首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The response of the Baltic Sea spring bloom was studied in mesocosm experiments, where temperatures were elevated up to 6°C above the present-day sea surface temperature of the spring bloom season. Four of the seven experiments were carried out at different light levels (32–202?Wh?m?2 at the start of the experiments) in the different experimental years. In one further experiment, the factors light and temperature were crossed, and in one experiment, the factors density of overwintering zooplankton and temperature were crossed. Overall, there was a slight temporal acceleration of the phytoplankton spring bloom, a decline of peak biomass and a decline of mean cell size with warming. The temperature influence on phytoplankton bloom timing, biomass and size structure was qualitatively highly robust across experiments. The dependence of timing, biomass, and size structure on initial conditions was tested by multiple regression analysis of the y-temperature regressions with the candidate independent variables initial light, initial phytoplankton biomass, initial microzooplankton biomass, and initial mesozooplankton (=copepod) biomass. The bloom timing predicted for mean temperatures (5.28°C) depended on light. The peak biomass showed a strong positive dependence on light and a weaker negative dependence on initial copepod density. Mean phytoplankton cell size predicted for the mean temperature responded positively to light and negatively to copepod density. The anticipated mismatch between phytoplankton supply and food demand by newly hatched copepod nauplii occurred only under the combination of low light and warm temperatures. The analysis presented here confirms earlier conclusions about temperature responses that are based on subsets of our experimental series. However, only the comprehensive analysis across all experiments highlights the importance of the factor light.  相似文献   

2.
Shifts in the timing and magnitude of the spring plankton bloom in response to climate change have been observed across a wide range of aquatic systems. We used meta-analysis to investigate phenological responses of marine and freshwater plankton communities in mesocosms subjected to experimental manipulations of temperature and light intensity. Systems differed with respect to the dominant mesozooplankton (copepods in seawater and daphnids in freshwater). Higher water temperatures advanced the bloom timing of most functional plankton groups in both marine and freshwater systems. In contrast to timing, responses of bloom magnitudes were more variable among taxa and systems and were influenced by light intensity and trophic interactions. Increased light levels increased the magnitude of the spring peaks of most phytoplankton taxa and of total phytoplankton biomass. Intensified size-selective grazing of copepods in warming scenarios affected phytoplankton size structure and lowered intermediate (20–200?μm)-sized phytoplankton in marine systems. In contrast, plankton peak magnitudes in freshwater systems were unaffected by temperature, but decreased at lower light intensities, suggesting that filter feeding daphnids are sensitive to changes in algal carrying capacity as mediated by light supply. Our analysis confirms the general shift toward earlier blooms at increased temperature in both marine and freshwater systems and supports predictions that effects of climate change on plankton production will vary among sites, depending on resource limitation and species composition.  相似文献   

3.
The phytoplankton of the Bahía Blanca Estuary, Argentina, has been surveyed since 1978. Chlorophyll a, phytoplankton abundance, species composition and physico-chemical variables have been fortnightly recorded. From 1978 to 2002, a single winter–early spring diatom bloom has dominated the main pattern of phytoplankton interannual variability. Such pattern showed noticeable changes since 2006: the absence of the typical winter bloom and changes in phenology, together with the replacement of the dominant blooming species, i.e. Thalassiosira curviseriata, and the appearance of different blooming species, i.e. Cyclotella sp. and Thalassiosira minima. The new pattern showed relatively short-lived diatom blooms that spread throughout the year. In addition, shifts in the phytoplankton size structure toward small-sized diatoms, including the replacement of relatively large Thalassiosira spp. by small Cyclotella species and Chaetoceros species have been noticed. The changes in the phenology and composition of the phytoplankton are mainly attributed to warmer winters and the extremely dry weather conditions evidenced in recent years in the Bahía Blanca area. Changing climate has modified the hydrological features in the inner part of the estuary (i.e. higher temperatures and salinities) and potentially triggered the reorganization of the phytoplankton community. This long-term study provides evidence on species-specific and structural changes at the bottom of the pelagic food web likely related to the recent hydroclimatic conditions in a temperature estuary of the southwestern Atlantic.  相似文献   

