首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 302 毫秒
1.
为探讨Anammox菌在氨氮、硝氮及乙酸条件下的富集特性,采用某城市污水处理厂A2/O系统中的生物填料作为MBBR的载体直接启动并运行.结果表明,在NH4+-N、NO3--N及乙酸为基质的培养条件下,Anammox菌可在部分反硝化和厌氧氨氧化协同作用下快速富集.经过130d的富集培养,MBBR处理负荷(以N计)达到920.79mg/(m2·d),Anammox活性(以NH4+-N计)达到3 018.19mg/(m2·d).高通量结果显示,经富集培养后,Ca.Brocadia占比从0.89%增至27.80%,为Anammox菌的主导菌属;Thauera占比从0.01%增至6.75%,Flavobacterium占比从0.29%增至11.72%,为部分反硝化菌的主导菌属.  相似文献   

2.
通过批式实验,得到超声波强化Anammox菌活性的最优工作参数,超声频率25kHz、超声时间3min、超声强度0.2 W/cm2,而后在此最优超声强化条件下采用固定床反应器接种传统活性污泥启动Anammox工艺.整个试验过程,温度维持在35℃.在启动阶段,水力停留时间(HRT)为2d,控制进水NH4+-N和NO2--N浓度为70mg/L.反应器运行至第38d,首次表现Anammox活性.运行至53d时,NH4+-N、NO2--N去除速率和去除率分别为30.81,34.97mgN/(L·d)和88.03%、99.91%,总氮去除速率和去除率达60.34mgN/(L·d)和86.20%.R1和R2分别稳定在1.14和0.18.在负荷提升阶段(53~135d),当进水NH4+-N和NO2--N负荷维持在最高值380mg/(L·d)时,NH4+-N和NO2--N平均去除效率分别为82.74%和97.89%.NH4+-N和NO2--N最大去除速率分别为320.67和379.85mgN/(L·d),最大总氮去除速率和去除率为698.00mgN/(L·d)和91.84%.负荷提高阶段末,R1稳定在1.18左右,R2接近于0.反应器内Anammox菌占主导,存在少量反硝化菌强化总氮去除.  相似文献   

3.
徐贵达  李冬  刘志诚  陶博  张杰 《中国环境科学》2021,41(11):5133-5141
鉴于厌氧氨氧化工艺进水必须包含NO2--N和NH4+-N两种基质,且只能脱氮,为在此基础上进一步实现除磷,提出辅以短程硝化技术,将除磷、脱氮技术相耦合,即短程硝化反硝化除磷串联厌氧氨氧化工艺.生活污水首先进入短程硝化反硝化除磷单元,主要实现NH4+-N转化为NO2--N并去除COD,其部分出水与生活污水原水相混合再进入厌氧氨氧化单元,同时短程硝化反硝化除磷单元于缺氧条件下反硝化吸磷,待反应结束后两个处理单元的出水混合排放.实验结果表明,控制进水混合比为4.2可保证Anammox单元中C/N和NO2--N/NH4+-N值分别为2和1.5,平均△NO2--N/△NH4+-N=1.41,△NO3--N/△NH4+-N=0.12,Anammox脱氮平均占比为85.2%,反硝化与Anammox反应耦合良好.整个系统稳定运行后出水COD、P、NH4+-N、NO2--N和NO3--N浓度分别为15.2,0.85,0.59,5.56,3.33mg/L,TN去除率为89.4%,通过PNDPR-Anammox耦合新工艺成功实现模拟生活污水的高效处理.  相似文献   

