首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Independently from its origin, trichloroacetic acid (TCA) as a phytotoxic substance affects coniferous trees. Its uptake, distribution and degradation were thus investigated in the Norway spruce/soil-system using 14C labeling. TCA is distributed in the tree mainly by the transpiration stream. As in soil, TCA seems to be degraded microbially, presumably by phyllosphere microorganisms in spruce needles. Indication of TCA biodegradation in trees is shown using both antibiotics and axenic plants.  相似文献   

2.
[1,2-14C]TCA of a high specific activity (3.7 GBq/mmol) and appropriate radioindicator techniques were used, to study the effect of trichloroacetic acid (TCA) on conifers. Easy uptake of TCA from soil through spruce roots and its further translocation by the transpiration stream up to the needles (where damage of the photosynthetic apparatus occurs) has been proved. During the growth period, after one-shot load of TCA, the uptake was most intensive in current-year needles at first; over an extended period a decrease in the level of [1,2-14C]TCA-derived radioactivity was found in the current-year needles while in older needles (C + 2), the level rose. Symptoms of TCA biodegradation and/or metabolism were found in the plant/soil system under study. During an eight-week exposure significant losses of radioactivity into the atmosphere were noticed, at least a part of them in the form of carbondioxide. The results of these more or less preliminary experiments demonstrated the suitability and advantages of the radioisotopic technique used.  相似文献   

3.
Trichloroacetic acid (TCA) is a secondary atmospheric pollutant formed by photooxidation of chlorinated solvents in the troposphere--it has, however, recently been ranked among natural organohalogens. Its herbicidal properties might be one of the factors adversely affecting forest health. TCA accumulates rapidly in conifer needles and influences the detoxification capacity in the trees. The aim of the investigations--a survey of which is briefly given here--was to elucidate the uptake, distribution and fate of TCA in Norway spruce. For this purpose young nursery-grown plants of Norway spruce (Picea abies (L.) Karst.) were exposed to [1,2-14C]TCA and the fate of the compound was followed in needles, wood, roots, soil and air with appropriate radio-indicator methods. As shown by radioactivity monitoring, the uptake of TCA from soil by roots proceeded most rapidly into current needles at the beginning of the TCA treatment and was redistributed at later dates so that TCA content in older needles increased. The only product of TCA metabolism/biodegradation found in the plant/soil-system was CO(2) (and corresponding assimilates). TCA biodegradation in soil depends on TCA concentration, soil humidity and other factors.  相似文献   

4.
Controlled-dosing experiments with conifer seedlings have demonstrated an above-ground route of uptake for trichloroacetic acid (TCA) from aqueous solution into the canopy, in addition to uptake from the soil. The aim of this work was to investigate the loss of TCA to the canopy in a mature conifer forest exposed only to environmental concentrations of TCA by analysing above- and below-canopy fluxes of TCA and within-canopy instantaneous reservoir of TCA. Concentrations and fluxes of TCA were quantified for one year in dry deposition, rainwater, cloudwater, throughfall, stemflow and litterfall in a 37-year-old Sitka spruce and larch plantation in SW Scotland. Above-canopy TCA deposition was dominated by rainfall (86%), compared with cloudwater (13%) and dry deposition (1%). On average only 66% of the TCA deposition passed through the canopy in throughfall and stemflow (95% and 5%, respectively), compared with 47% of the wet precipitation depth. Consequently, throughfall concentration of TCA was, on average, approximately 1.4 x rainwater concentration. There was no significant difference in below-canopy fluxes between Sitka spruce and larch, or at a forest-edge site. Annual TCA deposited from the canopy in litterfall was only approximately 1-2% of above-canopy deposition. On average, approximately 800 microg m(-2) of deposited TCA was lost to the canopy per year, compared with estimates of above-ground TCA storage of approximately 400 and approximately 300 microg m(-2) for Sitka spruce and larch, respectively. Taking into account likely uncertainties in these values ( approximately +/- 50%), these data yield an estimate for the half-life of within-canopy elimination of TCA in the range 50-200 days, assuming steady-state conditions and that all TCA lost to the canopy is transferred into the canopy material, rather than degraded externally. The observations provide strong indication that an above-ground route is important for uptake of TCA specifically of atmospheric origin into mature forest canopies, as has been shown for seedlings (in addition to uptake from soil via transpiration), and that annualized within-canopy elimination is similar to that in controlled-dosing experiments.  相似文献   

