首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
污染物浓度预报是应对大气污染问题的重要手段.现有的模式类预报方法受限于排放源清单的准确性,而在污染物排放源短期少变的条件下,基于气象要素的统计类预报方法是一种更具实用性的方法.但现有统计类预报方法的计算模型输入量缺乏对气象要素累积效应的表征,以及对气象因素影响大气污染物聚散过程的表征,严重影响了预报的精度.为此,本文提出了一种着眼于改善计算模型输入量的统计类PM_(2.5)浓度预报方法.该方法采用方位聚散因子作为计算模型输入量,既可表征出PM_(2.5)累积与消散的过程,又考虑了气象要素在一定时段内的累积效应,为提高预报精度奠定了良好的基础.同时,通过BP神经网络训练,本方法在方位聚散因子与PM_(2.5)浓度值之间建立起关联模型,从而完成对PM_(2.5)浓度值的准确预报.  相似文献   

2.
建立空气质量预报模型,预测污染物浓度对人类健康和社会经济发展具有重要意义。然而,传统的空气质量模型CMAQ对污染物浓度的预报精度并不理想。对此,本文提出了一种基于卷积神经网络(CNN)和长短期记忆神经网络(LSTM)的空气质量预报修正模型,并使用哈里斯鹰算法(HHO)对模型的超参数进行优化;用CMAQ模型对上海市2022年12月六种大气污染物(SO2、NO2、PM10、PM2.5、O3、CO)浓度的预报数据以及监测站的气象数据和污染物浓度实测数据作为HHO-CNN-LSTM模型的输入,对CMAQ模型预报结果进行修正。使用均方根误差(RMSE)、平均绝对误差(MAE)和一致性指数(IOA)作为评价指标。结果显示,修正模型显著提高了六项污染物浓度的预测精度,RMSE减少了73.11%~91.31%,MAE减少了67.19%~89.25%,IOA提升了35.34%~108.29%。同时针对HHO算法陷入局部最优而导致修正模型对CO浓度预测效果不佳的问题,使用高斯随机游走策略对HHO算...  相似文献   

3.
考虑样本和输入变量的选取对预测模型精度的影响,文章提出一种基于K-means聚类与偏最小二乘法的支持向量机PM_(2.5)浓度预测方法。首先采用K-means算法对气象属性进行聚类,间接把PM_(2.5)序列分成了相似度较高的若干类,并分别作为预测建模用的训练样本;然后采用偏最小二乘法从影响PM_(2.5)浓度的多种因素中提取主成分,作为各类模型的优化输入;最后根据预测日的气象属性选出合适类别,运用优化后的训练样本和输入变量建立PM_(2.5)浓度预测模型。以北京市某监测点的实际数据为例,运用改进模型和传统模型分别进行实验。结果表明:改进的支持向量机相比传统支持向量机在预测精度上有明显的提高,精度评价指标MAE、MAPE和RMSE分别下降38.10%、50.59%、37.15%。研究实证,引入K-means聚类与偏最小二乘法的手段来提高传统支持向量机在PM_(2.5)浓度预测中的精度具有可行性。  相似文献   

4.
构建PM_(2.5)浓度与相关因子的关系模型已成为获取干旱区经济带连续变化PM_(2.5)浓度数据的有效手段之一。本文以天山北坡经济带为研究对象,基于PM_(2.5)浓度监测数据、中分辨率成像光谱仪(moderate-resolution imaging spectroradiometer,MODIS)的气溶胶光学厚度数据(aerosol optical depth,AOD)和气象数据,利用地理加权回归模型(geographically weighted regression,GWR)反演了研究区2018年3~11月PM_(2.5)浓度,进而分析其时空变化特征。结果表明:(1)相比多元回归模型(multiple linear regression,MLR),GWR模型在天山北坡经济带的PM_(2.5)浓度反演效果更优,决定系数R2、平均绝对误差MAE和均方根误差RMSE分别为0.897、4.569μg/m~3和5.627μg/m~3,明显优于MLR模型的0.819、5.825μg/m~3和7.731μg/m~3;(2)天山北坡经济带PM_(2.5)浓度在月尺度上呈"凹字型"变化特征,其中11月最高,达到59.50μg/m~3,3月和10月次之,9月最低,仅为17.92μg/m~3;在季节尺度上表现出秋季(9~11月)春季(3~5月)夏季(6~8月)的变化特征,其中春季呈波动下降趋势,夏季总体维持在较低水平,秋季呈急剧上升趋势;(3)在空间分布上,研究区PM_(2.5)浓度呈现出"东高西低"的特征,峰值出现在乌鲁木齐附近,说明经济带东部地区PM_(2.5)污染相对严重,尤其是乌鲁木齐。  相似文献   

