首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Five-month old hybrid poplar clones NE388 and NE359 were exposed to square-wave 30, 55, and 80 ppb O(3) (8 h/day, 7 day/week) under constant high light (HL) and light fleck (LF) during 28 May-29 June 1999, and exposed to 30 and 55 ppb O(3) under HL, LF, and constant low light (LL) during 22 May-28 June 2000 within Continuously Stirred Tank Reactors (CSTR) in a greenhouse. Ramets of these two hybrid clones received similar total photosynthetically active radiation (PAR) within the LF and LL treatments. Visible foliar symptoms, leaf gas exchange, and growth were measured. More severe O(3) induced foliar symptoms were observed on ramets within the LF and LL treatments than within the HL treatment for both clones. The LF treatment resulted in significantly greater foliar injury than the LL treatment for NE388. The LF and LL treatments generally resulted in lower photosynthetic rates (Pn) for both clones, but did not affect stomatal conductance (g(wv)); therefore, the ratios of g(wv)/Pn and the O(3) uptake/Pn were greatest in plants grown under the LF treatment, followed by those grown under LL treatment; plants grown under HL had the lowest ratios of g(wv)/Pn and O(3) uptake/Pn. Greater ratios of g(wv)/Pn and O(3) uptake/Pn were consistently associated with more severe visible foliar symptoms. The negative impacts of the LF treatment on growth were greater than those of the LL treatment. Results indicate that not only the integral, but also the pattern of photo flux density, may affect carbon gain in plants. Increased foliar injury may be expected under light fleck conditions due to the limited repair capacity as a result of continuity of O(3) uptake while photosynthesis decreases under LL conditions.  相似文献   

2.
The crowns of five canopy dominant black cherry (Prunus serotina Ehrh.), five white ash (Fraxinus americana L.), and six red maple (Acer rubrum L.) trees on naturally differing environmental conditions were accessed with scaffold towers within a mixed hardwood forest stand in central Pennsylvania. Ambient ozone concentrations, meteorological parameters, leaf gas exchange and leaf water potential were measured at the sites during the growing seasons of 1998 and 1999. Visible ozone-induced foliar injury was assessed on leaves within the upper and lower crown branches of each tree. Ambient ozone exposures were sufficient to induce typical symptoms on cherry (0-5% total affected leaf area, LAA), whereas foliar injury was not observed on ash or maple. There was a positive correlation between increasing cumulative ozone uptake (U) and increasing percent of LAA for cherry grown under drier site conditions. The lower crown leaves of cherry showed more severe foliar injury than the upper crown leaves. No significant differences in predawn leaf water potential (psi(L)) were detected for all three species indicating no differing soil moisture conditions across the sites. Significant variation in stomatal conductance for water vapor (g(wv)) was found among species, soil moisture, time of day and sample date. When comparing cumulative ozone uptake and decreased photosynthetic activity (P(n)), red maple was the only species to show higher gas exchange under mesic vs. drier soil conditions (P < 0.05). The inconsistent differences in gas exchange response within the same crowns of ash and the uncoupling relationship between g(wv) and P(n) demonstrate the strong influence of heterogeneous environmental conditions within forest canopies.  相似文献   

3.
Sixteen black cherry (Prunus serotina, Ehrh.), 10 white ash (Fraxinus americana, L.) and 10 red maple (Acer rubrum, L.) 1-year old seedlings were planted per plot in 1997 on a former nursery bed within 12 open-top chambers and six open plots. Seedlings were exposed to three different ozone scenarios (ambient air: 100% O3; non-filtered air: 98% ambient O3; charcoal-filtered air: 50% ambient O3) within each of two different water regimes (nine plots irrigated, nine plots non-irrigated) during three growing seasons.During the 1998 and 1999 growing season, leaf gas exchange, plant water relations, and foliar injury were measured. Climatic data,ambient- and chamber-ozone-concentrations were monitored. We found that seedlings grown under irrigated conditions had similar (in 1998) but significantly higher gas exchange rates (in 1999) than seedlings grown within non-irrigated plots among similar ozone exposures. Cherry and ash had similar ozone uptake but cherry developed more ozone-induced injury (< 34% affected leaf area, LAA) than ash (<5% LAA), while maple rarely showed foliar injury, indicating the species differed in ozone sensitivity. Significantly more severe injury on seedlings grown under irrigated conditions than seedlings grown under non-irrigated conditions demonstrated that soil moisture altered seedling responses to ambient ozone exposures.  相似文献   

