首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Loggerhead turtles nesting in the Mediterranean Sea exhibit remarkable genetic structuring. This paper tests the hypothesis that young loggerhead turtles from different rookeries do not distribute homogeneously among the major Mediterranean foraging grounds, due to a complex pattern of surface currents. We extracted long fragments of mitochondrial DNA from 275 stranded or bycaught juvenile turtles from six foraging grounds (Catalano-Balearic Sea, Algerian basin, Tyrrhenian Sea, Adriatic Sea, northern Ionian Sea and southern Levantine Sea). We used a Bayesian mixed-stock analysis to estimate the contributions from rookeries in the Mediterranean, the North-west Atlantic and Cape Verde to the studied foraging grounds. Differences were found in the relative contribution of juvenile turtles of Atlantic and Mediterranean origin to each foraging ground. A decreasing proportion of Atlantic juveniles was detected along the main surface current entering the Mediterranean, with a high prevalence of turtles from eastern Florida in the Algerian basin and lower numbers elsewhere. In regard to the turtles of Mediterranean origin, juveniles from Libya prevailed in central and western Mediterranean foraging grounds other than the Algerian basin. Conversely, the Adriatic Sea was characterised by a large presence of individuals from western Greece, while the southern Levantine Sea was inhabited by a heterogeneous mix of turtles from the eastern Mediterranean rookeries (Turkey, Lebanon and Israel). Overall, the distribution of juveniles may be related to surface circulation patterns in the Mediterranean and suggests that fisheries might have differential effects on each population depending on the overlap degree between foraging and fishing grounds.  相似文献   

2.
We estimated for the first time the growth rates of loggerhead sea turtles of Mediterranean and of Atlantic origin found in the Mediterranean Sea, combining both skeletochronological and genetic analyses. Our growth models suggested that the growth rate of loggerhead sea turtles of Mediterranean origin was faster than that of their conspecifics with an Atlantic origin exploiting the feeding grounds in the Mediterranean Sea. The age at maturity for Mediterranean origin loggerhead sea turtles, estimated using our best fitting model, was 24 years, which suggests that loggerhead sea turtles nesting in the Mediterranean are not only smaller than those nesting in the western North Atlantic but also younger.  相似文献   

3.
Few data are available on the movements and behavior of immature Atlantic loggerhead sea turtles (Caretta caretta) from their seasonal neritic foraging grounds within the western north Atlantic. These waters provide developmental habitat for loggerheads originating from several western Atlantic nesting stocks. We examined the long-term movements of 23 immature loggerheads (16 wild-caught and seven headstart turtles) characterizing their seasonal distribution, habitat use, site fidelity, and the oceanographic conditions encountered during their migrations. We identified two movement strategies: (1) a seasonal shelf-constrained north–south migratory pattern; and (2) a year-round oceanic dispersal strategy where turtles travel in the Gulf Stream to the North Atlantic and their northern dispersal is limited by the 10–15°C isotherm. When sea surface temperatures dropped below 20°C, neritic turtles began a migration south of Cape Hatteras, North Carolina (USA) where they established fidelity to the waters between North Carolina’s Outer Banks and the western edge of the Gulf Stream along outer continental shelf. Two turtles traveled as far south as Florida. Several turtles returned to their seasonal foraging grounds during subsequent summers. Northern movements were associated with both increased sea surface temperature (>21°C) and increased primary productivity. Our results indicate strong seasonal and interannual philopatry to the waters of Virginia (summer foraging habitat) and North Carolina (winter habitat). We suggest that the waters of Virginia and North Carolina provide important seasonal habitat and serve as a seasonal migratory pathway for immature loggerhead sea turtles. North Carolina’s Cape Hatteras acts as a seasonal “migratory bottleneck” for this species; special management consideration should be given to this region. Six turtles spent time farther from the continental shelf. Three entered the Gulf Stream near Cape Hatteras, traveling in the current to the northwest Atlantic. Two of these turtles remained within an oceanic habitat from 1 to 3 years and were associated with mesoscale features and frontal systems. The ability of large benthic subadults to resume an oceanic lifestyle for extended periods indicates plasticity in habitat use and migratory strategies. Therefore, traditional life history models for loggerhead sea turtles should be reevaluated.  相似文献   