5.
随着我国经济、工业化、城市化进程迅速发展,PM_(2.5)污染在中国已经成为一个极端的环境和社会问题,并引起广泛关注.采用新技术估算的地表PM_(2.5)质量浓度,收集并处理了遥感反演的气溶胶光学厚度(AOD),气象数据,其他地理数据和污染物排放数据,采用贝叶斯最大熵(BME)结合地理加权回归(GWR)来分析2015年冬季的PM_(2.5)暴露在我国东部大范围区域的时空变异特征.结果表明,BME模型的十折交叉验证结果的决定系数R~2为0.92,均方根误差(RMSE)为8.32μg·m~(-3),平均拟合误差(MPE)为-0.042μg·m~(-3),平均绝对拟合误差(MAE)为4.60μg·m~(-3),与地理加权回归模型的结果相比(R~2=0.71,RMSE=15.68μg·m~(-3),MPE=-0.095μg·m~(-3),MAE=11.14μg·m~(-3)),BME的预测结果有极大的提高.空间上,PM_(2.5)高浓度地区主要集中在华北、长江三角洲、四川盆地,低浓度地区主要集中在中国的最南部如珠江三角洲和云南的西南部;时间上,不同月份的研究区域PM_(2.5)空间分布所有差别,2015年的12月、2016年1月PM_(2.5)污染最为严重,2015年的11月,2016年的2月污染相对较低.  相似文献   

6.
时燕  刘瑞梅  罗毅  杨昆 《环境科学》2020,41(1):1-13
本研究基于国控监测网络的PM_(2.5)实测数据、MODIS AOD数据以及气象参数(温度、风速、风向、边界层高度和相对湿度),综合考虑AOD与PM_(2.5)关系的季节性和区域性差异,构建了基于支持向量回归机(ε-SVR)与思维进化算法优化后的BP神经网络(MEC-BP)的二阶段PM_(2.5)浓度组合估算模型.在此基础上,分析了2000~2017年中国PM_(2.5)浓度的时空变化过程.结果表明,本研究提出的二阶段组合估算模型提供了中国2000~2017年内空间分辨率为1°×1°的月度近地面PM_(2.5)浓度的可靠估算,有效地弥补了中国地面监测网络在时间和空间上的空白(模型的决定系数R~2为0. 838,均方根误差RMSE为11. 512μg·m~(-3),平均绝对百分比误差MAPE为14. 905%,均方百分比误差MSPE为0. 243%,绝对误差MAE为6. 476μg·m~(-3),均方误差MSE为132. 519μg·m~(-3)).时间变化过程分析结果表明:①2014年是2000~2017年内中国PM_(2.5)浓度从持续缓慢上升到快速下降的关键转折点,其中,从2014年开始,PM_(2.5)浓度较高的北部沿海、东部沿海和长江中游地区的PM_(2.5)污染情况改善较明显.②然而,在研究时间范围内,全国仍有超过65%的区域PM_(2.5)年均浓度超过了二级限值(35μg·m~(-3)),虽然全国PM_(2.5)污染情况有一定程度地改善,但是空气污染形势依然严峻.  相似文献   

7.
董浩  孙琳  欧阳峰 《环境工程》2022,40(6):48-54+62
针对现有PM2.5浓度时序预测模型预测精度不高的问题,基于Informer建立了1个Seq2Seq的单站点PM2.5浓度多步时序预测模型,以历史污染物数据和气象数据为输入,实现对未来一段时间PM2.5浓度的预测。所构建模型基于ProbSparse (概率稀疏)自注意力机制提取所输入的序列信息,能够广泛地捕获输入序列的长期依赖信息,并对影响因子之间复杂的非线性关系进行建模,从而提高预测准确度。采用北京市2015-2019年逐小时空气污染物数据与气象数据进行模型训练、验证和测试,建立与循环神经网络(RNN)、长短期记忆网络(LSTM)的对比实验并与其他现有研究方法进行比较,结果表明:对未来1~6 h的PM2.5浓度时序预测,Informer的平均绝对误差(MAE)、均方根误差(RMSE)和可决系数(R2)指标均为最好,实现了较为准确的预测。  相似文献   

