首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
不同水质条件下,铁板作为阳极电絮凝时会产生不同形态的絮体,而絮体种类对磷酸盐去除效果尚不明确.利用铁板作为阳极进行电絮凝,考察溶解氧对电絮凝过程中生成絮体种类的影响,进一步研究电流密度和初始pH值对磷酸盐去除效果的影响.结果表明,低溶解氧(DO)条件下絮体成分主要为磁铁矿,高DO条件下可能为无定型三价铁氧化物/氢氧化物;电流密度越大(2.5、5和10 mA·cm-2),磷酸盐去除效率越高,同时,低DO条件下磷酸盐去除效率高于高DO条件;而初始pH值(4、5、6、7和8)虽不影响不同溶解氧条件下所产絮体的除磷效果,但DO浓度高时,酸性条件下磷酸盐去除效率更高.当前污水处理厂二级出水存在磷浓度较高的问题(TP> 0.5 mg·L-1),采用实际污水在2.5 mA·cm-2电流密度下进行电絮凝,10 min后,初始浓度为1.307 mg·L-1磷酸盐去除效率达98%以上.研究结果将为电絮凝产不同形态铁去除磷酸盐提供理论支持.  相似文献   

2.
采用电絮凝法预处理兰炭废水中COD。在装有可溶铁阳极、石墨阴极的PVC电解槽中进行了COD的去除研究,针对影响电絮凝工艺的主要影响因素(反应时间、进水pH、电流密度及极板间距)进行了正交实验。结果表明,在电絮凝进水pH为9~11条件下,极板间距为主要的影响因素。当进水COD为22 920 mg/L时,在电絮凝反应时间为3 h、进水pH为10、电流密度120 A/m2和极板间距为20 mm的条件下,COD去除率为22.9%;在此条件下,去除1 kgCOD消耗电能0.464 kW·h,消耗铁0.17 kg。  相似文献   

3.
近年来,在世界各地水体中不断发现微塑料,人们对其潜在环境、健康风险表示担忧.当前,对微塑料去除的方法也逐渐展开研究.该实验采用电絮凝-气浮法对水中粒径为60~100μm聚乙烯(PE)颗粒进行去除,分别考察了电极组合、电流强度、电解质浓度、溶液初始pH值对聚乙烯颗粒去除效果影响.结果 表明,以铝为阳极、铁为阴极的电极组合最优.较高的电解质浓度和碱性条件会降低聚乙烯颗粒的去除效果.以铝为阳极、铁为阴极,极板间距为1 cm,电流密度为4mA/cm2,电解质浓度为2.5 mmol/L,溶液初始pH值为7时,电解25 min后,聚乙烯颗粒的去除率为97.43%.  相似文献   

4.
利用电絮凝法处理PVC化工废水,研究了极板材料、原水pH值、反应时间、电流密度、极板间距对处理效果的影响。实验结果表明,电絮凝法去除PVC化工废水中的浊度和COD时,在使用铝合金极板,pH值为8.0,电流密度为30 mA/cm2,极板间距为1.5 cm,反应20 min后出水浊度≤5NUT,COD≤60 mg/L。优于传统药剂絮凝对浊度和COD的去除率。电絮凝处理PVC化工废水的机理包括电絮凝、电化学氧化还原及电气浮等协同作用。  相似文献   

5.
电絮凝技术处理镀铜废水中,研究了溶液的pH值、电流密度、极板间距、电解时间、以及Cu2+的初始浓度等因素时电絮凝技术对镀铜废水处理效果的影响;结果表明:在pH值为6.5~8、极板间距为50mm、电流密度60mA/cm2、电解时间为80 min反应条件下,电絮凝法净化低浓度镀铜废水效果较好,可以使废水中重金属离子去除率达99.7%以上,COD的去除率达90%以上.  相似文献   

6.
针对含铜废水对生态环境的严重污染问题,提出了电絮凝法处理含铜废水中的Cu2+,讨论了溶液初始pH、电流密度、电极间距、电絮凝时间等因素对去除效果的影响.确定了最佳电絮凝条件,即在初始pH=5.0,电流密度为6 mA/cm2,电极间距为1 cm,处理时间为30 min的工艺条件下,含铜废水中Cu2+去除率为98.5%.  相似文献   

7.
电絮凝-过滤法去除源水中微量有机物   总被引:1,自引:0,他引:1  
利用电絮凝-过滤法进行了源水中有机物去除的实验研究,探讨了电流密度、电解时间和pH值等因素对源水中TOC去除效果的影响。结果表明,在电极间距1.0cm,电流密度47.2 A/m2,初始TOC浓度为12.4mg/L时,反应12min后,出水浓度为3.60mg/L,TOC去除率可达71%。表明电絮凝法可有效去除源水中微量有机物。其去除机理包括电絮凝、电化学氧化和还原以及电气浮等。  相似文献   

