首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
ABSTRACT: Calcium carbonate precipitate, known as “whiting,” forms in a large number of hard water lakes and reservoirs, and thus contributes to turbidity measurements in these systems. Here we document the occurrence of “whitings,” and the associated impact on turbidity, in Otisco Lake, New York. A simple, potentially broadly applicable, technique, measurement of turbidity before and after acidification, successfully quantified this component of turbidity in the lake. Calcium carbonate represented 32 percent of the turbidity in the upper waters of Otisco Lake for a three-month period, and at times was as much as 70 percent. Routine monitoring of this component of turbidity in raw water sources, where it is significant, should provide insight into water quality management and treatment plant operations.  相似文献   

2.
Applications of Turbidity Monitoring to Forest Management in California   总被引:1,自引:1,他引:0  
Many California streams have been adversely affected by sedimentation caused by historic and current land uses, including timber harvesting. The impacts of timber harvesting and logging transportation systems on erosion and sediment delivery can be directly measured, modeled, or inferred from water quality measurements. California regulatory agencies, researchers, and land owners have adopted turbidity monitoring to determine effects of forest management practices on suspended sediment loads and water quality at watershed, project, and site scales. Watershed-scale trends in sediment discharge and responses to current forest practices may be estimated from data collected at automated sampling stations that measure turbidity, stream flow, suspended sediment concentrations, and other water quality parameters. Future results from these studies will provide a basis for assessing the effectiveness of modern forest practice regulations in protecting water quality. At the project scale, manual sampling of water column turbidity during high stream flow events within and downstream from active timber harvest plans can identify emerging sediment sources. Remedial actions can then be taken by managers to prevent or mitigate water quality impacts. At the site scale, manual turbidity sampling during storms or high stream flow events at sites located upstream and downstream from new, upgraded, or decommissioned stream crossings has proven to be a valuable way to determine whether measures taken to prevent post-construction erosion and sediment production are effective. Turbidity monitoring at the project and site scales is therefore an important tool for adaptive management. Uncertainty regarding the effects of current forest practices must be resolved through watershed-scale experiments. In the short term, this uncertainty will stimulate increased use of project and site-scale monitoring.  相似文献   

3.
We have used Landsat-5 TM and Landsat-7 ETM+ images together with simultaneous ground-truth data at sample points in the Doñana marshes to predict water turbidity and depth from band reflectance using Generalized Additive Models. We have point samples for 12 different dates simultaneous with 7 Landsat-5 and 5 Landsat-7 overpasses. The best model for water turbidity in the marsh explained 38% of variance in ground-truth data and included as predictors band 3 (630–690 nm), band 5 (1550–1750 nm) and the ratio between bands 1 (450–520 nm) and 4 (760–900 nm). Water turbidity is easier to predict for water bodies like the Guadalquivir River and artificial ponds that are deep and not affected by bottom soil reflectance and aquatic vegetation. For the latter, a simple model using band 3 reflectance explains 78.6% of the variance. Water depth is easier to predict than turbidity. The best model for water depth in the marsh explains 78% of the variance and includes as predictors band 1, band 5, the ratio between band 2 (520–600 nm) and band 4, and bottom soil reflectance in band 4 in September, when the marsh is dry. The water turbidity and water depth models have been developed in order to reconstruct historical changes in Doñana wetlands during the last 30 years using the Landsat satellite images time series.  相似文献   

4.
四川三台鲁班水库属于大型湖库,多年来除具有特色景观作为旅游景点外,主要用于发展水产养殖业。随着时间的延续,养殖规模的不断扩大,湖库的自净能力越来越差,使有机物污染不断加重,水质越来越差,出现富营养化现象,对水环境造成了不利影响。近年来,为了改变湖库水环境质量,调整转化湖库功能,恢复水环境质量,加强了对其水质的监测,其中的营养状态指标是湖库水环境质量的主要评价指标。评价结果,除秋季和冬季个别月份外,其余各月均有测点达到轻度富营养化及中度富营养化。  相似文献   