8.
针对目前空气质量统计预报方法存在的主要缺陷,本文提出了距离相关系数和支持向量机回归相结合的统计预报方案DC-SVR.利用淮安市2013年1—12月PM_(2.5)观测资料和常规气象观测资料,首先在选入预报当日气象要素的基础上,增加选取前期污染物和气象要素作为预报因子,再采用距离相关系数分季节从预报因子中筛选出重要预报因子,最后采用支持向量机回归对PM_(2.5)浓度值进行逐日滚动统计预报.研究发现,淮安地区气温和气压对PM_(2.5)的距离相关性要高于其他气象要素,夏秋季PM_(2.5)与气象要素的距离相关性较春冬季好.基于距离相关系数和支持向量机回归建立DC-SVR模型,PM_(2.5)的试预报值和实测值的全年相关系数高达0.76,平均偏差仅为1.13μg·m~(-3),平均绝对误差为23.47μg·m~(-3).通过与支持向量机回归、人工神经网络的统计预报效果对比,DC-SVR模型有效降低预报因子维数且能自适应选取最佳参数,预报精度显著优于其他3种统计预报方案,可为业务化预报提供参考.  相似文献   

9.
针对哈尔滨市的PM_(2.5)空气污染问题,收集整理了哈尔滨市2014年全年的空气污染物数据和气象数据,分析研究了当地PM_(2.5)质量浓度变化特征,找出其影响因素。结果表明,哈尔滨市PM_(2.5)日均质量浓度为72.64μg/m~3,初步达到国家标准。PM_(2.5)月均质量浓度11月最高,约为148.27μg/m~3,9月最低,约为21.07μg/m~3。秋冬两季PM_(2.5)平均质量浓度较高。PM_(2.5)/PM10比例春季最低,约为0.5,PM_(2.5)已成为哈尔滨市可吸入颗粒物中的首要污染物。从PM_(2.5)与SO~2、NO~2、CO的相关性来看,哈尔滨市PM_(2.5)与CO的相关性最高,四季均在0.9左右。各类空气污染物的平均浓度降水日低于非降水日。PM_(2.5)与气象因子的相关性较小,与风速呈负相关。  相似文献   

10.
该研究基于2013年11-12月的宁波市空气质量监测数据和气象资料数据,分析了PM_(2.5)质量浓度变化特征,探讨了PM_(2.5)与其它粒径颗粒物、气体污染物以及多个气象因子之间的相关性及影响规律,构建了包含气象和污染气体因子的逐步回归模型,综合分析了2类因子对宁波市PM_(2.5)浓度的影响。研究结果表明:(1)研究时间段内的宁波PM_(2.5)质量浓度范围为(100.66±72.98)μg/m~3,超过粗颗粒PM_(2.5-10)的质量浓度,是可吸入颗粒物的主要组成部分。(2)PM_(2.5)与3种污染气体均表现出显著的相关性,其中与CO的质量浓度相关性最高,R=0.85。风速与PM_(2.5)呈现负相关,受西北-北风向影响下的PM_(2.5)浓度要明显高出其它风向影响下的浓度。降水对PM_(2.5)影响显著,降水日的PM_(2.5)平均质量浓度随降水强度呈现幂函数递减,为非降水日的48.4%。非降水日的PM_(2.5)浓度与相对湿度显著正相关,与日照时数显著负相关。(3)逐步回归结果表明,气象和污染气体两类因子能够解释PM_(2.5)浓度82.4%的变异。其中,CO是影响宁波市秋冬季PM_(2.5)浓度的首要显著因子。本研究对明确城市PM_(2.5)污染特征和影响因素具有参考价值和意义。  相似文献   