4.
An evaluation of the effects of ambient ozone (O3) on muskmelon was conducted with the use of open-top chambers (OTCs). 'Superstar' muskmelons grown in charcoal-filtered (CF) chambers compared to those grown in nonfiltered (NF) chambers showed significant differences in the severity of visible foliar O3 injury. Furthermore, plants grown in NF conditions had significantly less (21.3%) marketable fruit weight and fewer (20.9%) marketable fruit number than those from CF chambers. No differences were found in early biomass production, leaf area, or number of nodes after 3 weeks of exposure to treatment conditions. Ambient O3 did not affect soluble solids content of mature fresh fruit nor foliage fresh weight at final harvest. Results indicate that ambient concentrations of O3 in southwestern Indiana caused significant foliar injury and yield loss to muskmelons.  相似文献   

5.
Open pollinated families of black cherry seedlings were studied to determine genotypic differences in foliar ozone injury and leaf gas exchange in 1994 and growth response following three growing seasons. An O(3)-sensitive half-sibling family (R-12) and an O(3)-tolerant half-sibling family (MO-7) planted in natural soil were studied along with generic nursery stock (NS) seedlings. Ozone exposure treatments were provided through open top chambers and consisted of 50, 75, and 97% of ambient ozone, and open plots from May 9 to August 26, 1994. Ambient ozone concentrations reached an hourly peak of 88 ppb with 7-hour averages ranging from 39 to 46 ppb. Seedlings in the 50 and 75% of ambient chambers were never exposed to greater than 80 ppb O(3). Visible foliar ozone injury (stipple) was significantly higher for R-12 seedlings than MO-7 seedlings and increased with increasing ozone exposures. For the chamber treatments averaged over all families, there was no significant difference in stomatal conductance and net photosynthetic rates, but there was a significant decrease in root biomass, and a significant decrease in root/shoot ratio between the 50 and 97% of ambient chambers. Stomatal conductance and net photosynthetic rates were significantly different between families with R-12 seedlings generally greater than MO-7 seedlings. The R-12 seedlings had a 7.5 mmol m(-2) increase in ozone uptake compared to MO-7, and at the same cumulative O(3) exposure R-12 exhibited 40.9% stippled leaf area, whereas MO-7 had 9.2% stippled leaf area. Significant differences were observed in stem volume growth and total final biomass between the open-top chambers and open plots. Although R-12 had the most severe foliar ozone injury, this family had significantly greater stem volume growth and total final biomass than MO-7 and NS seedlings. Root:shoot ratio was not significantly different between MO-7 and R-12 seedlings.  相似文献   

6.
Canton Ticino in southern Switzerland is exposed to some of the highest concentrations of tropospheric ozone in Europe. During recent field surveys in Canton Ticino, foliar symptoms identical to those caused by ozone have been documented on native tree and shrub species. In Europe, the critical ozone level for forest trees has been defined at an AOT40 of 10 ppm.h O3 (10 ppm.h accumulated exposure of ozone over a threshold of 40 ppb) during daylight hours over a six-month growing season. The objective of this study was to determine the amount of ambient ozone required to induce visible foliar symptoms on various forest plant species in southern Switzerland. Species were grown within eight open-top chambers and four open plots at the Vivaio Lattecaldo Cantonal Forest Nursery in Ticino, Switzerland. Species differed significantly in terms of the ppb.h exposures needed to cause visible symptoms. The most to least symptomatic species grown within open-plots in this study rank as Prunus serotina, Salix viminalis, Vibrnum lantana, Rhamnus cathartica, Betula pendula, Rumex obtusifolius, Sambucus racemosa, Morus nigra, Prunus avium, Fraxinus excelsior, Rhamnus frangula, Alnus viridis, Fagus sylvatica and Acer pseudoplatanus. Similar rankings were obtained in the non-filtered chamber plots. The ranking of species sensitivity closely follows AOT values for the occurrence of initial symptoms and symptom progression across the remainder of the exposure season. Species that first showed evidence of foliar injury also demonstrated the most sensitivity throughout the growing season, with symptoms rapidly advancing over ca. 25-30% of the total plant leaf surfaces by the end of the observation period. Conversely, those species that developed symptoms later in the season had far less total injury to plant foliage by the end of the observation period (1.5 to < 5% total leaf area injured). The current European ambient ozone standard may be insufficient to protect native plant species from visible foliar injury, and many more native species may be sensitive to ozone-induced foliar injury than are currently known.  相似文献   