8.
采用铁、铝极板电絮凝法处理实验室模拟含磷废水,探究了通电电压、极板间距、通电时间及初始p H等主要参数对除磷效果的影响。结果表明:通电电压、极板间距、通电时间及初始p H均能影响除磷效果,铝、铁电极对磷的去除率最高可以达到96.8%、99.5%。在试验条件下,得到以铝板为极板去除废水中磷的最优操作条件为:极板间距2.5cm,通电电压为25V,通电时间25min左右,初始溶液p H为7.0。并且根据反应动力学试验证明了铁、铝极板电絮凝除磷反应均为一级反应,其反应速率常数分别k=0.015506,k=0.02309。  相似文献   

9.
电化学氧化法预处理超高盐榨菜腌制废水   总被引:1,自引:0,他引:1  
鉴于超高盐榨菜腌制废水导电性良好,采用电化学氧化法进行预处理(阳极为Ti基RuO2-TiO2-IrO2-SnO2网状涂层形稳电极),考察初始pH、电流密度、电解时间和极板间距对CODCr和氨氮去除率的影响,并探讨该过程中有机物相对分子量的变化规律.结果表明,在电流密度156 mA/cm2、极板间距1.5 cm、初始pH 4.3~5.0、电解时间120 min时,CODCr和氨氮去除率较佳,分别为55.74%和99.77%.出水pH升至9.54,盐度由7.0%降至6.4%,大分子有机物转化为小分子有机物,对后续生物处理有利.   相似文献   

10.
基于RuO2-IrO2/Ti形稳电极和Fe0牺牲电极实现电氧化-电絮凝(EO-EC)一体化处理含Tl (I)废水,并与单一的电絮凝(EC)进行比较,探讨了EO-EC处理含Tl废水的机理.结果表明,相较于单一EC,EO-EC (1:1)组合技术适应于宽pH (4-10)以及电流密度范围(5-20mA/cm2)下含Tl废水高效处理,且不易发生钝化;活性氯以及氧化还原电位在Tl (I)间接氧化Tl (III)过程中扮演重要角色,沉淀分析表明生成的Tl (OH)3(s)与絮体Fe (OH)3(am)共沉淀,纤铁矿位点可吸附残留Tl (I).EO-EC一体化技术可满足实际含Tl废水达标处理(<2µg/L)且具有经济可行性.  相似文献   

11.
采用电氯化氧化法处理高浓度含有机污染物和氨氮的兰炭废水,考查了NaCl添加量、外加电压、初始pH值等对废水中化学需氧量(COD)和氨氮(NH3-N)去除效果的影响,并对电化学氧化过程及污染物氧化机理进行深入分析.研究表明,随着NaCl添加量、外加电压及电解时间的增加,废水中COD与NH3-N去除率逐渐增大.在NaCl添加量为60g/L、电压6V、极板间距10mm、废水初始pH值不变、电解时间3h的条件下,兰炭废水中COD和NH3-N去除率分别为84.31%和95.77%,远高于不添加NaCl时的41.18%和34.10%.废水中COD和氨氮的降解主要归因于间接氧化,阳极反应产生的Cl2水解生成具有强氧化性的ClO-.电解过程中大部分NH3-N在ClO-的作用下转化为N2,而小部分以含氮化合物的形式存在.兰炭废水中有机污染物主要以酚类物质为主,电化学处理后其含量大幅降低,部分会转化为醚类或者烷烃类物质.  相似文献   

12.
以污水厂二级出水中小分子有机物强化混凝去除为目的,提出了连续投加混凝工艺(CDC),并以水杨酸为模型小分子有机物,研究了初始pH值对CDC工艺去除效果的影响以及铝离子与水杨酸的络合特性.结果表明,初始pH值6时CDC工艺的去除率最高,比常规混凝工艺提升了13.8%.但是初始pH值5和7时CDC工艺的提升效果较小.三维荧光结果表明,不同pH值下水杨酸和铝离子的络合特性不同.X射线光电子能谱和电喷雾质谱结果表明,pH值5时CDC工艺前期主要生成1:1络合物Al(OH)(C7H4O3)(H2O)2.其络合作用强烈,稳定性较高,难以从水中去除.pH值6时前期主要生成中等聚合铝(如原位Al13),其与水杨酸形成的络合物可以参与到铝离子的生长过程,最终生成表面崎岖形态松散的珊瑚礁状絮体,强化了水杨酸的去除.pH值7时,主要生成不定形氢氧化铝,通过絮体表面吸附小分子有机物.  相似文献   