11.
2013年在南京市南京大学鼓楼校区和仙林校区采集PM_(2.5),并测试其中重金属浓度,分析重金属在不同季节和地区的污染特征及其与气象因子、常规大气污染物的相关关系.数据经主成分分析预处理后,使用BP神经网络(BP-ANN)和支持向量机(SVM)两种非线性数学方法构建PM_(2.5)中重金属快速评估模型,并与多元线性回归模型(MLR)进行比较.结果显示:南京PM_(2.5)及其中重金属平均浓度冬季最高,其次为春季,夏季和秋季浓度较低.PM_(2.5)中重金属浓度与气象因子和大气污染物间具有一定相关性.BP-ANN对大部分金属(除了Ba、Cr和V)训练模型的相关系数最高;而SVM对所有金属验证模型的相关系数最高.3种方法对Cd、Cu、Pb、Ni和Zn的模拟效果较好,对Cr、Fe、Sr、Ti和V的模拟效果相对较差.  相似文献   

12.
上海地区降雨清除PM2.5的观测研究   总被引:1,自引:0,他引:1  
分析2012—2016年上海徐家汇站的雨量和颗粒物(PM_1、PM_(2.5)、PM_(10))观测数据发现,降雨对PM_(2.5)的湿清除作用明显,降雨日的PM_(2.5)质量浓度较非降雨日平均降低约30%,在污染季节降低更加显著约50%.降雨时PM_1在PM_(2.5)中的占比明显下降,PM_1质量浓度下降幅度占PM_(2.5)下降幅度的84%,表明降雨对PM_1的有效清除是PM_(2.5)质量浓度下降的主要原因.降雨过程结束后PM_(2.5)质量浓度是否下降和降雨前PM_(2.5)的初始质量浓度关系密切,当初始浓度在冬季大于70μg·m~(-3)、在其他季节大于45μg·m~(-3)时,80%以上的降雨过程结束后PM_(2.5)质量浓度较降雨前下降,因此可作为研判降雨过程对PM_(2.5)湿清除影响的预报因子.  相似文献   

13.
文章基于WRF-CMAQ空气质量数值预报系统,对石家庄地区未来3 d逐小时SO_2、NO_2、CO、O_3、PM_(10)和PM_(2.5)6种污染物浓度进行预报,选取2014年5-11月市区7个国控点的监测数据对模式预报能力进行评估检验。结果表明,CMAQ模式预报系统对CO的日均浓度预报准确率较高,而对其他污染物浓度的预报均有不同程度高估,其中PM10的预报效果相对较好,对SO_2、NO_2和PM_(2.5)这3种污染物浓度的预报值均明显大于观测值,O_3的预报效果最差。这与石家庄市排放源清单的不确定性及污染物日浓度变化幅度较大有关。为提高模式预报的准确性,采用非线性自适应偏最小二乘回归滚动法建立订正模型对逐小时污染物浓度预报值进行订正,结果明显改善了CMAQ模式预报值,对县市级的精细化预报有一定指导意义。订正结果对首要污染物PM_(10)和PM_(2.5)浓度的日变化特征表征较好,日变化曲线及波峰波谷值与观测结果基本一致,订正后的污染物浓度能反映出其在石家庄的区域分布特征,有利于预报分析不同天气背景下污染物的空间分布特征及输送变化过程。  相似文献   

14.
为进一步提高PM2.5浓度预测的精度,基于XGBoost和LSTM进行改进得到变权组合模型XGBoost-LSTM(Variable).过对预测因子进行相关性分析,得到其它大气污染物和气象因素对PM2.5浓度的影响,确定最优PM2.5浓度预测因子,再将预处理后数据集输入LSTM模型和XGBoost模型分别进行预测,采用基于残差改进的自适应变权组合方法得到最终预测结果.结果表明,污染物变量的相对重要性高于气象因子变量,其中当前PM2.5和CO浓度的相对重要性较高,而平均风速和相对湿度重要性较低.XGBoost-LSTM(Variable)模型的RMSE、MAE和MAPE值为1.75、1.12和6.06,优于LSTM、XGBoost、SVR、XGBoost-LSTM(Equal)和XGBoost-LSTM(Residual)模型.分季节预测结果表明,XGBoost-LSTM(Variable)模型在春季预测精度最好,而夏季预测精度较差.模型预测精度高的原因在于其不仅考虑了数据的时间序列特征,又兼顾了数据的非线性特征.  相似文献   