4.
The spring bloom in seasonally stratified seas is often characterized by a rapid increase in photosynthetic biomass. To clarify how the combined effects of nutrient and light availability influence phytoplankton composition in the oligotrophic Gulf of Aqaba, Red Sea, phytoplankton growth and acclimation responses to various nutrient and light regimes were recorded in three independent bioassays and during a naturally-occurring bloom. We show that picoeukaryotes and Synechococcus maintained a “bloomer” growth strategy, which allowed them to grow quickly when nutrient and light limitation were reversed. During the bloom picoeukaryotes and Synechococcus appeared to have higher P requirements relative to N, and were responsible for the majority of photosynthetic biomass accumulation. Following stratification events, populations limited by light showed rapid photoacclimation (based on analysis of cellular fluorescence levels and photosystem II photosynthetic efficiency) and community composition shifts without substantial changes in photosynthetic biomass. The traditional interpretation of “bloom” dynamics (i.e., as an increase in photosynthetic biomass) may therefore be confined to the upper euphotic zone where light is not limiting, while other acclimation processes are more ecologically relevant at depth. Characterizing acclimation processes and growth strategies is important if we are to clarify mechanisms that underlie productivity in oligotrophic regions, which account for approximately half of the global primary production in the ocean. This information is also important for predicting how phytoplankton may respond to global warming-induced oligotrophic ocean expansion.  相似文献   

5.
Driving factors of phytoplankton spring blooms have been discussed since long, but rarely analyzed quantitatively. Here, we use a mechanistic size-based ecosystem model to reconstruct observations made during the Kiel mesocosm experiments (2005–2006). The model accurately hindcasts highly variable bloom developments including community shifts in cell size. Under low light, phytoplankton dynamics was mostly controlled by selective mesozooplankton grazing. Selective grazing also explains initial dominance of large diatoms under high light conditions. All blooms were mainly terminated by aggregation and sedimentation. Allometries in nutrient uptake capabilities led to a delayed, post-bloom dominance of small species. In general, biomass and trait dynamics revealed many mutual dependencies, while growth factors decoupled from the respective selective forces. A size shift induced by one factor often changed the growth dependency on other factors. Within climate change scenarios, these indirect effects produced large sensitivities of ecosystem fluxes to the size distribution of winter phytoplankton. These sensitivities exceeded those found for changes in vertical mixing, whereas temperature changes only had minimal impacts.  相似文献   

6.
In the spring of 1989, an experimental study of the spawning behaviour of Calanus finmarchicus was carried out in Malangen, northern Norway. Here, a single cohort of females reproduce from mid-March to May, approximately coinciding with the wax and wane of the spring phytoplankton bloom. An evaluation of population characteristics such as the proportion of adults, sex ratio, as well as gonad maturation and daily productivity of the females clearly reveals three phases within the population's reproductive period. In between incline and decline, the highest spawning rates (on average >20 eggs female-1 d-1, equivalent to 5.7% body C d-1) occur after the males have disappeared from the population and almost all females have mature gonads. During this period, the ratio of adults to copepodid Stage Vs changes from dominance of adults to that of CVs. Although first egg production was observed prior to the phytoplankton increase, it is suggested that the onset of the phytoplankton spring bloom in the first few days of April enhances the final maturation of ovaries in the females and therefore triggers the onset of the main spawning period. The clutch sizes (max. 95 eggs clutch-1) vary with the age of the females, while the spawning frequencies depend on the available food quantities. The overlap of an estimated minimal 4 wk spawning period for the individuals leads to a main reproductive phase for the population of ca. 3 wk, during which time mean clutch sizes and spawning frequencies are maximal (highest average clutch size: 70 eggs female-1 clutch-1, 100 to 60% of the females spawning). This period ends before the end of the phytoplankton bloom. Calculated by stepwise interpolation and summation of the mean daily egg production in the population, an average female produced ca. 600 eggs during the spring bloom in Malangen 1989. We suggest that reproduction and population development of C. finmarchicus in spring follows a reproducible pattern for a given temperature regime and non-limiting food conditions. In the case of clearly identifiable cohorts, it seems possible to trace the state of reproduction by evaluating population parameters.  相似文献   