5.
聚丙烯中空纤维膜生物反应器处理生活污水实验研究   总被引:1,自引:0,他引:1  
在膜生物反应器中使用聚丙烯中空纤维膜材料的膜组件,可以解决以往其它材料寿命短、强度低、易污染等问题。利用这种膜生物反应器处理生活污水,其出水水质达到回用水标准,CODcr小于25mg/L;NH3-N小于5mg/L;浊度小于0.6NTU,可以回用于冲厕、绿化用水及河湖补充水。  相似文献   

6.
Regionalization frameworks cluster geographic data to create contiguous regions of similar climate, geology and hydrology by delineating land into discrete regions, such as ecoregions or watersheds, often at several spatial scales. Although most regionalization schemes were not originally designed for aquatic ecosystem classification or management, they are often used for such purposes, with surprisingly few explicit tests of the relative ability of different regionalization frameworks to group lakes for water quality monitoring and assessment. We examined which of 11 different lake grouping schemes at two spatial scales best captures the maximum amount of variation in water quality among regions for total nutrients, water clarity, chlorophyll, overall trophic state, and alkalinity in 479 lakes in Michigan (USA). We conducted analyses on two data sets: one that included all lakes and one that included only minimally disturbed lakes. Using hierarchical linear models that partitioned total variance into within-region and among-region components, we found that ecological drainage units and 8-digit hydrologic units most consistently captured among-region heterogeneity at their respective spatial scales using all lakes (variation among lake groups = 3% to 50% and 12% to 52%, respectively). However, regionalization schemes capture less among-region variance for minimally disturbed lakes. Diagnostics of spatial autocorrelation provided insight into the relative performance of regionalization frameworks but also demonstrated that region size is only partly responsible for capturing variation among lakes. These results suggest that regionalization schemes can provide useful frameworks for lake water quality assessment and monitoring but that we must identify the appropriate spatial scale for the questions being asked, the type of management applied, and the metrics being assessed.  相似文献   

7.
Two spectral bands of the visible spectrum [0.45-0.52 microm (Blue), 0.52-0.60 microm (Green)] of satellite images obtained by LANDSAT 7 ETM+ have been used in this study to follow the contaminated waters of Medrano Creek when it flows into Río de la Plata River. The former is one of the five fresh watercourses going through the Metropolitan Area of Buenos Aires, Argentina, where 13 million people live. Previous studies have shown that the water quality of Rio de la Plata at the outlet of Medrano Creek has decreased more than 50% as a source of water for human consumption. The non-treated effluents of the textile industry probably affect the water quality. We have developed a model that predicts the water quality index (WQI) of surface waters in the study area and uses linear regression analysis. The model has been validated using a data set of 12 physicochemical parameters obtained during the last 3 years. The potentiality of using satellite images was confirmed by the results: (a) to trace the organic contamination (associated with dyes) in freshwater systems and (b) as tools for decision making in the management of water resources.  相似文献   

8.
In lakes which experience water quality problems due to the nuisance growth of blue-green algae, summer concentrations of chlorophyll a may not always be a meaningful measure of water quality for making management decisions. Models for the prediction of summer mean blue-green algal biomass were thus developed from data collected from five systems located in North America and Sweden. It is suggested that the model of choice is log BG =?0.142 + 0.596 log TP – 0.963 log Z, where BG is the biomass of blue-green algae (g m?3), TP is the concentration of total phosphorus (mg m?3), and Z is the mean depth of the lake (m). When coupled to current loading models, this model can potentially be used to assess the impacts of phosphorus loading reductions on threshold odor in water supplies.  相似文献   

9.
ABSTRACT: The Landsat‐Muitispectral Scanner (MSS) data were used to measure lake area fluctuations (1972–1989) for 130 ground‐water dominated lakes in the Western Lakes Region of the Nebraska Sand Hills. In general, the pattern shown in lake area hydrographs was similar to that for in‐situ lake elevations. In‐situ lake‐elevation data verify that remote monitoring of surface‐area fluctuations, even at relatively coarse spatial resolution, is not only practical and useful, but also it elucidates the hydrologic characteristics of groundwater‐dominated lakes of the Sand Hills. The apparent differences in behavior between lakes in the northern and southern portions of the study area may be related to both their location in the regional ground water system and the substantial local hydrologic complexity.  相似文献   