4.
本文研究了大黑汀水库表层沉积物碳氮磷污染负荷及分布特征,利用Peeper (pore water equilibriums)技术获取沉积物-水界面氮磷剖面特征,分析大黑汀水库间隙水氮磷分布的空间差异;采集沉积物无扰动柱样用静态培养法对其水土界面氮磷交换速率进行估算.结果表明:沉积物中TN、TP和TOC的含量分别在729~5894mg/kg、1312~2439mg/kg和0.5%~5.6%之间,沉积物中氨氮(NH4+-N)、硝酸盐氮(NO3--N)、亚硝酸盐氮(NO2--N)和活性磷(PO43--P)含量分别在0.6~202.9、34.4~168.3、0.1~0.3和16.1~75.2mg/kg之间,主要表现为下游含量高于上游,空间分布特征明显;沉积物C/N表明该水库有机质主要来源于水体内部,与人类网箱养殖活动有关.间隙水中NH4+-N和PO43--P浓度远高于上覆水,表明大黑汀水库间隙水具有向上覆水体扩散营养盐的潜力.在垂直方向上间隙水中NH4+-N浓度随深度的增加而变大,PO43--P浓度具有在0~4cm快速增加,之后表现出逐渐降低的趋势.静态释放结果表明,沉积物-水界面NH4+-N和PO43--P的交换通量分别为3.5~110.5mg/(m2·d)和0.1~1.6mg/(m2·d),NO3--N和NO2--N交换通量在-112.5~157.2mg/(m2·d)和0.04~0.94mg/(m2·d)之间.NH4+-N、NO3--N和PO43--P在下游表现出较高的释放速率.较高的沉积物内源负荷使得大黑汀水库沉积物具有较大的向上覆水释放营养盐的潜力,改善水库沉积物污染状况是治理大黑汀水库水体环境的必要之举.  相似文献   

5.
采用UASB反应器在改变NO2--N/NH4+-N比条件下,考察厌氧氨氧化系统对NH4+-N的超量去除特征、相关酶的催化活性以及污泥菌群结构.结果表明,随着进水NO2--N浓度降低,反应器对NH4+-N的去除量相比理论较大,在停供NO2--N情况下,反应器内NH4+-N去除可达55 mg/L.反应器内NH4+-N的去除并不是是来自进水中SO42-和Fe3+/EDTA络合物,而是存在NH4+-N的好氧硝化.过氧化氢酶测定联合分子生物学技术分析显示,好氧硝化的所需氧量分别来自进水和过氧化氢酶产氧.反应器底部污泥层的氨氧化菌(AOB)、厌氧氨氧化菌(AnAOB)活性优于上部污泥层,相反,上部污泥层的异养反硝化菌(HDB)活性优于底部污泥层,二者协同将NH4+-N转化为N2.  相似文献   

6.
采用膨胀颗粒污泥床(EGSB)反应器作为全程自养脱氮(CANON)工艺启动运行的装置,考察了不同上升流速对CANON工艺脱氮性能的影响,并对固定生物膜-活性污泥(IFAS)系统内颗粒污泥粒径的变化和生物膜上的生物量进行定量分析,同时对颗粒污泥和生物膜上的微生物进行高通量分析,探究在不同聚集体上微生物群落结构的特点.结果表明,在连续运行过程中,上升流速由2m/h增加至6m/h的过程中,总氮去除负荷由0.20kg/(m3·d)逐渐增加至0.66kg/(m3·d),而ΔNO3--N/ΔNH4+-N的比值稳定在0.11,成功实现了CANON的高效稳定运行.当上升流速增加至8m/h时,CANON工艺脱氮性能失稳,总氮去除负荷(NRR)降低至0.42kg/(m3·d),污泥平均粒径由1.3mm减小到0.9mm.上升流速恢复至6m/h后,CANON脱氮工艺脱氮性能逐渐恢复,最终NRR稳定在0.60kg/(m3·d)以上,污泥平均粒径恢复至1.2mm,生物膜生物量的比生长速率为0.0024d-1.高通量测序显示,颗粒污泥中主要以氨氧化细菌(AerAOB)功能菌Nitrosomonas(2.45%),和厌氧氨氧化细菌(AnAOB)功能菌Candidatus Kuenenia(2.38%)为主要菌属;而生物膜中主要是AnAOB功能菌Candidatus Kuenenia(9.78%)、Candidatus Brocadia(4.23%),同时还检测出少量AerAOB功能菌Nitrosomonas(0.40%).结果表明两种微生物在不同聚集体上存在一定的差异性.  相似文献   