7.
The population of Corophium multisetosum Stock, 1952 in Areão displayed a semiannual, iteroparous life history. Mean longevity was ~6?mo, with the estimated life span longer for overwintering individuals born in autumn than for individuals born in spring. Length-frequency data indicated that the length increment per moult is probably higher in males than females; however females moulted more frequently and achieved a larger body size. Preliminary growth rates were 100?μm?d?1 for juveniles and 19 to 29?μm?d?1 for mature females, with the lower values occurring during the winter. It was estimated that under favourable conditions females may attain reproductive size and mature within 1?mo. Although incubating females were present all year round, recruitment occurred in spring, almost ceased during the summer, peaked in autumn, and decreased again during the winter. Extreme temperatures and very low salinities during winter and summer may have deterred breeding, while moderate temperatures (15 to 20?°C) and salinities > 1?psu in spring and autumn were apparently favourable for reproduction. The unfavourable summer conditions constrained breeding and synchronised the timing of reproduction. In late-autumn and during the winter, as temperature decreased and brooding time increased, synchrony was progressively lost. Brood size varied as a function of embryonic developmental stage, size of incubating females, and season. The life-history pattern and reproductive features of C. multisetosum in Areão are closely related to temperature and salinity; other environmental conditions such as oxygen content of the water and food availability may also be relevant.  相似文献   

8.
Increasing pCO2 is hypothesized to induce shifts in plankton communities toward smaller cells, reduced carbon export rates and increased roles of gelatinous zooplankton. Appendicularians, among the most numerous pan-global “gelatinous” zooplankton, continuously produce filter-feeding houses, shortcutting marine food webs by ingesting submicron particles, and their discarded houses contribute significantly to carbon fluxes. We present a first mesocosm-scale study on the effects of temperature, pCO2 and bloom structures on the appendicularian, Oikopleura dioica. There were effects of temperature and nutrients on phytoplankton communities. No shifts in functional phytoplankton groups, nor changes in particle sizes/morphotypes, known to impact appendicularian feeding, were observed under manipulated pCO2 conditions. However, appendicularian abundance was positively correlated with increased pCO2, temperature and nutrient levels, consistent with hypotheses concerning gelatinous zooplankton in future oceans. This suggests appendicularians will play more important roles in marine pelagic communities and vertical carbon transport under projected ocean acidification and elevated temperature scenarios.  相似文献   

9.
In recent regime shift analyses, the phytoplankton compartment of the marine food web was essentially represented by phytoplankton color or chlorophyll concentration. A detection of changes directly at the species level is highly desirable. The Helgoland Roads data series, a collection of high frequency long-term time series comprising biological and physico-chemical components of the southern North Sea, allow such an investigation at the level of single species. Aiming at a detection and characterization of habitat and community changes in the observation period (1962 until the end of 2008), we selected six species as representatives of certain classes, for example, benthic or neritic species, and applied a combination of novel analysis methods—a fitness-based analysis of the realized niche, a bloom-triggered averaging and a Markovian analysis of co-occurrence and succession patterns—to related abundance time series and concurrent environmental parameter time series. We found a general trend toward enlargement of niche size and shifts of the niche position, interesting salinity patterns around bloom events of two species, and statistically highly significant changes of a phytoplankton community segment after 1965 and after 1998. Interpreting our observations in ecological terms leads to the formulation of testable hypotheses.  相似文献   