5.
Trichloroacetic acid (TCA, CCl(3)COOH) has been associated with forest damage but the source of TCA to trees is poorly characterised. To investigate the routes and effects of TCA uptake in conifers, 120 Sitka spruce (Picea sitchensis (Bong.) Carr) saplings were exposed to control, 10 or 100 microg l(-1) solutions of TCA applied twice weekly to foliage only or soil only over two consecutive 5-month growing seasons. At the end of each growing season similar elevated TCA concentrations (approximate range 200-300 ng g(-1) dwt) were detected in both foliage and soil-dosed saplings exposed to 100 microg l(-1) TCA solutions showing that TCA uptake can occur from both exposure routes. Higher TCA concentrations in branchwood of foliage-dosed saplings suggest that atmospheric TCA in solution is taken up indirectly into conifer needles via branch and stemwood. TCA concentrations in needles declined slowly by only 25-30% over 6 months of winter without dosing. No effect of TCA exposure on sapling growth was measured during the experiment. However at the end of the first growing season needles of saplings exposed to 10 or 100 microg l(-1) foliage-applied TCA showed significantly more visible damage, higher activities of some detoxifying enzymes, lower protein contents and poorer water control than needles of saplings dosed with the same TCA concentrations to the soil. At the end of each growing season the combined TCA storage in needles, stemwood, branchwood and soil of each sapling was <6% of TCA applied. Even with an estimated half-life of tens of days for within-sapling elimination of TCA during the growing season, this indicates that TCA is eliminated rapidly before uptake or accumulates in another compartment. Although TCA stored in sapling needles accounted for only a small proportion of TCA stored in the sapling/soil system it appears to significantly affect some measures of sapling health.  相似文献   

6.
Radioisotopes carbon 14 and chlorine 36 were used to elucidate the environmental role of trichloroacetic acid (TCA) formerly taken to be a herbicide and a secondary air pollutant with phytotoxic effects. However, use of 14C-labeling posed again known analytical problems, especially in TCA extraction from the sample matrix. Therefore—after evaluation of available methods—a new procedure using decarboxylation of [1,2-14C]TCA combined with extraction of the resultant 14C-chloroform with a non-polar solvent and its subsequent radiometric measurement was developed. The method solves previous difficulties and permits an easy determination of amounts between 0.4 and 20 kBq (10–500 ng g−1) of carrier-less [1,2-14C]TCA in samples from environmental investigations. The procedure is, however, not suitable for direct [36Cl]TCA determination in chlorination studies with 36Cl. Because TCA might be microbially degraded in soil during extraction and sample storage and its extraction from soil or needles is never complete, the decarboxylation method—i.e. 2 h TCA decomposition to chloroform and CO2 in aqueous solution or suspension in closed vial at 90 °C and pH 4.6 with subsequent CHCl3 extraction—is recommended here, estimated V < 7%. Moreover, the influence of pH and temperature on the decarboxylation of TCA in aqueous solution was studied in a broad range and its environmental relevance is shown in the case of TCA decarboxylation in spruce needles which takes place also at ambient temperatures and might amount more than 10–20% after a growing season. A study of TCA distribution in spruce needles after below-ground uptake shows the highest uptake rate into current needles which have, however, a lower TCA content than older needle-year classes, TCA biodegradation in forest soil leads predominatingly to CO2.  相似文献   