7.
The objectives of this study were to examine the foliar sensitivity to ozone exposure of 12 tree, shrub, and herbaceous species native to southern Switzerland and determine the seasonal cumulative ozone exposures required to induce visible foliar injury. The study was conducted from the beginning of May through the end of August during 2000 and 2001 using an open-top chamber research facility located within the Lattecaldo Cantonal Forest Nursery in Canton Ticino, southern Switzerland (600 m asl). Plants were examined daily and dates of initial foliar injury were recorded in order to determine the cumulative AOT40 ppb h ozone exposure required to cause visible foliar injury. Plant responses to ozone varied significantly among species; 11 species exhibited visible symptoms typical of exposures to ambient ozone. The symptomatic species (from most to least sensitive) were Populus nigra, Viburnum lantana, Salix alba, Crataegus monogyna, Viburnum opulus, Tilia platyphyllos, Cornus alba, Prunus avium, Fraxinus excelsior, Ribes alpinum, and Tilia cordata; Clematis spp. did not show foliar symptoms. Of the 11 symptomatic species, five showed initial injury below the critical level AOT40 10 ppmh O3 in the 2001 season.  相似文献   

8.
Ambient concentrations of ozone (O(3)) were measured and O(3) phytotoxicity to tobacco (Nicotiana tabacum L.) was demonstrated in several forest locations in Poland during a pilot study from July-October, 1991. At southern and central locations in Poland, the 24-hour average O(3) concentrations measured with a UV absorption photometer were in the range of 32-55 ppb, and the corresponding 1-hour maxima in the range of 39-83 ppb. At these locations longer period (four to fifteen days) average concentrations were determined using O(3) passive samplers (DGA, Inc.) and were reaching 60 ppb, while at Bialowieza in eastern Poland O(3) concentrations averaged less than 40 ppb. In Szarow, near the Niepolomice Forest in southern Poland, 1-hour O(3) maxima estimated from the data obtained using passive samplers were about 105 ppb in early September. At several locations in southern and central Poland, extensive O(3) injury was determined on O(3)-sensitive Bel W-3 tobacco plants; such injury did not occur in the Bialowieza Forest of eastern Poland. The results of this pilot study indicate that O(3) is present at phytotoxic levels in southern and central Poland.  相似文献   

9.
Interspecific plant competition has been hypothesized to alter effects of early-season ozone (O3) stress. A phytometer-based approach was utilized to investigate O3 effects on growth and nutritive quality of Poa pratensis grown in monoculture and in mixed cultures with four competitor-plant species (Anthoxanthum odoratum, Achillea millefolium, Rumex acetosa and Veronica chamaedrys). Mesocosms were exposed during April/May 2000-2002 to charcoal-filtered air+25 ppb O3 (control) or non-filtered air+50 ppb O3 (elevated O3). Biomass production was not affected by O3, but foliar injury symptoms were observed in May 2002. Early-season O3 exposure decreased relative food value of P. pratensis by an average of 8%, which is sufficient to have nutritional implications for its utilization by herbivores. However, forage quality response to O3 was not changed by interspecific competition. Lack of injury and nutritive quality response in P. pratensis harvested in September may reflect recovery from early-season O3 exposure.  相似文献   

10.
In a nitrogen (N) saturated forest downwind from Los Angeles, California, the cumulative response to long-term background-N and N-amendment on black oak (Quercus kelloggii) was described in a below-average and average precipitation year. Monthly measurements of leaf and branch growth, gas exchange, and canopy health attributes were conducted. The effects of both pollutant exposure and drought stress were complex due to whole tree and leaf level responses, and shade versus full sun leaf responses. N-amended trees had lower late summer carbon (C) gain and greater foliar chlorosis in the drought year. Leaf water use efficiency was lower in N-amended trees in midsummer of the average precipitation year, and there was evidence of poor stomatal control in full sun. In shade, N-amendment enhanced stomatal control. Small differences in instantaneous C uptake in full sun, lower foliar respiration, and greater C gain in low light contributed to the greater aboveground growth observed.  相似文献   