10.
Mass encystment and sinking of dinoflagellates during a spring bloom   总被引:10,自引:0,他引:10  
The decline of a spring bloom dominated by dinoflagellates and the mass sedimentation of dinoflagellate cysts was documented in a coastal area of the northern Baltic Sea, SW Finland in 1983. The exceptionally large spring phytoplankton bloom was observed in early May. After depletion of nitrate phytoplankton biomass declined rapidly. The bloom was followed by intense sedimentation of spherical cysts and of organic matter at the end of May. These cysts were presumably hypnozygotes of Peridinium hangoei Schiller. Sedimentation of dinoflagellate cysts was estimated to correspond to ca. 45% of the maximum sedimentation of particulate organic carbon at this time, although most of the dinoflagellate biomass disintegrated already in the water column and was deposited as organic detritus or washed away by advection. It is concluded that the life cycle strategies of the dominant vernal phytoplankton species have a major impact on the sedimentation of the spring bloom.  相似文献   

11.
Experiments were carried out to determine growth and development rates of the herbivorous copepod Calanus finmarchicus (Gunnerus) under natural conditions during the phytoplankton spring bloom in the northern North Sea. From 28 April to 25 May 1983 copepodite stages I, IV and V were incubated for a 3-d period on board a ship in vessels with naturally occurring phytoplankton or cultured algae as food. Highest rates of growth and development were achieved while the diatom Chaetoceros sp. was the dominant phytoplankton organism. These rates decreased considerably when this chain-forming diatom was succeeded after one week by the small-celled diatom Thalassiosira conferta. Again one week later, during the bloom of the succeeding colonial microflagellate Corymbellus aureus, copepodite stage IV still managed to maintain moderate rates of growth and development, but these rates dropped to almost zero in CV, suggesting the start of a resting stage. Nevertheless, brood collected from this generation and from Calanus helgolandicus (Claus) was raised in the laboratory to the adult stage at high speed. Since temperature and the total phytoplankton concentration in the sea remained almost constant it seems that the retardation and arrestment of growth and development were an immediate response to a qualitative change of the food composition related to the successive blooms of different algal species.  相似文献   

12.
The influence of environmental parameters (temperature, salinity and available food) on the condition, reproductive activity and biochemical composition of a native population of Ostrea edulis L. in San Cibran (Galicia, Spain) was studied between September 1988 and December 1989. Histological preparations of gonads showed that gametogenesis started when temperature was at its lowest in winter. The water temperature in San Cibran never fell low enough to interrupt it. Gametogenesis proceeded slowly and spawning took place in May–June, although the predicted time of ripening was early March. Salinity in San Cibran was relatively stable throughout the year; it did not seem to have any influence on gametogenesis. Available food appeared to be a very important factor in controlling gonad growth, once gametogenesis was initiated. The major concentration of suspended organic particulate matter was present in the spring at the time of rapid gonadal maturation. Only one spawning period was observed. Larvae were released when the food in the water was high. Seasonal changes in the main biochemical components of this oyster were determined for a standard individual. Lipids and carbohydrates presented a similar time-course whereas proteins were constant. When food was abundant, energy reserves were built up. Spawning produced a decrease in biochemical constituent levels, and recovery coincided with the phytoplankton bloom. The stored reserves, mainly lipids, were used to overcome a state of energy imbalance in late autumn associated with low food availability. Results show this oyster to be an opportunist organism which concentrates its reproductive effort during a short period of favourable conditions and which is directly dependent on nutritive availability in the environment.  相似文献   