7.
In environmental risk assessments the question has to be answered, whether risk reduction measures are necessary in order to protect the environment. If the combination of natural and anthropogenic sources of a chemical substance leads to an unacceptable risk, the man-made emissions have to be reduced. In this case the proportions of the anthropogenic and natural emissions have to be quantified. Difficulties and possible solutions are discussed in the scope of the OECD- and EU-risk assessments of trichloroacetic acid (TCA) and tetrachloroethylene.In the atmosphere, TCA is formed by photo-oxidative degradation of tetrachloroethylene (PER) and 1,1,1-trichloroethane. The available data on atmospheric chemistry indicate that tetrachloroethylene is the more important pre-cursor. With its high water solubility and low volatility, TCA is adsorbed onto aerosol particles and precipitated during rainfalls. Extended monitoring in rainwater confirmed the global distribution of airborne TCA. TCA reaches soils by dry and wet deposition. In addition formation of TCA from tetrachloroethylene in plants was observed. Consequently, high concentrations were detected in needles, leaves and in forest soil especially in mountain regions.The effect assessment revealed that plants exposed via soil are the most sensitive species compared to other terrestrial organisms. A PNECsoil of 2.4 microg/kg dw was derived from a long-term study with pine and spruce seedlings. When this PNEC is compared with the measured concentrations of TCA in soil, in certain regions a PEC/PNEC ratio >1 is obtained. This clearly indicates a risk to the terrestrial ecosystem, with the consequence that risk reduction measures are deemed necessary.To quantify the causes of the high levels of TCA in certain soils, and to investigate the geographical extent of the problem, intensive and widespread monitoring of soil, air and rainwater for TCA and tetrachloroethylene would be necessary to be able to perform a full mass balance study at an appropriate number of sites. In addition, measurements of the 14C content in TCA isolated from soil could clarify whether a significant proportion of the TCA occurs from natural sources. The possible formation of TCA in soil can also be tested by incubation of isotope enriched inorganic chloride with subsequent mass spectrometry of TCA.  相似文献   

8.
Hoekstra EJ 《Chemosphere》2003,52(2):355-369
This paper reviews the concentrations of trichloroacetate (TCA) in the atmosphere-plant-soil system. Data originate mainly from Europe. The median TCA concentration in rainwater and canopy drip decreased until 1995. From then the median TCA concentration in rainwater remains rather constant while for canopy drip later data are not available. The same seems to hold for concentrations in air although a very limited data set is available. The median concentrations in coniferous needles and groundwater are constant for the period observed. The median TCA concentrations in soil decreased until 1992 and then remained constant.The TCA formation from chlorinated solvents in the atmosphere may explain a substantial percentage of the TCA amount in the atmosphere. The TCA concentrations in rainwater and canopy drip indicate that there will be other sources contributing to 10-50%. Waste incineration, biomass burning and natural formation in the marine boundary layer are potential candidate sources of TCA, but nothing can be said as yet on their TCA emission rates. Anthropogenic emissions of chlorine could also be a source.TCA can be formed from chlorinated solvents by biota. However, for coniferous trees the uptake of TCA from soil may be the predominant route. Biotic and abiotic reactions can cause to formation of TCA in soil, but also formation of TCA from chlorinated solvents by biota that excrete TCA, may contribute. Mass balance calculations of the bioactive soil top layer show that the production rate of TCA in certain soil types could be substantial. The mass balance calculations could not distinguish between natural and anthropogenic sources in soil.  相似文献   