10.
Spackman Jones, Amber, David K. Stevens, Jeffery S. Horsburgh, and Nancy O. Mesner, 2010. Surrogate Measures for Providing High Frequency Estimates of Total Suspended Solids and Total Phosphorus Concentrations. Journal of the American Water Resources Association (JAWRA) 1‐15. DOI: 10.1111/j.1752‐1688.2010.00505.x Abstract: Surrogate measures like turbidity, which can be observed with high frequency in situ, have potential for generating high frequency estimates of total suspended solids (TSS) and total phosphorus (TP) concentrations. In the semiarid, snowmelt‐driven, and irrigation‐regulated Little Bear River watershed of northern Utah, high frequency in situ water quality measurements were recorded in conjunction with periodic chemistry sampling. Site‐specific relationships were developed using turbidity as a surrogate for TP and TSS at two monitoring locations. Methods are presented for employing censored data and for investigating categorical explanatory variables (e.g., hydrologic conditions). Turbidity was a significant explanatory variable for TP and TSS at both sites, which differ in hydrologic and water quality characteristics. The relationship between turbidity and TP was stronger at the upper watershed site where TP is predominantly particulate. At both sites, the relationships between turbidity and TP varied between spring snowmelt and base flow conditions while the relationships between TSS and turbidity were consistent across hydrological conditions. This approach enables the calculation of high frequency time series of TP and TSS concentrations previously unavailable using traditional monitoring approaches. These methods have broad application for situations that require accurate characterization of fluxes of these constituents over a range of hydrologic conditions.  相似文献   

11.
Harmful algal blooms (HABs) diminish the utility of reservoirs for drinking water supply, irrigation, recreation, and ecosystem service provision. HABs decrease water quality and are a significant health concern in surface water bodies. Near real-time monitoring of HABs in reservoirs and small water bodies is essential to understand the dynamics of turbidity and HAB formation. This study uses satellite imagery to remotely sense chlorophyll-a concentrations (chl-a), phycocyanin concentrations, and turbidity in two reservoirs, the Grand Lake O′ the Cherokees and Hudson Reservoir, OK, USA, to develop a tool for near real-time monitoring of HABs. Landsat-8 and Sentinel-2 imagery from 2013 to 2017 and from 2015 to 2020 were used to train and test three different models that include multiple regression, support vector regression (SVR), and random forest regression (RFR). Performance was assessed by comparing the three models to estimate chl-a, phycocyanin, and turbidity. The results showed that RFR achieved the best performance, with R2 values of 0.75, 0.82, and 0.79 for chl-a, turbidity, and phycocyanin, while multiple regression had R2 values of 0.29, 0.51, and 0.46 and SVR had R2 values of 0.58, 0.62, and 0.61 on the testing datasets, respectively. This paper examines the potential of the developed open-source satellite remote sensing tool for monitoring reservoirs in Oklahoma to assess spatial and temporal variations in surface water quality.  相似文献   

12.
During 2010–2011, a study was conducted in Sequoia and Kings Canyon National Parks (SEKI) to evaluate the influence of pack animals (stock) and backpackers on water quality in wilderness lakes and streams. The study had three main components: (1) a synoptic survey of water quality in wilderness areas of the parks, (2) paired water quality sampling above and below several areas with differing types and amounts of visitor use, and (3) intensive monitoring at six sites to document temporal variations in water quality. Data from the synoptic water quality survey indicated that wilderness lakes and streams are dilute and have low nutrient and Escherichia coli concentrations. The synoptic survey sites were categorized as minimal use, backpacker-use, or mixed use (stock and backpackers), depending on the most prevalent type of use upstream from the sampling locations. Sites with mixed use tended to have higher concentrations of most constituents (including E. coli) than those categorized as minimal-use (P ≤ 0.05); concentrations at backpacker-use sites were intermediate. Data from paired-site sampling indicated that E. coli, total coliform, and particulate phosphorus concentrations were greater in streams downstream from mixed-use areas than upstream from those areas (P ≤ 0.05). Paired-site data also indicated few statistically significant differences in nutrient, E. coli, or total coliform concentrations in streams upstream and downstream from backpacker-use areas. The intensive-monitoring data indicated that nutrient and E. coli concentrations normally were low, except during storms, when notable increases in concentrations of E. coli, nutrients, dissolved organic carbon, and turbidity occurred. In summary, results from this study indicate that water quality in SEKI wilderness generally is good, except during storms; and visitor use appears to have a small, but statistically significant influence on stream water quality.  相似文献   