13.
Coupled three-dimensional hydrodynamic and ecological numerical simulations were used to investigate the role of transport, stagnation zones and dispersion on inter-annual blooms of the diatom Aulacoseira sp. in the vicinity of the drinking water intakes of the Buenos Aires city (Argentina) in the upper Río de la Plata. Three different summer events were analyzed. First, a mild biomass bloom year (2006–2007), second, a high biomass bloom year (2007–2008) and third, a “normal” no bloom year (2009–2010). Simulated water height, water temperature, suspended solids and chlorophyll \(a\) concentrations patterns compared well with field data. Results revealed that the advection of phytoplankton cells via inflows to the Río de la Plata triggered Aulacoseira sp. blooms in the domain. In addition, excessive growth observed near the drinking water intakes, along the Argentinean margin, were associated with long retention times (stagnant region) and weak horizontal dispersion. Increased concentrations of suspended solids in the water column, in response to re-suspension events, did not prevent the blooms, however, were found to also play a key role in controlling the rate of phytoplankton growth. Finally, a non-dimensional parameter, R, that considers phytoplankton patch size, e-folding growth and dispersion time scales is shown to determine the potential bloom occurrences, as well as bloom intensity; R values higher than 5.7 suggest intense phytoplankton growth. For the mild biomass bloom year, \(R = 7.5\) , for the high biomass bloom year, \(R = 11\) and for the “normal” no bloom year \(R= 0.4\) .  相似文献   

14.
Analysing long-term diatom data from the German Bight and observational climate data for the period 1962–2005, we found a close connection of the inter-annual variation of the timing of the spring bloom with the boreal winter atmospheric circulation. We examined the fact that high diatom counts of the spring bloom tended to occur later when the atmospheric circulation was characterized by winter blocking over Scandinavia. The associated pattern in the sea level pressure showed a pressure dipole with two centres located over the Azores and Norway and was tilted compared to the North Atlantic Oscillation. The bloom was earlier when the cyclonic circulation over Scandinavia allowed an increased inflow of Atlantic water into the North Sea which is associated with clearer, more marine water, and warmer conditions. The bloom was later when a more continental atmospheric flow from the east was detected. At Helgoland Roads, it seems that under turbid water conditions (=?low light) zooplankton grazing can affect the timing of the phytoplankton bloom negatively. Warmer water temperatures will facilitate this. Under clear water conditions, light will be the main governing factor with regard to the timing of the spring bloom. These different water conditions are shown here to be mainly related to large-scale weather patterns. We found that the mean diatom bloom could be predicted from the sea level pressure one to three months in advance. Using historical pressure data, we derived a proxy for the timing of the spring bloom over the last centuries, showing an increased number of late (proxy-) blooms during the eighteenth century when the climate was considerably colder than today. We argue that these variations are important for the interpretation of inter-annual to centennial variations of biological processes. This is of particular interest when considering future scenarios, as well to considerations on past and future effects on the primary production and food webs.  相似文献   

15.
《Ecological modelling》2005,186(3):326-344
We present a model framework for the simulation of growth and reproduction of Daphnia at varying conditions of food concentration and temperature. The core of our framework consists of an individual level model that simulates allocation of assimilated carbon into somatic growth, maintenance costs, and reproduction on the basis of a closed carbon budget. A fixed percentage of assimilated carbon is allocated into somatic growth and maintenance costs. Special physiological adaptations in energy acquisition and usage allow realistic model performance even at very low food concentrations close to minimal food requirements. All model parameters are based on physiological measures taken from the literature. Model outputs were thoroughly validated on data from a life-table experiment with Daphnia galeata. For the first time, a successful model validation was performed at such low food concentrations. The escalator boxcar train (EBT) was used to integrate this individual level model into a stage-structured population model. In advance to previous applications of the EBT to Daphnia we included an additional clutch compartment into the model structure that accounts for the characteristic time delay between egg deposition and hatching in cladocerans. By linking two levels of biological organisation, this model approach represents a comprehensive framework for studying Daphnia both at laboratory conditions and in the field. We compared outputs of our stage-structured model with predictions by two other models having analogous parameterisation: (i) another individual level Daphnia model (Kooijman–Metz model) and (ii) a classical unstructured population model. In contrast to our Daphnia model, the Kooijman–Metz model lacks the structure to account for the optimisation of energy acquisition and maintenance requirements by individual daphnids. The unstructured population model showed different patterns of population dynamics that were not in concordance with typical patterns observed in the field. Thus, we conclude our model provides a comprehensive tool for the simulation of growth and reproduction of Daphnia and corresponding population dynamics.  相似文献   

