the mass fractions for Pb and Cu in the fly ash collected by the filter are 1.19% and 19.7%, respectively, which are well above those in lead and copper ores. In the case of adding 5% calcium chloride, the heavy and alkali metals can be divided into three groups based on their conversion temperature: Group A that includes Na, Zn, K, Mg and P, which are converted into condensed phase above 600 degrees C; Group B that includes Pb and Cu which solidify when the temperature is above 400 degrees C; and Group C that includes As, whose condensation temperature is as low as 300 degrees C.  相似文献   

15.
Soil profiles at five automobile mechanic waste dumps in Port-Harcourt, Nigeria were investigated to assess the spatial distribution, chemical speciation, and likely mobility of Cd, Cu, Pb, Zn, Cr and Ni in the soil as a function of the soil properties. A sequential fractionation protocol was used that generated six different fractions into which soil metal could partition. Cadmium was associated with non-residual fractions at surface horizons, but at lower depths it was in the residual fractions. Copper and Cr partitioned into organic and residual fractions, while Pb was associated with an Fe-Mn oxide fraction and the residual fractions. Zinc in surface horizons partitioned into an Fe-Mn oxide fraction and a fraction that captured carbonate-bound species, but in subsurface horizons, it was mainly in the residual fractions. Ni was predominantly found in the residual fractions. Mobility factors were calculated, and their values tended to decrease with increasing profile depth, indicating that these metals are relatively mobile in the surface horizons compared the subsurface except for chromium in the 15-30 cm depths. The mobility factors for the heavy metals follow the order: Cd > Zn > Pb > Cu > Cr > Ni. The results suggest that there is serious contamination hazard with Cd, Pb, and Zn in the soil profiles.  相似文献   

16.
The solubility and potential mobility of heavy metals (Cd, Cu,Hg, Pb and Zn) in two urban soils were studied by sequential andleaching extractions (rainwater). Compared to rural (arable) soils on similar parent material, the urban soils were highlycontaminated with Hg and Pb and to a lesser extent also with Cd,Cu and Zn. Metal concentrations in rainwater leachates were related to sequential extractions and metal levels reported fromStockholm groundwater. Cadmium and Zn in the soils were mainly recovered in easily extractable fractions, whereas Cu and Pb were complex bound. Concentrations of Pb in the residual fractionwere between two- and eightfold those in arable soils, indicatingthat the sequential extraction scheme did not reflect the solidphases affected by anthropogenic inputs. Cadmium and Zn conc. inthe rainwater leachates were within the range detected in Stockholm groundwater, while Cu and Pb conc. were higher, whichsuggests that Cu and Pb released from the surface soil were immobilised in deeper soil layers. In a soil highly contaminatedwith Hg, the Hg conc. in the leachate was above the median concentration, but still 50 times lower than the max concentration found in groundwater, indicating the possibilityof other sources. In conclusion, it proved difficult to quantitatively predict the mobility of metals in soils by sequential extractions.  相似文献   

17.
This study aimed to identify distribution of metals and to estimate the amount of these metals that can be potentially recovered from incineration residues. First, the partitioning behavior of Cr, Cu, Fe, Cd, Al, Zn, and Pb in bottom ash and fly ash was investigated in one large municipal waste incinerator in Taiwan. In addition, the material flow analysis (MFA) method was used to estimate the material flux of metals within incinerator plant, and to calculate the amount of metal recovery. According to the findings of this study, six metals (Fe, Al, Cu, Zn, Cr, and Pb) concentrated in bottom ash mostly, while Cd existed primarily in fly ash. The weight percentages of Fe (4.49%), Al (5.24%), Cu (1.29%), Zn (2.21%), and Pb (0.58%) in incinerator ash are high, and even higher than the compositions of natural minerals. Finally, the amount of Cr, Cu, Fe, Cd, Al, Zn and Pb that can be potentially recovered from incineration residues will reach 2.69 x 10(2), 1.46 x 10(4), 4.91 x 10(4), 6.92 x 10(1), 5.10 x 10(4), 1.85 x 10(4) and 4.66 x 10(3) ton/yr, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号