9.
McCulloch A 《Chemosphere》2002,47(7):667-686
Suppositions that the trichloroacetic acid (TCA, CCl3C(O)OH) found in nature was a consequence solely of the use of chlorinated hydrocarbon solvents prompted this critical review of the literature on its environmental fluxes and occurrences. TCA is widely distributed in forest soils (where it was rarely used as an herbicide) and measurements suggest a soil flux of 160 000 tonnes yr(-1) in European forests alone. TCA is also produced during oxidative water treatment and the global flux could amount to 55 000 tonnes yr(-1) (from pulp and paper manufacture, potable water and cooling water treatments). By contrast, the yields of TCA from chlorinated hydrocarbon solvents are small: from tetrachloroethene 13 600 tonnes yr(-1) and from 1,1,1-trichloroethane 4300 tonnes yr(-1) on a global basis, at the atmospheric burdens and removal rates typical of the late 1990s. TCA is ubiquitous in rainwater and snow. Its concentrations are highly variable and the variations cannot be connected with location or date. However, there is no significant difference between the concentrations found in Chile and in eastern Canada (by the same analysts), or between Malawi and western Canada, or between Antarctica and Switzerland, nor any significant difference globally between the concentrations in cloud, rain and snow (although local enhancement in fog water has been shown). TCA is present in old ice and firn. At the deepest levels, the firn was deposited early in the 19th century, well before the possibility of contamination by industrial production of reactive chlorine, implying a non-industrial background. This proposition is supported by plume measurements from pulp mills in Finland. TCA is ubiquitous in soils; concentrations are very variable but there are some indications that soils under coniferous trees contain higher amounts. The concentrations of TCA found in plant tissue are region-specific and may also be plant-specific, to the extent that conifers seem to contain more than other species. TCA is removed from the environment naturally. There is abundant evidence that soil microorganisms dehalogenate TCA and it is lost from within spruce needles with a half-life of 10 days. There is also recent evidence of an abiotic aqueous decarboxylation mechanism with a half-life of 22 days. The supposedly widespread effects of TCA in conifer needles are not shown in controlled experiments. At concentrations in the needles of Scots pine similar to those observed in needles in forest trees, changes consequent on TCA treatment of field laboratory specimens were almost all insignificant.  相似文献   

10.
Whole-tree O3 uptake was exemplified for Picea abies, Fagus sylvatica and Larix decidua in stands at high and low altitude and contrasting water availability through sap flow measurement in tree trunks, intrinsically accounting for drought and boundary layer effects on O3 flux. O3 uptake of evergreen spruce per unit foliage area was enhanced by 100% at high relative to low elevation, whereas deciduous beech and larch showed similar uptake regardless of altitude. The responsiveness of the canopy conductance to water vapor and, as a consequence, O3 uptake to soil moisture and air humidity did not differ between species. Unifying findings at the whole-tree level will promote cause-effect based O3 risk assessment and modeling.  相似文献   

11.
Wu C  Wei D  Fan J  Wang L 《Chemosphere》2001,44(5):1293-1297
The degradation of trichloroacetic acid (TCA) was studied with ultraviolet (UV) photolysis, ultrasound (US) sonolysis and their combination. It was found that the degradation in the combined processes was more significant than in the UV photolysis or sonolysis alone. The effects of pH and dissolved gases on the rate of photosonochemical degradation of TCA were investigated and the degradation kinetics, mechanism and possible degradation products were discussed in detail.  相似文献   