16.
Vertical distribution and population structure of Eucalanus bungii were investigated at site H in the Oyashio region (western subarctic Pacific) from September 1996 through October 1997 to evaluate the species lifecycle pattern and associated ontogenetic vertical migration. Additional temporary samplings were also made at several stations covering the entire subarctic Pacific, Okhotsk Sea and Japan Sea, as a basis for regional comparison of lifecycle features of this species. At site H, a marked phytoplankton bloom occurred from mid-March to June, and E. bungii spawned in April/May in the surface layer. Resulting nauplii and copepodite stage 1 (C1) formed a prominent abundance peak in early June. The C1 developed and reached C5 by August. The development of nauplii through C4 occurred in the surface layer. From August onwards, C5 and a small fraction of C3–C4 sank gradually deeper, and entered diapause to overwinter at >500 m depth. The C5 molted to C6 males and females in February and March, respectively. The C6 males and females mated at 250–500 m depth, and only mated C6 females ascended to the surface layer in April for spawning. Judging from the size of lipid droplets in the body, the C3–C5 specimens deposited lipids in the body through the phytoplankton bloom period, and the lipids were consumed gradually during overwintering. Taking account of sampling season, temporal changes in population structure, and vertical distribution, the data collected from the western subarctic Pacific and Okhotsk Sea are consistent with a 1-year lifecycle for the site H population, while the data from the central and eastern subarctic Pacific were consistent with a 2-year lifecycle. The populations from the southern and southeastern Japan Sea did not fit the features of either lifecycle scenario, and because of their very small population size it is suggested that they originated from the northern Japan Sea. Regional comparison of the prosome length of C6 females, including those in the Bering Sea, indicated significantly larger specimens from the Japan Sea and Okhotsk Sea, and smaller specimens in the eastern subarctic Pacific, as compared with those in the western subarctic Pacific (including site H) and Bering Sea. A possible overwintering mechanism of E. bungii is discussed.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

17.
Seasonal and long-term variations in the body size of planktonic copepods were studied in the northern Baltic Sea. The influence of temperature, salinity and phytoplankton concentration to the body size of Eurytemora affinis, Acartia bifilosa and Limnocalanus macrurus (Calanoida) was examined at three sea areas, differing in their hydrographical and trophic conditions (an archipelago area and an enclosed bay on the SW coast of Finland in 1992 and at an open sea station in the Gulf of Bothnia in 1991). There was an inverse relationship between copepod body length and temperature, while there was a direct effect of phytoplankton concentration. According to multiple regression analysis, the relative importance of these factors varied according to species, developmental stage and study area. In the archipelago area, copepod body size was mainly determined by temperature, while in the open Gulf of Bothnia, phytoplankton concentration was usually more important. Interannual variation in the summer body length of E. affinis and A. bifilosa was examined using samples collected over 18 years (1967 to 1984) in the archipelago area. In this analysis, the inverse relationship between water temperature and copepod body size disappeared; in E. affinis the average female length correlated positively with summer temperature. We suggest that the length and timing of the study period greatly influence the investigator's view of the factors regulating copepod body size.  相似文献   