13.
利用电絮凝法处理受到污染的高氟地下水,研究了电极间距、原水pH值、电流密度对处理效果的影响。实验结果表明,电絮凝法去除地下水中的氟和TOC时,不需改变原水的pH值。在电极间距为1.0cm,电流密度为32.4A/m2,反应10min后,出水中F-浓度<1.0mg/L,符合国家生活饮用水卫生标准,TOC的去除率达到66%左右,优于传统给水处理工艺对TOC的去除效率。电絮凝对地下水中污染物的去除机理包括电絮凝、电化学氧化和还原以及电气浮等协同作用。  相似文献   

14.
为去除垃圾渗滤液MBR出水有机物,以铝(Al)为阳极,碳聚四氟乙烯(C-PTFE)为阴极构建了芬顿阴极-电凝聚臭氧气浮工艺,通过与常规电絮凝阴极(Al和SS)对比,探明了该工艺对垃圾渗滤液MBR膜出水的去除特性.结果表明:在pH5和臭氧流量为300mL/min时,芬顿阴极体系相比于SS和Al阴极体系对COD的去除率分别...  相似文献   

15.
刘霞  樊金红 《中国环境科学》2018,38(5):1704-1711
采用乙二胺二琥珀酸(EDDS)强化Fe0-Al0体系还原水溶液中的O2产生H2O2和·OH等活性氧(ROS)的绿色高级氧化工艺,以4-氯酚(4-CP)模拟废水为研究对象,考察了溶液的初始pH值、铁铝的质量比、EDDS投加量和4-CP的初始浓度等因素对4-CP降解的影响.采用电子自旋共振(ESR)法、苯甲酸捕捉法以及4-CP的降解产物等证实了ROS的产生及4-CP的降解机制.结果表明:EDDS强化Fe0-Al0/O2体系对4-CP的去除率随溶液初始pH的升高而降低,但在pH=2.5~9范围内,始终具有较好的4-CP去除率;随Fe0:Al0质量比增加4-CP的去除率先增大后减小,最佳质量比为4:1;随EDDS投加量和4-CP初始浓度增加,4-CP的去除率增大;EDDS可使体系的高级氧化能力提高9倍,在初始pH=2.5、Fe0=8g/L、Al0=2g/L、EDDS=1.5mmol/L条件下,反应3h后100mg/L 4-CP的去除率和脱氯率均达到近100%..  相似文献   

16.
黄连素制药废水的电化学预处理试验   总被引:4,自引:2,他引:2       下载免费PDF全文
采用Ti基RuO2涂层形稳电极为阳极,研究了电化学方法对黄连素制药废水的处理效果. 考察了废水初始pH,电极板间距及电流强度对废水中黄连素及CODCr去除率的影响,确定了电化学法处理黄连素制药废水的最佳条件. 结果表明,废水初始pH为5.13~9.07,电流强度为50.0 mA/cm2,电极板间距为1.0 cm,处理120 min,电化学法对黄连素制药废水处理效果较好;初始pH为7.05时黄连素和CODCr的去除率分别达到97.5%和60.5%. 同时,研究了处理过程中废水可生化性的变化规律,并在此基础上计算了电化学法处理黄连素制药废水的能耗. 结果显示,电化学方法是一种非常有效的黄连素制药废水预处理方法,出水的可生化性明显提高,ρ(BOD5)/ρ(CODCr)(B/C比)高达0.800左右.   相似文献   

17.
利用网状玻碳电极(RVC)作为阴极,构建了一种基于穿透电极的electro-peroxone (E-peroxone)反应器,并系统研究了其对布洛芬的降解性能,考察了电流、流速等因素的影响,进行了能耗计算.结果表明,E-peroxone可以在30min内完全去除初始浓度为2.5mg/L的布洛芬,而电化学氧化和臭氧氧化去除率分别为59%和64%.曝入气体流速为250mL/min,气相臭氧浓度为8mg/L的条件下,电流为100mA,反应溶液流速为300mL/min时,E-peroxone技术去除布洛芬的效率最高,且能耗(EEO)仅为传统臭氧氧化技术的1/7(0.76kWh/m3-log vs.5.30kWh/m3-log).提高流速可以强化穿透电极E-peroxone体系中的传质,从而强化布洛芬的去除,并降低EEO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号