12.
Goal, Scope and Background Sewage sludge produced in wastewater treatment contains large amounts of organic matter and nutrients and could, therefore, be suitable as fertiliser. However, with the sludge, besides heavy metals and pathogenic bacteria, a variety of organic contaminants can be added to agricultural fields. Whether the organic contaminants from the sludge can have adverse effects on human health and wildlife if these compounds enter the food chain or groundwater still remains a point of controversial discussion. Main Features This paper presents an overview on the present situation in Europe and a summary of some recent results on the possible uptake of organic contaminants by crops after addition to agricultural fields by sewage sludge. Results Greenhouse experiments and field trials were performed to study the degradation and uptake of organic micro-contaminants in sludge-amended agricultural soil in crops, such as barley and carrots grown in agricultural soil amended with anaerobically-treated sewage sludge from a wastewater treatment plant, but studies hitherto have revealed no immediate risks. Common sludge contaminants such as linear alkylbenzene sulphonates (LAS), nonylphenol ethoxylates (NPE), polycyclic aromatic hydrocarbons (PAH), bis(diethylhexyl) phthalate (DEHP), showed neither accumulation in soil nor uptake in plants. Discussion It is assumed that the annual amount of sewage sludge produced in Europe will increase in the future, mainly due to larger amounts of high quality drinking water needed by an increasing population and due to increasing demands for cleaner sewage water. Application of sewage sludge to agricultural soils is sustainable and economical due to nutrient cycling and disposal of sewage sludge. However, this solution also involves risks with respect to the occurrence of organic contaminants and other potentially harmful contents such as pathogens and heavy metals present in the sludge. There have been concerns that organic contaminants may accumulate in the soil, be taken up by plants and thereby transferred to humans via the food chain. Results obtained so far revealed, however, no immediate risk of accumulation of common organic sludge contaminants in soil or uptake in plants when applying sewage sludge to agricultural soil. With very high dosages of sewage sludge, there may be a risk for accumulation of very apolar contaminants, such as DEHP, to the soil. Conclusions Any conclusions on the safe use of sewage sludge in agriculture have to be drawn carefully, as the studies performed until now have been limited. Further studies are required, and before final statements can be drawn, it is imminent to study a larger variety of common crops and the effect sewage sludge application may have on a possible accumulation of organic contaminants in the crops. Furthermore, a larger variety of organic contaminants need to be studied and special focus should be given to contaminants newly introduced into the environment. Besides investigating possible plant uptake of organic contaminants, the fate of these compounds in soil after sludge application need to be monitored too. Here, special attention has to begiven to studies on degradation and the formation of degradation products, to weathering and to leaching effects on groundwater, to the application of different crops on the same field (crop rotation), to the use of full-width tillage and strip tillage, and to long term application of sewage sludge on the soil. Recommendations and Perspectives There are environmental, political as well as economical incentives to increase the agricultural application of sludge. However, such usage should be performed with care as there are also ways in which sludge fertilisation could harm the environment and human health. Recently, a new European COST Action (859) has been established covering the field of food safety and improved food quality. Part of the Action is dealing with the application of sewage sludge in agriculture. Before any political and economical measures can be taken, the pros and cons have to be sufficiently investigated on a scientific level first. ESS-Submission Editor: Prof. Elena Maestri (elena.maestri@unipr.it)  相似文献   

13.
Aluminium (Al) speciation is a characteristic that can be used as a tool for describing the soil acidification process. The question that was answered is how tree species (beech vs spruce) and type of soil horizon affect Al speciation. Our hypotesis is that spruce and beech forest vegetation are able to modify the chemical characteristics of organic horizon, hence the content of Al species. Moreover, these characteristics are seasonally dependent. To answer these questions, a detailed chromatographic speciation of Al in forest soils under contrasting tree species was performed. The Jizera Mountains area (Czech Republic) was chosen as a representative mountainous soil ecosystem. A basic forestry survey was performed on the investigated area. Soil and precipitation samples (throughfall, stemflow) were collected under both beech and spruce stands at monthly intervals from April to November during the years 2008–2011. Total aluminium content and Al speciation, pH, and dissolved organic carbon were determined in aqueous soil extracts and in precipitation samples. We found that the most important factors affecting the chemistry of soils, hence content of the Al species, are soil horizons and vegetation cover. pH strongly affects the amount of Al species under both forests. Fermentation (F) and humified (H) organic horizons contain a higher content of water extractable Al and Al3+ compared to organo-mineral (A) and mineral horizons (B). With increasing soil profile depth, the amount of water extractable Al, Al3+ and moisture decreases. The prevailing water-extractable species of Al in all studied soils and profiles under both spruce and beech forests were organically bound monovalent Al species. Distinct seasonal variations in organic and mineral soil horizons were found under both spruce and beech forests. Maximum concentrations of water-extractable Al and Al3+ were determined in the summer, and the lowest in spring.  相似文献   

