首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In 1994, the U.S. Department of Energy (DOE) initiated a contract reform program intended to strengthen oversight capabilities and encourage the creation of contract and incentive structures, which would effectively facilitate the treatment of onsite contamination and waste. The remedia‐tion and disposal of these legacy wastes is the core of the Department's environmental manage‐ment mission (Government Accountability Office [GAO], 2003). Despite a concerted effort toward achieving the goals of the reform, progress has been slow. Many projects continue to necessitate cost and time extensions above those originally agreed upon. Although the Department insti‐tuted an accelerated cleanup program in 2002, promising to shave some $50 billion and 35 years from its earlier cost and schedule projections, there have been delays in critical project areas that call into question the attainability of the proposed reductions (GAO, 2005). Numerous explana‐tions have been offered as to why achieving these goals has proven so difficult, many of which have concluded that flawed contracting practices are to blame. This article concludes that the root of the problem is much deeper and that the organizational criticisms aimed at DOE are as much a legacy as the waste itself. Although the focus of this article is on large former nuclear weapons sites, these types of contracting and organizational issues are often found at other gov‐ernment and private complex hazardous waste sites. © 2006 Wiley Periodicals, Inc.  相似文献   

2.
The U.S. Department of Energy's (US DOE's) environmental challenges include remediation of the Hanford Site in Washington State. The site's legacy from nuclear weapons “production” activities includes approximately 80 square miles of contaminated groundwater, containing radioactive and other hazardous substances at levels above drinking water standards. In 1998, the U.S. General Accounting Office (US GAO), the auditing arm of Congress, concluded that groundwater remediation at Hanford should be integrated with a comprehensive understanding of the “vadose zone,” the soil region between the ground surface and groundwater. The US DOE's Richland Operations Office adjusted its program in response, and groundwater/vadose‐zone efforts at Hanford have continued to develop since that time. Hanford provides an example of how a federal remediation program can be influenced by reviews from the US GAO and other organizations, including the US DOE itself. © 2008 Wiley Periodicals, Inc.  相似文献   

3.
Expert software-based decision support is speeding the process of defining environmental hazards and identifying remedial responses for the U.S. Department of Energy's (DOE) hazardous waste cleanup projects throughout the United States. Pacific Northwest Laboratories' (PNL) Remedial Action Assessment System (RAAS), and associated Technology Information System (TIS), written for Macintosh computers (soon for PC-compatible computers), sort through an encyclopedic data base to help environmental engineers prepare the most appropriate remedial strategy. The system has been available to DOE and other U.S. government engineers since last year and will soon be commercially available.  相似文献   

4.
US Department of Energy (US DOE) responsibilities for its former national atomic weapons complex include remediation of the Rocky Flats facility near Denver, Colorado. In 1993, the site's primary mission shifted from “production'' of plutonium components for atomic weapons to cleanup of extensive radioactive and chemical contamination representing the legacy of production activities. Remediation was governed by the agreements between the US DOE as the responsible party and the US Environmental Protection Agency and the state of Colorado as joint regulators. In 1995, the Rocky Flats Future Use Working Group issued its final report, recommending among other features that long‐term cleanup reduce contamination levels to background. This article describes the circumstances that led the US DOE to complete the Rocky Flats cleanup more quickly and makes comparisons to the situation at the US DOE's Hanford site. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
Remediation responsibilities of the U.S. Department of Energy (DOE) encompass a vast national complex of highly contaminated former weapons facilities. During the mid‐1990s, DOE announced its intentions to consolidate some waste types at specific sites. At about the same time, organizations and public officials around DOE sites urged a National Dialogue, designed to develop comprehensive solutions to the Department's needs for waste disposition ( transportation, treatment, and storage). Recent opposition from citizens and elected officials in Nevada and Washington State has presented obstacles to DOE's plans. Additionally, chairs of nine site‐specific advisory boards recommended that DOE support a National Stakeholder Forum, similarly designed to develop solutions to disposition needs. This article reviews the chronology of DOE's disposition efforts, along with public and state reactions and recommendations. © 2006 Wiley Periodicals, Inc.  相似文献   

6.
In 1981, the Arizona Department of Health Services (ADHS) discovered groundwater contamination by solvents and chromium at the Phoenix Goodyear Airport (PGA), just outside the city of Phoenix. ADHS and the U.S. EPA sampled the site for the next two years, finding that eighteen of their wells were contaminated with trichloroethene (TCE), six exceeding ADHS's action level of five micrograms per liter (μg/l). In 1983, the PGA site was added to the National Priorities List, and, in 1984, EPA began a $3 million remedial investigation, focusing on soils and groundwater. This article discusses how that investigation inspired the authors to develop a stream-lined evaluation method for PGA's volatile organic compounds (VOCs), the process for establishing VOC cleanup levels, and the $26 million of remediation work needed to be done at the site. The heart of this effort is a computer program called VLEACH, loosely standing for VOC-LEACHing, which anticipates the influence of VOCs on PGA's groundwater, even as remediation proceeds.  相似文献   