11.
12.
Methane emissions from wastewater management   总被引:2,自引:0,他引:2  
Gas exchange and ozone-induced foliar injury were intensively measured during a 6-day period in mid-August 1998 on leaves of Acer pseudoplatanus, Betula pendula, Corylus avellana, Fagus sylvatica, Fraxinus excelsior, Morus nigra, Prunus avium, Prunus serotina, Rhamnus cathartica, and Viburnum lantana at a forest nursery site in Canton Ticino, Switzerland. Plants were grown in four open plots (AA), four open-top chambers receiving carbon-filtered (CF) air, and four receiving non-filtered (NF) air. Significant variation in gas exchange (F > 12.7, P < 0.001) was detected among species with average net photosynthesis and average stomatal conductance differing by a factor of two. Species also varied significantly in foliar injury for those leaves for which we measured gas exchange (F = 39.6, P < 0.001). Fraxinus excelsior, M. nigra, P. avium, P. serotina, R. cathartica, and V. lantana showed more injury than A. pseudoplatanus, B. pendula, C. avellana, and Fagus sylvatica. Plants grown in CF chambers had significantly higher net photosynthesis (A) and stomatal conductance to water vapor (gwv), and lower foliar injury than plants grown in NF chambers and AA plots; interactions between species and ozone treatments were significant for all variables (F > or = 2.2, P < 0.05) except gwv (F = 0.7, P > 0.1). Although A and gwv decreased and foliar injury increased with leaf age, the magnitude of these changes was lower for plants grown in CF chambers than for plants grown in NF chambers and AA plots. Neither ozone uptake threshold (r = 0.26, P > 0.20) nor whole-plant injury (r = -0.15, P > 0.41) was significantly correlated with stomatal conductance across these species. It appears that the relationships between stomatal conductance and foliar injury are species-specific and interactions between physiology and environments and leaf biochemical processes must be considered in determining species sensitivity to ambient ozone exposures.  相似文献   

13.
Six potato cultivars were grown to maturity in field plots in New Brunswick, New Jersey, according to standard commercial practices over a 5-year period. One-half of the plots were given a periodic soil drench of an antioxidant (EDU) which has the capacity to protect foliage against ozone toxicity. Based upon visible foliar injury and total tuber yield, the cultivars Norland and Norchip proved significantly more sensitive to ambient ozone pollution than Green Mountain, Irish Cobbler, Belrus or Superior. When foliar injury was less than 20%, no impact on tuber yield was detected. However, when 75% of the foliage exhibited O(3) toxicity symptoms, tuber yield was reduced 25% and 31%, respectively, in 'Norland' and 'Norchip'. A review of results from studies in the US and Canada utilizing different assessment methodologies provides evidence that ambient ozone causes significant tuber yield reduction in sensitive white potato genotypes when foliar injury exceeds 20 to 40%.  相似文献   

14.
To investigate the effects of ambient-level gas-phase peroxides concurrent with O3 on foliar injury, photosynthesis, and biomass in herbaceous plants, we exposed Japanese radish (Raphanus sativus) to clean air, 50 ppb O3, 100 ppb O3, and 2-3 ppb peroxides + 50 ppb O3 in outdoor chambers. Compared with exposure to 100 ppb O3, exposure to 2-3 ppb peroxides + 50 ppb O3 induced greater damage in foliar injury, net photosynthetic rates and biomass; the pattern of foliar injury and the cause of net photosynthetic rate reduction also differed from those occurring with O3 exposure alone. These results indicate for the first time that sub-ppb peroxides + 50 ppb O3 can cause more severe damage to plants than 100 ppb O3, and that not only O3, but also peroxides, could be contributing to the herbaceous plant damage and forest decline observed in Japan's air-polluted urban and remote mountains areas.  相似文献   

15.
Two white clover (Trifolium repens L.) clones with varying sensitivity to O(3) are being developed as a system to indicate effects of ambient concentrations of tropospheric O(3) on plants. One clone (NC-S) is highly sensitive to O(3) and the other (NC-R) is highly resistant. The system relies on periodic measurement of foliar injury, foliar chlorophyll, and forage production of NC-S and NC-R grown in 15-liter pots throughout a summer season. Relative amounts of foliar injury and ratios (NC-S/NC-R) for chlorophyll and forage weight can be used to estimate biologically effective ambient O(3) concentrations. The effect of variation in rooting media formulation and fertilizer rate on response of NC-S and NC-R to ambient O(3) was determined in the present study. In the rooting medium experiment, clover was grown in three mixtures of sandy loam topsoil:course washed sand:Metro Mix 220 (ratios (by volume) of 2:1:1, 2:1:5, and 6:1:1). In the fertilizer experiment, clover was grown in the 2:1:1 medium at four fertilizer rates (soluble 5-11-26 (N-P-K) at 0.0, 0.5, 1.0, or 2.0 g per pot). Ozone caused more foliar injury, more chlorosis, and a greater decrease in forage production of NC-S than of NC-R in all studies. Rooting media treatments affected both clones similarly and occasional clone x media interactions were judged to be random. Forage production by NC-S, relative to that of NC-R, was generally greater in the 0.0 fertilizer treatment, but the forage ratios were similar at all other fertilizer treatments. The relative response of NC-S and NC-R to O(3) is fairly stable under cultural conditions that support normal plant growth.  相似文献   