14.
15.
The release of chloroform, 1,1,1-trichloroethane, tetrachloromethane, trichloroethene and tetrachloroethene from an organic rich spruce forest soil was studied in laboratory incubation experiments by dynamic headspace analysis, thermodesorption and gas chromatography. Performance parameters are presented for the dynamic headspace system. For spruce forest soil, the results showed a significant increase in chloroform concentration in the headspace under aerobic conditions over a period of seven days, whereas the concentration of the other compounds remained fairly constant. A biogenic formation of chloroform is suggested, whereas for the other compounds anthropogenic sources are assumed. The addition of trichloroacetic acid to the soil increased the release of chloroform from the soil. It is, therefore, suggested that trichloroacetic acid also contributed to the formation of chloroform. Under the experimental conditions, the spruce forest soil released chloroform concentrations corresponding to a rate of 12 microg m(-2) day(-1). Data on chloroform production rates are presented and compared with literature results, and possible formation mechanisms for chloroform are discussed.  相似文献   

16.
Trichloroacetic acid (TCA) can be found in various environmental compartments like air, rain and plants all over the world. It is assumed that TCA is an atmospheric degradation product of volatile chloroorganic hydrocarbons. The herbicide effect of TCA in higher concentrations is well known, but not much is known about the phytotoxic effects in environmentally relevant concentrations. It can be shown in this study by using the 13C/15N stable isotope tracer technique that [13C]TCA is taken up by roots of two-year-old seedlings of Pinus sylvestris L. and transported into the needles. At the same time the effect of the substance on nitrogen metabolism can be analyzed by measuring the incorporation of 15NO3- into different nitrogen fractions of the plant. The more [13C]TCA incorporation, the higher the synthesis of 15N labelled amino acids and proteins is. These effects on the nitrogen metabolism are probably based on the activation of stress- and detoxification metabolism. It has to be assumed that there is an influence on N metabolism of Pinus sylvestris caused by the deposition of environmentally relevant TCA concentrations.  相似文献   

17.
The nutrient contents of an acid and a calcareous soil, as well as the foliar contents of four clones of Norway spruce grown on these soils, were evaluated during a 14-month exposure to low level ozone (100 microg m(-3) + peaks between 130 and 360 microg m(-3)) plus acid mist (pH 3.0). Whilst distinct differences could be established between and within clones depending on soil types and genotype, only few pollutant-related effects were observed. Leaching losses from foliage were generally low compared to field studies. The data obtained with young trees in an artificial environment do not support the hypothesis that enhanced leaching from foliage may contribute to nutrient deficiencies in mature stands of Norway spruce.  相似文献   

18.
Most studies on the treatment of chlorinated contaminants by Fe(0) focus on aqueous system tests. However, few is known about the effectiveness of these tests for degrading chlorinated contaminants such as 1,1,1-trichloroethane (TCA) in soil. In this work, the reductive degradation performance of 1,1,1-TCA by Fe(0) was thoroughly investigated in a soil slurry system. The effects of various factors including acid-washed iron, the initial 1,1,1-TCA concentration, Fe(0) dosage, slurry pH, and common constituents in groundwater and soil such as Cl?, HCO3 ?, SO4 2?, and NO3 ? anions and humic acid (HA) were evaluated. The experimental results showed that 1,1,1-TCA could be effectively degraded in 12 h for an initial Fe(0) dosage of 10 g L?1 and a soil/water mass ratio of 1:5. The soil slurry experiments showed two-stage degradation kinetics: a slow reaction in the first stage and a fast reductive degradation of 1,1,1-TCA in the second stage. The reductive degradation of 1,1,1-TCA was expedited as the mass concentration of Fe(0) increased. In addition, high pHs adversely affected the degradation of 1,1,1-TCA over a pH range of 5.4–8.0 and the reductive degradation efficiency decreased with increasing slurry pH. The initial 1,1,1-TCA concentration and the presence of Cl? and SO4 2? anions had negligible effects. HCO3 ? anions had a accelerative effect on 1,1,1-TCA removal, and both NO3 ? and HA had inhibitory effects. A Cl? mass balance showed that the amount of Cl? ions released into the soil slurry system during the 1,1,1-TCA degradation increased with increasing reaction time, suggesting that the main degradation mechanism of 1,1,1-TCA by Fe(0) in a soil slurry system was reductive dechlorination with 1,1-DCA as the main intermediate. In conclusion, this study provides a theoretical basis for the practical application of the remediation of contaminated sites containing chlorinated solvent.  相似文献   