18.
Biology of euphausiids in the subarctic waters north of Iceland   总被引:2,自引:0,他引:2  
The seasonal abundance, maturity, spawning, and population dynamics of Thysanoessa inermis (Krøyer, 1846), T. longicaudata (Krøyer, 1846), and Meganyctiphanes norvegica (M. Sars, 1857) were studied in the subarctic waters north of Iceland from February 1993 to February 1994. The material was sampled at approximately monthly intervals along a transect of eight stations extending from 66°16′ to 68°00′N at 18°50′W. Information on temperature and chlorophyll a concentrations is also presented. Spring warming of the water began in March to April and maximum temperatures were recorded in August (3.8?°C). The spring bloom of the phytoplankton started in late March and highest chlorophyll a concentrations were measured during middle to late April (7.0?mg chlorophyll a m?3). T. inermis was the dominant species in the samples, constituting 77% of juvenile, male and female euphausiids present. The greatest abundance of juvenile, male and female T. inermis and M. norvegica was observed during autumn and winter, with lower abundance in spring and summer. T. longicaudata showed only limited changes in seasonal abundance. Male T. inermis had spermatophores in their ejaculatory ducts from February to May, while mature females had spermatophores attached during April and May. T. longicaudata males bore spermatophores from February to July, whereas females only bore spermatophores in April and May. M. norvegica males had spermatophores from February to April, while the single female with spermatophores was caught in February. Euphausiid eggs were first recorded during the latter part of April; the highest numbers of eggs were observed in the samples taken in late May. Maximum numbers of nauplii of both Thysanoessa spp. and M. norvegica were recorded in late May. The main spawning of the euphausiids coincided with the phytoplankton spring bloom. Most male T. inermis took part in breeding at 1 yr of age while most females appeared not to mature until 2 yr of age. T. inermis has a life span of just over 2 yr, T. longicaudata appears to live just over 1 yr. Limited data did not allow the life span of M. norvegica to be determined.  相似文献   

19.
Phytoplankton samples taken during the spring bloom in the experimental enclosed ecosystem bags at Loch Ewe, Scotland, during 1983 were analysed for carotenoids and chlorophyll compounds using high-performance liquidchromatography (HPLC). Changes in the relative proportions of these pigments were related to day-to-day changes in the composition of the bloom and the physiological state of the algae. There is clear evidence for a change in the chlorophyllide a:chlorophyll a ratio, which reached a maximum as nutrient limitation occurred. No major qualitative changes in the carotenoid components were seen during the bloom; the relative proportion, however, of some carotenoids does provide useful information on the relative abundance of certain algal type in the phytoplankton.  相似文献   

20.
The pelagic crustacean Euphausia pacifica Hansen was sampled with a multiple-sample 1.0 m2 Tucker trawl and a multiple-sample 1.0 m2 vertical net in Dabob Bay, Washington on 17 dates between May 1985 and October 1987. Size (stage) structure and abundance of the population were determined for each date, while vertical distribution and diel migration were determined for 13 dates. Although internannual variability in both timing and magnitude of events occurred, consistent patterns were discernable. The population produced a large pulse of larvae (2 to 5 mm) in late spring of each year, apparently in response to the vernal phytoplankton bloom. Much lower abundances of larvae occurred during summer and autumn of each year, and larvae were completely absent during winter. Recruitment to the juvenile (6 to 9 mm) and adult (10 mm) stages was strongest during the summer, with abundances of these individuals peaking in summer and autumn. Individual growth rates, determined by modal progression analysis, were calculated for E. pacifica. Rates ranged from zero for some adult cohorts during the winter to 0.12 mm d-1 for larvae during spring. The latter are among the highest ever reported for this species in the field. The vertical distributions and diel vertical migrations (DVM) of E. pacifica varied seasonally and between size (stage) classes. At night, all size classes were distributed in the surface layer (upper 25 m) irrespective of season or year. During the day, the larger/older stages were always distributed at middepths (50 to 125 m). In contrast, the daytime distribution of the larvae was more variable, being concentrated at the surface during spring and early summer of 1985, and at increasing depths later in the summer and autumn of 1985 and again in spring of 1986. This resulted in invariant DVM in the juveniles and adults, but variable DVM in the larvae, the latter of which is hypothesized to be a response to variable abundances of zooplanktivorous fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号