13.
Spatial distributions of the leaf area index (LAI) needed for carbon cycle modeling in Xingguo County, China were estimated based on correlations between the field-measurements and vegetation indices (VIs). After making geometric and atmospheric corrections to two Landsat ETM+ images, one in January 2000 and the other in May 2003, three VIs (SR, NDVI, and RSR) were derived, and their separate correlations with ground LAI measurements were established. The correlation with RSR was the highest among the three VIs. The retrieved LAI values for January 2000 were lower than those for May 2003 because of a small seasonal variation in the coniferous forests (predominantly masson pine) and the decrease in the understorey vegetation during winter.  相似文献   

14.
据2016年胶州湾水质自动监测的数据结果,分析了水质变化趋势,并统计和评价其水质超标情况。结果表明:2016-04—11水质自动站海域溶解氧质量浓度和pH 的日均值均达到二类海水水质标准,达标率为100%;活性磷酸盐年均值为0.023mg/L,无机氮年均值为0.154mg/L,以硝酸盐为主(64.9%);无机氮和活性磷酸盐超标率均为16.7%,而且集中在降雨量较大的8月、9月,营养盐指标超标基本与海泊河的淡水输入有关;叶绿素a质量浓度与溶解氧、pH 和浊度呈显著正相关,浮游植物光合作用对该海域表层海水的水质参数影响较大;自动站监测和人工监测的营养盐在年际变化上呈现较一致的趋势,说明运用水质自动站监测该海域的营养盐变化趋势较为准确。  相似文献   

15.
本文介绍了我院最新开发的湖泊生态修复集成技术包括湖滨陡坎沿岸带基底修复技术、植物浮岛生态技术、入湖河渠污染控制技术和湖滨沿岸带大型水生植物群落恢复技术在滇池草海东风坝及老干鱼塘水域生态修复工程的实际应用情况,本项目在滇池草海约3.3km。水面实现了大型水生植物恢复面积约1.0km^2,在湖滨带形成由挺水植物、浮叶植物、浮水植物及沉水植物等不同植被类型组成的生态结构,大型水生植物覆盖率达30%,恢复水生植物共计20余种,栖息的水禽及鸟类目前已达27种,生物多样性显著提高,呈现出郁郁葱葱、生机勃勃的景象,生态修复区良性水生植被生态系统已经初步建立,湖泊自然生态环境和水质得到了明显改善,水体透明度增幅约为65%-70%,TN和TP去除率约为30%,取得了良好的环境和社会效益,为滇池及超富营养化湖泊的生态修复提供了宝贵的经验和工程示范。  相似文献   

16.
Stakeholders developing water quality improvement plans for lakes and reservoirs are challenged by the sparsity of in-situ data and the uncertainty ingrained in management decisions. This study explores how satellite images can fill gaps in water quality databases and provide more holistic assessments of impairments. The study site is an impaired water body that is serving as a pilot for improving state-wide nutrient management planning processes. An existing in-situ database was used to calibrate semi-analytical models that relate satellite reflectance values to turbidity and total suspended solids (TSS). Landsat-7 images from 1999 to 2020 that overpass High Rock Lake, North Carolina were downloaded and processed, providing 42 turbidity and 39 TSS satellite and in-situ match-ups for model calibration and validation. Model r-squared values for the fitted turbidity and TSS models are 0.72 and 0.74, and the mean absolute errors are 14.6 NTU and 3.2 mg/L. The satellite estimates were compared to the in-situ data and simulated TSS values produced by a calibrated hydrologic-hydrodynamic model. The process-based model is considered less accurate than the satellite model based on statistical performance metrics. Comparisons between data sources are illustrated with time series plots, frequency curves, and aggregate decision metrics to highlight the dependence of lake impairment assessments on the spatial and temporal frequency of available data and model accuracy.  相似文献   