7.
在缺氧/好氧/好氧串联运行的移动床生物膜反应器(MBBR)系统中考察了温度和好氧反应器中溶解氧(DO)水平对生物膜硝化和反硝化过程氮素去除的影响,并通过高通量测序技术探究温度和DO的变化造成的MBBR系统中脱氮功能菌群结构的差异,从而在微观水平解释硝化和反硝化受温度和DO影响的生物学机理.结果表明,系统温度的升高可以同时强化生物膜硝化和反硝化过程,且好氧反应器中DO水平的提高对硝化过程有利,从而提高系统的脱氮效果.本研究中,在系统连续运行阶段,当系统温度和好氧O1反应器的DO浓度为本研究范围内的最高水平时(即温度=20~22℃、DO=5~8mg O2/L),比硝化负荷可达1.60g NH4+-N/(m2·d)以上,而相同温度范围内比反硝化负荷可高达2.84g NO3--N/(m2·d),从而使MBBR系统在该工况条件下获得了最佳的NH4+-N和TN去除率(分别达到了98.7%和85.7%).温度和DO影响硝化和反硝化的根本原因是温度和DO变化引起了脱氮功能菌群数量和群落结构的改变:当好氧反应器的DO水平下降时,硝化功能细菌的OTUs比例显著降低,尤其是异养硝化细菌的生长受到了严重的抑制;而温度的变化对反硝化细菌的影响主要体现在群落结构的变化.  相似文献   

8.
以处理实际低C/N生活污水的前置A2NSBR系统为研究对象,考察系统内生物膜的硝化特性和活性污泥的反硝化除磷特性.试验研究了有机物和NO2--N浓度对生物膜硝化性能的影响,以及不同电子受体浓度对反硝化吸磷速率的影响.结果测得硝化速率为11.3mgNH4+-N/(L·h),在填充率40%的条件下容积负荷为0.27kgNH4+-N/(m3·d),有机物的存在会对硝化有抑制,但是系统表现出了良好的抗有机负荷冲击能力,硝化速率为9.72mg NH4+-N/(L·h).NO2--N处理对AOB活性几乎无影响,对NOB活性抑制作用明显,当NO2--N浓度为400mg/L时,NOB活性仅为1.63%,几乎接近完全被抑制.根据本次不同电子受体条件下除磷批次试验的结果,好氧吸磷速率为17.62mg P/(g VSS·h),以NO3--N为电子受体的缺氧吸磷速率是12.94mg P/(g VSS·h),从而可知缺氧聚磷菌占总聚磷菌的比例大约是73.4%,其中在NO2--N浓度为30mg/L出现吸磷抑制,当NO2--N和NO3--N共存时,NO2--N在初始浓度为15mg/L便出现吸磷抑制.  相似文献   

9.
实验采用生物膜-活性污泥复合工艺(IFAS),探究了不同进水NH4+-N负荷以及游离氨(FA)浓度下的好氧氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)的动力学特性,考察了不同微生物聚集体(悬浮污泥和载体生物膜)对于NH4+-N去除的贡献,同时对其中的生物吸附和生物降解进行定量分析.利用荧光原位杂交(FISH)技术观察了总菌、AOB和NOB的数量以及空间结构的变化.结果表明,随着进水NH4+-N浓度逐渐升高,出水NO3--N浓度逐渐下降,NO2--N得到大量积累,当进水NH4+-N浓度为480mg/L时,NH4+-N去除率和亚硝酸盐氮积累率(NAR)分别稳定在95%和80%以上,而FA由(2.77±0.07)mg/L增加至(16.35±0.3)mg/L时,NAR由9.42%增加至83.31%,实现了对NOB的抑制.在NH4+-N的去除过程中生物吸附和微生物降解分别占NH4+-N去除量的3.4%和88.1%,悬浮污泥和生物膜中AOB占比分别由27.4%和10.3%增加至41.3%和18.1%,表明悬浮污泥比生物膜更有利实现对于AOB的富集.  相似文献   

10.
为探究强污泥流失对厌氧氨氧化(anammox)反应器系统脱氮性能、颗粒污泥特性及功能菌群的影响,试验以模拟废水为处理对象构建了上流式厌氧污泥床(UASB)反应器.试验结果表明,损失近一半反应器有效体积的污泥未明显破坏anammox工艺脱氮性能.反应器在4d后总氮(TN)的去除率(RE)达到89.18%污泥EPS含量较高且其PN/PS值(0.12)较低有利于anammox颗粒污泥的形成和集聚.Anammox颗粒污泥粒径>2mm的污泥占到系统总污泥的44.9%,粒径大于0.5mm的污泥占总污泥的84.3%,能够有效持留污泥.厌氧氨氧化菌的优势门为变形菌门(28.03%)、浮霉菌门(15.57%)和绿弯菌门(8.63%),优势属为anammox菌属Candidatus Jettenia(9.63%)和Candidatus Brocadia(3.54%),参与anammox反应的功能基因包括nirS (1.27%)、hzs(1.28%)、hzo(1.29%)、hao(7.04%)和hdh(0.81%),但反硝化菌及其功能基因的存在使得化学计量比Rs (ΔNO2--N/ΔNH4+-N)和Rp (ΔNO3--N/ΔNH4+-N)低于理论值.  相似文献   