16.
Spartina alterniflora plants were collected from salt marshes within New Jersey, South Carolina, and Georgia USA and shipped to The Pennsylvania State University. New plants were grown from rhizomes in six open-top field chambers. Three chambers received charcoal-filtered air, and three received charcoal-filtered air plus 80 ppb ozone, 8 h/day for 65 days. Flower, leaf, and shoot number per plant were recorded weekly. Photosynthetic rates were measured in week 5, and foliar injury was assessed during week 9. Final dry weight of roots, shoots, and rhizomes were determined. While ozone-treated plants from all states expressed symptoms of ozone injury, plants from South Carolina exhibited no effect of ozone on any other measured variable. Plants from the Georgia site showed ozone-induced reductions in all measured variables except leaf dry weight. Ozone-treated plants from New Jersey showed reductions in photosynthetic rate, leaf and shoot number, and root dry weights. Only plants from New Jersey produced flowers, with ozone treatment causing delay in flowering and reduction in the number of flower spikes produced.  相似文献   

17.
Tibouchina pulchra saplings were exposed to carbon filtered air (CF), ambient non-filtered air (NF) and ambient non-filtered air+40 ppb ozone (NF+O3) 8 h per day during two months. The AOT40 values at the end of the experiment were 48, 910 and 12,895 ppb h(-1), respectively, for the three treatments. After 25 days of exposure (AOT40=3871 ppb h(-1)), interveinal red stippling appeared in plants in the NF+O3 chamber. In the NF chamber, symptoms were observed only after 60 days of exposure (AOT40=910 ppb h(-1)). After 60 days, injured leaves per plant corresponded to 19% in NF+O3 and 1% in the NF treatment; and the average leaf area injured was 7% within the NF+O3 and 0.2% within the NF treatment. The extent of leaf area injured (leaf injury index) was mostly explained by the accumulated exposure of ozone (r2=0.89; p<0.05).  相似文献   

18.
Mature beech trees (Fagus sylvatica) grown at two different altitudes in the Bavarian forest were compared with young beech trees grown at nearby field sites or in phytotrons for their macroscopic and physiological responses to different ozone (O(3)) exposures. Cumulative O(3) exposure expressed as the sum of hourly mean concentrations above the canopy ranged between 100 and 150 microl l(-1) h, with the vertical O(3) profiles at the higher altitude site being enhanced by 30%. O(3) profiles at all sites were reduced by up to 20% with increasing depth within and beneath the canopy. The leaf discoloration that developed in the absence of premature leaf loss was similar in the sun foliage of mature and young trees (including plant grown in the phytotron). Injury became apparent at low O(3) exposures, expressed as accumulated hourly means over a threshold of 40 nl l(-1) (AOT40 <3.5 microl l(-1) h) at the lower site in both the mature trees and the young beech at the field site, but only occurred when AOT40 values reached 7 microl l(-1) h at the upper site, and 6 microl l(-1) h in the phytotrons. However, the association between injury and O(3) exposure was improved when cumulative ozone uptake to sun leaves was the ozone index, used with values of about 3 mmol m(-2) resulting in visible injury in both mature and young beech growing in phytotrons. Under high ozone exposure levels of inositol were lowered, whilst concentrations of lignin-like materials were enhanced in mature beech. Similar responses were observed in young beech grown in phytotrons. As the sun foliage was affected by only a small and variable extent each year, the seasonal O(3) impact at high altitude did not appear to pose an acute risk to mature beech trees.  相似文献   

19.
Polyamines (PA) are known to be involved in the areas of plant physiology and biochemistry which are related to the response of a plant to air pollution. This study examines the role of arginine decarboxylase (ADC), an important rate-limiting enzyme in polyamine synthesis, in barley plants exposed to ozone (O(3)). The activity of ADC increased significantly in O(3)-treated leaves when visible injury was hardly apparent. The increase in ADC activity may be a mechanism to increase the PA levels in O(3)-treated leaves and so minimize the damaging effects of O(3). Supporting this, foliar applications of DL-alpha-difluoromethylarginine (DFMA), a specific inhibitor of ADC, prevented the rise in ADC activity and visible injury was considerable on exposure to O(3). This damage was not due to the foliar sprays, as little visible injury was seen in leaves in the O(3)-free controls. The results are discussed in terms of the roles of PA in conferring O(3) resistance in plants.  相似文献   

20.
Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号