17.
The United States Environmental Protection Agency is planning to expand its long-term monitoring of lakes that are sensitive to acid deposition effects. Effective use of resources will require a careful definition of the statistical objectives of monitoring, a network design which balances spatial and temporal coverage, and a sound approach to data analysis. This study examines the monitoring objective of detecting trends in water quality for individual lakes and small groups of lakes. Appropriate methods of trend analysis are suggested, and the power of trend detection under seasonal (quarterly) sampling is compared to that of annual sampling. The effects of both temporal and spatial correlation on trend detection ability are described.  相似文献   

18.
ABSTRACT: Completion of a 1270 acre recreational impoundment (Legend Lake) in the glacial sands of Menominee County, Wisconsin, produced geochemical and hydrologic alterations in some nearby natural lakes. The impoundment was produced by the construction of three dams, one of which proved to be temporary, connecting 9 natural lakes and ponds of 383 acres with 951 acres of flooded lands. Water levels were raised 3–15 feet within the impounded area. Much of the flooded area was peat rich wetland associated with the prior drainage. Water depths are less than 15 feet in 70% of the impoundment. Three seepage lakes, located less than 1/2 mile from the impoundment, experienced shoreline flooding, shoreline and soil erosion, some tree kills, and increased turbidity. These lakes also experienced concentration increases in several chemical constituents which indicate an influx of impoundment water through a regional alternation in the groundwater flow paths. The three lakes were connected by canals, and a 2.3 cfs gravity drain with an auxiliary pumping station was built to return excess water to the outflow of the impoundment. Future projects of this type would benefit from a more extensive hydrologic and geochemical analysis prior to initiation. Had environmental assessments been required at the time of this development, as they now are in Wisconsin for similar projects, some of the problems encountered might have been alleviated.  相似文献   

19.
The plateau lakes of Yunnan are important both ecologically and economically in China. Nevertheless, the human impact on water quality in these lakes has become increasingly highlighted. The water quality of 10 plateau lakes was monitored regularly over the period of 2000 through 2004 for 24 parameters. Multivariate statistical techniques, including cluster analysis (CA), factor analysis (FA), and principal component analysis (PCA), were employed to better interpret information about the water quality and its pollution sources. No obvious data reduction from CA/FA was found because three principal components (PCs) needed 14 variables to explain 85.01% of the total variance. However, three latent factors accounted for pollution mainly from the following sources: agricultural activities, residential activities and anthropogenic-toxic pollution from industrial effluents, or other special activities. Box-whiskers plots were employed to visually interpret the spatiotemporal variations of water quality variables, which were highly correlated with three PCs. Three types of water quality (i.e., low-, medium-, and high-polluted lakes) were determined through CA based on the similarity of water quality variables. Our results may provide helpful information for the authorities to effectively manage the water quality and make sound policies.  相似文献   

20.
Roughly 45% of the assessed lakes in the United States are impaired for one or more reasons. Eutrophication due to excess phosphorus loading is common in many impaired lakes. Various strategies are available to lake residents for addressing declining lake water quality, including septic system upgrades and establishing riparian buffers. This study examines 25 lakes to determine whether septic upgrades or riparian buffers are a more cost-effective strategy to meet a phosphorus reduction target. We find that riparian buffers are the more cost-effective strategy in every case but one. Large transaction costs associated with the negotiation and monitoring of riparian buffers, however, may be prohibiting lake residents from implementing the most cost-effective strategy. An erratum to this article is available at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号