11.
以猪场沼液为处理对象,探究了拔风管对基于亚硝化的全程自养脱氮(CANON)型潮汐流人工湿地(TFCW)氮素转化性能及微生物种群结构的影响.结果表明,拔风管数量可显著影响CANON型TFCW中脱氮功能微生物的数量与活性,进而影响其氮素转化速率.在水力负荷(HLR)≤0.18m3/(m2·d)的前提下,随着拔风管数量由0增...  相似文献   

12.
采用间歇曝气在MBBR反应器中成功实现一段式部分硝化耦合厌氧氨氧化(PN/A)过程.结果表明,在实验温度为35℃,进水氨氮浓度为150.00mg/L,进水氮负荷为0.24kg/(m3·d),DO浓度为(1.41±0.24)mg/L条件下,反应器总氮去除效率达到83.74%.生物膜中厌氧氨氧化菌(AnAOB)和氨氧化菌(...  相似文献   

13.
采用微氧升流式膜生物反应器(UMSB-MBR)启动同步亚硝化-厌氧氨氧化耦合异养反硝化(SNAD)工艺,拟通过构建数学模型实现工艺启动过程分析及其优化过程预测.结果表明:反应器历经厌氧氨氧化和全程自养脱氮(CANON)工艺后,通过引入有机碳源(C/N比为0.5)启动SNAD工艺(总氮去除率可达87.66%),并运用ASM1模型及实验数据成功建立SNAD工艺启动模型;通过模型分析发现,氮负荷(NLR)的增大(由0.24~1.88kg/(m3·d)),适宜的溶解氧(DO)浓度(0.2~0.4mg/L)均有利于SNAD工艺的快速启动;通过模型预测发现,随着C/N比(由0.5~3.0)增大,反硝化菌(DNB)对厌氧氨氧化菌(AnAOB)活性的抑制程度不断增强,造成脱氮主要途径由厌氧氨氧化向异养反硝化过程转化,综合考虑C/N比为1.5时SNAD工艺效能和微生物菌群配置处于最佳状态.  相似文献   

14.
本研究构建了基于一体式厌氧氨氧化颗粒污泥及絮体污泥的部分硝化-厌氧氨氧化(PN/A)脱氮处理系统,通过运行参数优化调控实现了热水解污泥消化液的高效脱氮。试验结果表明,通过接种厌氧氨氧化菌(AnAOB)生物膜污泥与普通活性污泥、控制高游离氨(FA)(>20mg/L)和限制曝气(DO≤0.2mg/L)等运行条件,能够快速构建短程硝化-厌氧氨氧化反应,亚硝酸盐积累率可达85%以上,脱氮负荷达到0.60kgN/(m3·d)。稀释后的热水解污泥消化液仍对AnAOB活性具有一定的抑制作用,导致反应器总氮负荷降至0.20kgN/(m3·d)以下;但系统内AnAOB丰度总体呈增加趋势,说明AnAOB的增殖未受到完全抑制。系统内混合污泥的平均中位径由53μm缓慢增长至109μm。定量PCR数据及高通量分析显示,该处理系统富集了较高纯度的AnAOB,最大丰度占比可达8.06%,其优势菌属为Kuenenia菌属。此外,在第93运行周期下Kuenenia菌属在颗粒污泥的丰度占比大于AOB,为5.26%;絮体污泥中具有亚硝化效果的单胞菌属Nitrosomonas的丰度占比为1.64%,大于AnAOB。这展现了AOB和AnAOB丰度不同的空间分布特点。  相似文献   