15.
PM2.5作为主要的大气污染物之一,严重影响空气质量和人体健康. 基于深度学习的PM2.5小时预报研究中,不同输入要素的历史时间序列对PM2.5预报结果的响应情况存在差异. 因此,基于太原市2019—2020年空气质量监测站、气象观测站的数据,提出一种多通道长短期记忆网络(Multi-Channels Long Short Term Memory,MULTI-LSTM)模型对PM2.5浓度进行预报. 首先使用独立的长短期记忆网络(LSTM)学习每个输入要素,然后将每个模型的学习结果进行融合,最终获得未来多小时的PM2.5浓度预报结果. 将单通道LSTM模型(BASE-LSTM)和LSTM扩展模型(LSTME)作为对照模型,与MULTI-LSTM模型的预报精度进行对比. 结果表明:不同观测窗与预报时效下,MULTI-LSTM模型在测试集上的预报精度明显高于其他2个对照模型. 其中,MULTI-LSTM模型在8 h观测窗和6 h预报时效组合下,均方根误差(RMSE)、平均绝对百分误差(MAPE)以及拟合指数(IA)分别为20.26 μg/m3、51%、0.91. 对未来逐6 h的预报中,观测窗宽度从8 h增至32 h,MULTI-LSTM模型的预报精度无明显变化,观测窗宽度为40和48 h时,RMSE比8 h观测窗下分别下降了2%和3%. 此外,增加LSTM层深度不会提升模型的预报精度. 研究显示,利用MULTI-LSTM模型作为PM2.5浓度小时预报模型,通过选取合适的观测窗宽度与气象要素,可获得精度较高的预报结果.   相似文献   

16.
空气质量统计预报模型是当前空气质量预报的重要工具之一。该研究选取珠海市4个国控大气自动监测站点(吉大、唐家、前山、斗门),基于大气环境监测数据和气象数据研究了同期回归、多元回归2种空气质量预报统计模型,并对模型在不同污染物(NO_2、SO_2、CO、O_3、PM_(10)、PM_(2.5))、不同预报时段(24、48、72、96、120、144 h)、不同国控监测站点的情景下进行了预报准确度综合评估。结果表明:(1)PM_(2.5)浓度与风向的皮尔逊相关系数最大,其相关系数为0.403;O_3浓度与气温、湿度均具有较大的相关性,其相关系数分别为0.705、-0.823;(2)同期回归模型对于6项污染物浓度预报的准确度由高至低分别为:COPM_(10)PM_(2.5)O_3NO_2SO_2,其准确度分别为84%、75.9%、73.4%、72.3%、66.8%与61.9%;(3)多元回归模型对于6项污染物浓度预报的准确度由高至低分别为:COPM_(2.5)PM_(10)O_3NO_2SO_2,其准确度分别为85.6%、73.3%、69.9%、67.6%、67.4%与58.7%。  相似文献   

17.
南洋  张倩倩  张碧辉 《环境科学》2020,41(2):499-509
为探究中国典型区域地表PM_(2.5)浓度长期时空变化及其影响因素,运用广义可加模型(GAM)对1998~2016年均0. 01°×0. 01°地表PM_(2.5)浓度网格化数据进行分析.典型区域多年平均PM_(2.5)浓度从高到低:华东华中地区(40. 5μg·m~(-3))华北地区(37. 4μg·m~(-3))华南地区(27. 8μg·m~(-3))东北地区(23. 7μg·m~(-3))四川盆地(22. 4μg·m~(-3)).东北地区PM_(2.5)年际变化呈现明显上升趋势;其他地区1998~2007年呈上升趋势,2008~2016年出现下降趋势.在典型区域PM_(2.5)浓度空间分布上,PM_(2.5)浓度分布呈现显著的空间差异,多年来各区域PM_(2.5)浓度高值分布相对稳定. PM_(2.5)浓度变化的单因素GAM模型中,所有影响因素均通过显著性检验,典型区域中对PM_(2.5)浓度变化影响解释率较高的各个影响因素顺序有所不同. PM_(2.5)浓度变化的多因素GAM模型中,均呈现非线性关系,典型区域方差解释率为87. 5%~92%(平均89. 0%),模型拟合度较高,对其变化有显著性影响.典型区域YEAR和LON-LAT均对PM_(2.5)浓度变化影响最为显著.除此之外,气象因子对PM_(2.5)的影响大小在各个区域存在不同.东北地区影响PM_(2.5)最重要的3个气象因子排序为:tp v_(10) ssr;华北地区为:temp tp msl;华东华中地区为:temp tp ssr;华南地区为:temp RH blh;四川盆地为:tp temp u_(10).结果表明,运用GAM模型,能够定量分析区域PM_(2.5)浓度长期变化的影响因素,对PM_(2.5)污染评估具有重要意义.  相似文献   