7.
Many public agencies and private entities are faced with assessing the risks to humans from contamination on their lands. The United States Department of Energy (US DOE) and Department of Defense are responsible for large holdings of contaminated land and face a long‐term and costly challenge to assure sustainable protectiveness. With increasing interest in the conversion of brownfields to productive uses, many former industrial properties must also be assessed to determine compatible future land uses. In the United States, many cleanup plans or actions are based on the Comprehensive Environmental Responsibility, Compensation, and Liability Act, which provides important but incomplete coverage of these issues, although many applications have tried to involve stakeholders at multiple steps. Where there is the potential for exposure to workers, the public, and the environment from either cleanup or leaving residual contamination in place, there is a need for a more comprehensive approach to evaluate and balance the present and future risk(s) from existing contamination, from remediation actions, as well as from postremediation residual contamination. This article focuses on the US DOE, the agency with the largest hazardous waste remediation task in the world. Presented is a framework extending from preliminary assessment, risk assessment and balancing, epidemiology, monitoring, communication, and stakeholder involvement useful for assessing risk to workers and site neighbors. Provided are examples of those who eat fish, meat, or fruit from contaminated habitats. The US DOE's contaminated sites are unique in a number of ways: (1) huge physical footprint size, (2) types of waste (mixed radiation/chemical), and (3) quantities of waste. Proposed future land uses provide goals for remediation, but since some contamination is of a type or magnitude that cannot be cleaned up with existing technology, this in turn constrains future land use options, requiring an iterative approach. The risk approaches must fit a range of future land uses and end‐states from leave‐in‐place to complete cleanup. This will include not only traditional risk methodologies, but also the assessment and surveillance necessary for stewards for long‐term monitoring of risk from historic and future exposure to maintain sustainable protectiveness. Because of the distinctiveness of DOE sites, application of the methodologies developed here to other waste site situations requires site‐specific evaluation © 2007 Wiley Periodicals, Inc.  相似文献   

8.
The U.S. Department of Energy's (US DOE's) responsibilities for its former national nuclear weapons complex include remediation of the Hanford Site in Washington State. In 1989, the site's primary mission shifted from nuclear weapons material production to cleanup of the extensive radioactive and chemical contamination that represented the production legacy. Cleanup is governed by the Tri‐Party Agreement (TPA), between the US DOE, as responsible party, and the U.S. Environmental Protection Agency and Washington State Department of Ecology, as joint regulators. Nearly 20 years have passed since the TPA was signed, but the Hanford remediation is expected to require decades longer. This article covers the cleanup progress to date and challenges that remain, particularly from millions of gallons of highly radioactive liquid wastes and proposals to bring new wastes to Hanford. © 2008 Wiley Periodicals, Inc.  相似文献   

9.
The Consortium for Risk Evaluation with Stakeholder Participation (CRESP) was asked by the United States Department of Energy (US DOE) to consider the root causes of remediation projects that fail to entirely achieve their goals and then to offer suggestions to assist the Department. To begin this project, CRESP held several meetings at which the group defined problematic outcomes, the early symptoms of problematic outcomes, and the root causes of failing to meet expectations. The five root causes are complex science, engineering, and technology; ambiguous economics; project management shortcomings; political processes and credibility; and history and organizational culture. This article, while focusing on the US DOE, provides a larger context for many remediation projects that have failed to entirely live up to their sponsors' expectations. © 2007 Wiley Periodicals, Inc.  相似文献   

10.
The U.S. Department of Energy (US DOE) remediation responsibilities include its Idaho National Laboratory. In 1989, the U.S. Environmental Protection Agency placed the Idaho site on its National Priority List for environmental cleanup. The site's contamination legacy from operations included inactive reactors and other structures, spent nuclear fuel, high‐level liquid radioactive wastes, calcined radioactive wastes, and transuranic wastes. Documents governing cleanup include a 1995 Settlement Agreement between the US DOE and the US Navy as responsible parties, and the State of Idaho. The Subsurface Disposal Area contains buried transuranic wastes, lies above the East Snake River Plain Aquifer, and could be the “site's most nettlesome cleanup issue,” according to an outside observer. This article describes the technical and legal difficulties that have been encountered in remediating this area. © 2010 Wiley Periodicals, Inc.  相似文献   