19.
The fine roots and myocorrhizae of beech, spruce and fir trees exposed to ozone, sulphur dioxide and simulated acid precipitation in open-top chambers (OTC) were examined both in situ by rhizoscopy and in the laboratory using root samples from soil cores. Prior to measurements the trees were treated for about one year. During the second year of treatment the fine root production of all three tree species was determined rhizoscopically. The OTC experiments were concluded after an additional three years at which time fine root and small root dry matter as well as the absolute and relative frequencies of mycorrhizae of spruce and fir were determined from soil cores. The vitality of spruce mycorrhizae was examined by fluorescein diacetate staining. In addition total contents of essential cations of spruce mycorrhizae were measured. Long-term exposure to SO(2), SO(2) + O(3), and simulated acid precipitation led to an increased mycorrhizal production by fir. On spruce, a decreased number of mycorrhizae was found in the chambers polluted with SO(2), but a high proportion of dead fine roots indicated an increased root production with an intensified turnover or a delayed decomposition of spruce mycorrhizae. The cation analyses showed an accumulation of Ca(2+) and Zn(2+) in the mycorrhizae of spruce exposed to ozone.  相似文献   

20.
The biodegradation pathways of 1,1,2,2-tetrachloroethane (TeCA) and 1,1,2-trichloroethane (112TCA) and the associated microbial communities in anaerobic wetland sediments were evaluated using concurrent geochemical and genetic analyses over time in laboratory microcosm experiments. Experimental results were compared to in situ porewater data in the wetland to better understand the factors controlling daughter product distributions in a chlorinated solvent plume discharging to a freshwater tidal wetland at Aberdeen Proving Ground, Maryland. Microcosms constructed with wetland sediment from two sites showed little difference in the initial degradation steps of TeCA, which included simultaneous hydrogenolysis to 112TCA and dichloroelimination to 1,2-dichloroethene (12DCE). The microcosms from the two sites showed a substantial difference, however, in the relative dominance of subsequent dichloroelimination of 112TCA. A greater dominance of 112TCA dichloroelimination in microcosms constructed with sediment that was initially iron-reducing and subsequently simultaneously iron-reducing and methanogenic caused approximately twice as much vinyl chloride (VC) production as microcosms constructed with sediment that was methanogenic only throughout the incubation. The microcosms with higher VC production also showed substantially more rapid VC degradation. Field measurements of redox-sensitive constituents, TeCA, and its anaerobic degradation products along flowpaths in the wetland porewater also showed greater production and degradation of VC with concurrent methanogenesis and iron reduction. Molecular fingerprinting indicated that bacterial species [represented by a peak at a fragment size of 198 base pairs (bp) by MnlI digest] are associated with VC production from 112TCA dichloroelimination, whereas methanogens (190 and 307 bp) from the Methanococcales or Methanobacteriales family are associated with VC production from 12DCE hydrogenolysis. Acetate-utilizing methanogens (acetotrophs) appear to be involved in the biodegradation of VC. The relative abundance of Methanosarcinaceae, the only methanogen group with acetotrophic members, doubled in microcosms in which degradation of VC was observed. In addition, molecular analyses using primers specific for known dehalorespiring bacteria in the Dehalococcoides and Desulfuromonas groups showed the presence of these bacteria in microcosm slurry from the site that showed the highest VC production and degradation. Determination of biogeochemical controls and microbial consortia involved in TeCA degradation is leading to a better understanding of the heterogeneity in biodegradation rates and daughter product distribution in the wetland, improving capabilities for developing remediation and monitoring plans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号