18.
基于小波分解和SVM的大气污染物浓度预测模型研究   总被引:2,自引:1,他引:1  
郑霞  胡东滨  李权 《环境科学学报》2020,40(8):2962-2969
针对大气污染物浓度的精准预测问题,运用小波分解将污染物浓度一维序列分解为高维信息,结合气象及污染物浓度数据,构建了基于小波分解的支持向量机预测模型.最后将模型应用于长沙市2018年PM2.5和O3-8 h的浓度预测.结果表明:①在其他参数不变的条件下,该模型在平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方根误差(RMSE)、一致性水平(IA)和相关系数(R)指标上均优于未经小波分解的预测模型;②在考虑其他污染物对PM2.5浓度的影响后,预测模型评价指标MAE、MAPE和RMSE分别减少了5.57%、9.91%和3.44%,有着更小的误差;③在考虑气象因素对O3-8 h浓度的影响后,预测模型评价指标MAE、MAPE和RMSE分别减少了1.59%、3.54%和0.82%,同样也有更小的误差.由此可以看出,本文所提模型能够有效预测大气污染物浓度,为相关研究提供了方法参考.  相似文献   

19.
卫星遥感估算PM_(2.5)质量浓度研究已较为成熟,但精度还未取得突破性进展.本文利用2017年京津冀地区气溶胶光学厚度(AOD)遥感数据、戈尔德地球观测系统的GEOF气象格网数据以及地面环境监测站PM_(2.5)数据,采用地理加权回归空间降尺度方法,估算京津冀地区的逐月PM_(2.5)质量浓度.基于3种不同的残差插值修正,修正后的PM_(2.5)估算结果均很理想,其中,基于自然邻近残差插值修正后的模型估算结果最优.经验证,在95%的置信水平下,其相关系数r达到0.951,决定系数R~2为0.904,调整后的R~2为0.903,平均预测误差MPE为7.307μg·m~(-3),均方根误差RMSE为11.62μg·m~(-3),相对预测误差RPE为18.35%,说明该模型能客观估算京津冀地区2017年PM_(2.5)质量浓度.2017年PM_(2.5)呈现出南高北低的空间分布特征,南北高低值区域界线与保定市和沧州市的市级行政界线具有较高的一致性.经变异系数分析发现PM_(2.5)在2017年内的稳定性程度与PM_(2.5)质量浓度空间分布呈反向性,即PM_(2.5)质量浓度高的区域稳定性低,年内的变化程度剧烈,而PM_(2.5)质量浓度低的区域稳定性强,年内变化程度弱.  相似文献   

20.
珠三角空气质量暨光化学烟雾数值预报系统   总被引:3,自引:0,他引:3  
基于中尺度气象模式(MM5)、排放源模式(SMOKE)和大气化学模式(CMAQ),耦合本地排放源清单,建立了珠三角区域空气质量数值模式预报系统。该套模式系统对清洁、污染过程的一次、二次污染物都有较好的预报能力。冬季,能见度和PM_(2.5)的预报值和观测值的相关系数最高达0.76和0.78。O_3和NO_x的预报值和观测值的相关系数为0.64和0.61。随着预报时效的增加,预报效果没有明显降低。夏季,在2个典型光化学过程中,O_3的预报值和观测值的相关系数分别为0.68和0.81,NO_x分别为0.57和0.64。在相关的边界层气象因子中,地表通风系数和能见度相关度最高,相关系数达0.71。混合层高度、地面风速、比湿和能见度的相关系数分别为0.55、0.50、和-0.37。在灰霾过程中,PM_(2.5)占PM_(10)的质量浓度为78%。在气溶胶质量权重中,硫酸盐所占的比重最高,占PM_(2.5)权重达到33%,元素碳为18%,有机碳为14%,铵盐为5%,硝酸盐仅为1%。灰霾过程的二次气溶胶的质量权重比清洁过程的大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号