11.
The U. S. Army Environmental Center (USAEC) is leading an effort to update the Remediation Technologies Screening Matrix and Reference Guide, Third Edition under the auspices of the Federal Remediation Technologies Roundtable (FRTR). Its purpose is to create a comprehensive “Remediation Technologies Yellow Pages” for use by those responsible for environmental cleanup. The Guide is being produced as a multiagency cooperative effort published under the FRTR. Members of this effort include USAEC, the U. S. Army Corps of Engineers (USACE), the Naval Facilities Engineering Service Center (NFESC), the Air Force Center for Environmental Excellence (AFCEE), the Environmental Protection Agency (EPA), the Department of Energy (DOE), the Department of the Interior (DOI), and the Interstate Technologies Regulation Cooperative (ITRC). This article provides a comprehensive look at environmental technology information provided in the electronic user-defined Remediation Technologies Screening Matrix and Reference Guide.  相似文献   

12.
Arctic Foundations, Inc. (AFI), of Anchorage, Alaska, has developed a freeze barrier system designed to hydraulically isolate a contaminant source area. The system can be used for long‐term or temporary containment of groundwater until appropriate remediation techniques can be applied. The technology was evaluated under the United States Environmental Protection Agency's (EPA's) Superfund Innovative Technology Evaluation (SITE) program at the United States Department of Energy's (DOE's) Oak Ridge National Laboratory (ORNL) facility in Oak Ridge, Tennessee. For the demonstration, an array of freeze pipes called “thermoprobes” was installed to a depth of 30 feet below ground surface around a former waste collection pond and keyed into bedrock. The system was used to establish an impermeable frozen soil barrier to hydraulically isolate the pond. Demonstration personnel collected independent data to evaluate the technology's performance. A variety of evaluation tools were used—including a groundwater dye tracing investigation, groundwater elevation measurements, and subsurface soil temperature data—to determine the effectiveness of the freeze barrier system in preventing horizontal groundwater flow beyond the limits of the frozen soil barrier. Data collected during the demonstration provided evidence that the frozen soil barrier was effective in hydraulically isolating the pond.  相似文献   

13.
U.S. Department of Energy (US DOE) remediation responsibilities include the Hanford site in Washington State. Cleanup is governed by the Tri‐Party Agreement (TPA) between the US DOE as the responsible party and the U.S. Environmental Protection Agency and Washington State Department of Ecology as joint regulators. In 2003, the US DOE desired to implement a “Risk‐Based End State” (RBES) policy at Hanford, with remediation measures driven by acceptable risk standards using exposure scenarios based on the 1999 Hanford Comprehensive Land‐Use Plan. Facing resistance from regulators and stakeholders, the US DOE solicited public input on its policy. This led to a Hanford Site End State Vision in 2005 and a commitment that the TPA would continue to control remediation. This article describes how regulator and public participation modified RBES to an end‐state vision. © 2010 Wiley Periodicals, Inc.  相似文献   

14.
Waste vitrification technology has largely been developed by the United States Department of Energy (DOE). Numerous vendors offer vitrification units, and a number of commercial and large pilot applications have been made. Nevertheless, the industry is still in its infancy and does not dominate any waste treatment niche. DOE funding of vitrification technology development is nearing an end, and DOE waste treatment is being privatized, with private bidders selecting the technologies and offering to treat wastes for a per-unit fee. Thus, the DOE market is shifting from a cost-plus, largely R&D environment to a fixed-fee environment in which vendors and waste treatment contractors must accept technological risks. Significant quantities of DOE waste are still uncommitted, but the number of vendors is larger than the market can possibly sustain. Domestic private sector opportunities are limited and vendors are looking to foreign markets with less mature treatment capacity and growing demand.  相似文献   

15.
Current cost estimates for the assessment and remediation of environmental contamination at facilities operated by the U.S. Department of Energy (DOE) are based largely on assumptions, with a resulting high level of uncertainty. Therefore, consistent and reliable methods for estimating the uncertainty inherent in the estimates are of vital importance. This article presents an approach and format for estimating contingency in DOE's Environmental Restoration Program. The method involves an analysis of risk factors having a potential to affect the cost of the major elements in the estimate. Application of the contingency analysis to a project site is included in the discussion.  相似文献   

16.
An Erratum has been published for this article in Remediation 16(1) 2005, 155–157. Water‐level data collection is a fundamental component of groundwater investigations and remediation. While the locations and depths of monitored wells are important, the frequency of data collection may have a large impact on conclusions made about site hydrogeology. Data‐logging water‐level probes may be programmed to record water levels at frequent intervals, providing site decision makers with abundant, detailed information on the response of an aquifer to both anticipated and unforeseen stresses. In this study, a network of movable probes has provided several years of hourly water‐ level data. The understanding of the site's phytoremediation system has been enhanced by the continuous data, but subsequent insights into an unexpected situation regarding the site's infrastructure have been the most valuable result of the monitoring program. © 2005 Wiley Periodicals, Inc.  相似文献   