15.
采用自主研发的原位培养装置,开展了太湖流域典型河流水体含氮物消减速率及其影响因素研究.结果表明,总氮和氨氮消减速率呈现显著的空间差异性(P<0.05),消减速率分别为(280.6±180.0)~(1458.8±725.7)mg/(m3·d)、(35.2±3.7)~(343.6±88.4)mg/(m3·d),但硝态氮消减速率(44.3±7.6)~(521.2±19.2)mg/(m3·d))无显著的空间差异性(P>0.05).微生物作用下氮素消减速率为95.0~733.1mg/(m3·d),分别占含氮物总消减速率和总负荷的12.9%~50.3%和2.0%~13.4%,非微生物作用下氮素消减速率为180.0~996.7mg/(m3·d),占含氮物总消减速率和总负荷的49.8%~87.0%和7.4%~25.7%,说明污染物进入水体,短期内微生物作用对含氮物消减速率的贡献较低.氮素消减速率与TN、NO3-、SS均呈线性相关关系(P<0.05),说明TN、NO3-、SS在一定程度上是氮素消减作用的影响因素.  相似文献   

16.
提出了一种推流式一体化短程硝化厌氧氨氧化颗粒污泥反应器的强化启动策略.第1步,在推流式反应器内接种活性污泥并投加固定生物膜填料,通过逐渐提高进水氨氮浓度和曝气量并控制溶解氧在0.2mg/L以下,自养脱氮反应器成功启动并稳定运行,总无机氮去除负荷达1.7kgN/(m3·d).运行期间生物膜逐渐生长、成熟并出现脱落,同时悬浮污泥出现红色颗粒.第2步,填料填充比从20%降低至0,系统的总无机氮去除负荷短暂下降至0.85kgN/(m3·d),平均污泥粒径从270μm降低至163μm.但系统脱氮负荷随着曝气量的增加可迅速恢复,且平均污泥粒径逐渐增加至195μm.结果表明,推流式反应器中悬浮絮体污泥与颗粒污泥可稳定存在,且悬浮污泥系统的脱氮负荷可达1.5kgN/(m3·d),与固定生物膜-活性污泥系统相当.本研究为推流式厌氧氨氧化颗粒污泥工艺的启动提供了可行的方案.  相似文献   

17.
李佳霖  秦松 《中国环境科学》2021,41(4):1588-1596
本研究选取弥河4个站点为研究对象,在不同季节分别采集沉积物样品,测定理化指标,并采用同位素配对技术和分子生物学方法,研究了沉积物中的反硝化和厌氧氨氧化作用及其影响因素.结果表明,弥河沉积物中的反硝化速率变化范围为151.75~2847.86μmol/(m2×h),厌氧氨氧化速率的变化范围为149.57~2109.17μmol/(m2×h),厌氧氨氧化在氮去除中的贡献量平均达到56.1%.沉积物中的反硝化细菌以nirK型为主,丰度为0.19×106~5.12×106个/g,主要是α-和β-变形菌门;厌氧氨氧化细菌以hzsA为标记基因的丰度范围是2.58×102~1.14×104个/g,主要为浮霉菌门的Brocadia属细菌.反硝化速率与沉积物中的TN含量和间隙水PO43-呈正相关关系,厌氧氨氧化作用与沉积物中的TN含量呈正相关,而与沉积物密度呈负相关关系,沉积物的理化指标是决定氮去除速率的主要环境条件.弥河的反硝化和厌氧氨氧化作用明显,对减轻氮超标具有重要意义,合理改变沉积环境是有效提高氮去除速率的可参考方式.  相似文献   

18.
启动了单质硫自养反硝化反应器并研究其脱氮性能,通过血清瓶批式实验测定了污泥的反硝化活性,并采用扫描电镜和高通量测序手段揭示了系统内微生物群落结构特征.结果表明,SBR反应器进水NO3--N浓度为80mg/L,随水力停留时间由12h逐渐缩短为6h,反应器的自养脱氮性能逐渐增强,稳定期反应器的总无机氮去除率达99.1%,总无机氮去除负荷平均值为0.158kg N/(m3·d);SBR周期内NO2--N浓度最大值为13.3mg/L,NO3--N还原为NO2--N过程pH值由7.38降低至6.94,NO2--N还原为N2过程pH值基本不变;批式实验结果表明,硫自养反硝化和异养反硝化NO3--N去除速率分别为0.515,0.196kg N/(kg VSS·d),硫自养反硝化污泥NO2--N降解速率为0.117kg N/(kg VSS·d),污泥同时具有自养反硝化和异养反硝化活性;扫描电镜显示,污泥中存在大量的杆状细菌和球状菌;污泥中主要的硫反硝化细菌分别为ThiobacillusSulfurimonasThermomonas属,其相对丰度分别为14.5%、7.6%和6.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号