17.
In June and July 2001, the Massachusetts Department of Environmental Protection (MassDEP) installed a permeable reactive barrier (PRB) to treat a groundwater plume of chlorinated solvents migrating from an electronics manufacturer in Needham, Massachusetts, toward the Town of Wellesley's Rosemary Valley wellfield. The primary contaminant of concern at the site is trichloroethene (TCE), which at the time had a maximum average concentration of approximately 300 micrograms per liter directly upgradient of the PRB. The PRB is composed of a mix of granular zero‐valent iron (ZVI) filings and sand with a pure‐iron thickness design along its length between 0.5 and 1.7 feet. The PRB was designed to intercept the entire overburden plume; a previous study had indicated that the contaminant flux in the bedrock was negligible. Groundwater samples have been collected from monitoring wells upgradient and downgradient of the PRB on a quarterly basis since installation of the PRB. Inorganic parameters, such as oxidation/reduction potential, dissolved oxygen, and pH, are also measured to determine stabilization during the sampling process. Review of the analytical data indicates that the PRB is significantly reducing TCE concentrations along its length. However, in two discrete locations, TCE concentrations show little decrease in the downgradient monitoring wells, particularly in the deep overburden. Data available for review include the organic and inorganic analytical data, slug test results from nearby bedrock and overburden wells, and upgradient and downgradient groundwater‐level information. These data aid in refining the conceptual site model for the PRB, evaluating its performance, and provide clues as to the reasons for the PRB's underperformance in certain locations. © 2008 Wiley Periodicals, Inc.  相似文献   

18.
This article discusses creating a sustainably protective engineered and human management system in perpetuity for sites with long‐lived radiological and chemical hazards. This is essential at this time because the federal government is evaluating its property as assets and attempting to reduce its holdings, while seeking to assure that health and ecosystems are not put at risk. To assist those who have a stake in the remediation, management, and stewardship of these and analogous privately owned sites, this article discusses current end‐state planning by reviewing the federal government's accelerated efforts to reduce its footprint and how those efforts relate to sustainability. The article also provides a list of questions organized around six elements of risk management and primary, secondary, and tertiary disease and injury prevention. Throughout the article, the U.S. Department of Energy (DOE) is used as an example of an organization that seeks to reduce its footprint, manage its budget, and be a steward of the sites that it is responsible for. However, the approach and questions are appropriate for land controlled by the Department of Defense (DOD), the General Services Administration (GSA), and other public and private owners of sites with residual contamination. © 2005 Wiley Periodicals, Inc.  相似文献   

19.
This article reviews a comprehensive marine environmental effects monitoring program (MEEMP) comprised of components capable of detecting changes in the marine environment over short or extended temporal scales during remediation of one of Canada's most polluted sites at the Sydney Tar Ponds. The monitoring components included: water and sediment quality, amphipod toxicity testing, mussel tissue, crab hepatopancreas tissue, and benthic community assessments. The MEEMP was designed to verify the impact predictions for the remediation project (i.e., no immediate damage to the marine ecosystem through remediation activities). Some components were capable of providing conclusive data (e.g., sediment and water quality), while others only yielded data that were inconclusive or difficult to attribute to remediation activities (e.g., intertidal community assessments and amphipod toxicity testing). Components that provided only inconclusive results or were difficult to attribute to remediation activities were discontinued, resulting in substantial cost savings during the project, but without compromising the overall objectives of the program, which was to monitor for potential adverse environmental effects of remediation on the marine environment in Sydney Harbor and to verify environmental effects predictions made in the Environmental Impact Statement for the project. The rationale for discontinuing certain MEEMP components and discussion of conclusive results are incorporated into “lessons learned” for environmental remediation practitioners and regulators working on similar large‐scale multiyear remediation projects. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
The Department of Energy (DOE) is conducting a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) mandated Remedial Investigation/Feasibility Study for a site contaminated with Dense Non-Aqueous Phase Liquid (DNAPL) pollutants. Three key efforts were a hydrogeological modeling approach, the generation of feasible sequences of technologies, and the screening of alternative technologies. This research uses a decision analysis process to provide a quantitative assessment of the candidate technologies. Decision analysis modeling was used to gain insight into each sequence of technologies. Sensitivity analysis was also conducted to assess the impact of key assumptions. The results provided the DOE with an objective and traceable rationale for screening and reducing all of the potential technology combinations to 58 technology combinations and a method for identifying the top scoring combinations. The approach has wide applicability to similar CERCLA remediation efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号