4.
Although green turtles (Chelonia mydas Linnaeus) do not nest in Barbados, the easternmost island in the Caribbean archipelago, juveniles are regularly seen foraging in nearshore waters. To examine the stock composition of this foraging population, mitochondrial (mt) DNA control region sequences were analysed from 60 juvenile (31–70 cm curved carapace length) green turtles and compared with data published for key nesting populations in the Atlantic, as well as other feeding grounds (FGs) in the Caribbean. Eight distinct haplotypes were recognised among the 60 individual green turtles sampled around Barbados. Three of the haplotypes found have only previously been reported from western Caribbean nesting beaches, and two only from South Atlantic beaches. The nesting beach origin of one of the Barbados FG haplotypes is as yet unidentified. Stock mixture analysis based on Bayesian methods showed that the Barbados FG population is a genetically mixed stock consisting of approximately equal contributions from nesting beaches in Ascension Island (25.0%), Aves Island/Surinam (23.0%), Costa Rica (19.0%), and Florida (18.5%), with a lesser but significant contribution from Mexico (10.3%). Linear regression analysis indicated no significant effects of rookery population size or distance of the rookery from the FG on estimated contributions from the source rookeries to the Barbados FG. Our data suggest that the similar-sized green turtles sampled on the Barbados FG are a mixed stock of more diverse origins than any previously sampled feeding aggregations in the Caribbean region. The relatively large contribution from the Ascension Island rookery to the Barbados FG indicates that hatchlings from distant rookeries outside the Caribbean basin enter the North Atlantic gyre and become a significant part of the pool from which eastern Caribbean foraging populations are derived. These data support a life cycle model that incorporates a tendency of immatures to migrate from their initial foraging grounds at settlement towards suitable foraging grounds closer to their natal rookeries as they mature.Communicated by P.W. Sammarco, Chauvin  相似文献   

5.
Previous studies of loggerhead sea turtles have concluded that drifting longlines were the main threat for immature specimens in the western Mediterranean, because immature loggerhead sea turtles mainly inhabit oceanic waters. However, recent aerial surveys have revealed large numbers of immature loggerhead sea turtles over the continental shelf of eastern mainland Spain, where turtles are exposed to neritic fishing gears but not to drifting longlines. We satellite-tracked seven loggerhead sea turtles (minimum straight carapace length (SCLmin) range: 36.5–55.0 cm) to assess whether the turtles in this region are vagrants from the adjoining oceanic regions or whether these loggerheads mostly inhabit the continental shelf. Satellite-tracking revealed that six of the tagged turtles avoided the oceanic realm and made extended use of the continental shelf, whereas only one individual could be considered a true vagrant as it avoided the continental shelf and primarily used the oceanic habitat. These results are in sharp contrast with those previously reported for immature loggerhead sea turtles of similar size from the south-western Mediterranean and fit well a relaxed ontogenic model that was recently proposed for loggerhead sea turtles in the central Mediterranean. Furthermore, these results demonstrate the vulnerability of loggerhead sea turtles of eastern mainland Spain to neritic fishing gears, as three of the seven turtles died and one was bycaught incidentally while being tracked over the continental shelf.  相似文献   

6.
Previous studies have shown that loggerhead sea turtles (Caretta caretta), monitored by satellite telemetry, complete long-distance migration between the western and eastern Mediterranean basins following a seasonal pattern. This study investigated if these migration routes may be influenced by surface currents by superimposing the tracks of three loggerhead turtles (curved carapace length >55 cm), migrating from the western to the eastern Mediterranean basin, on Lagrangian data of current developed into pseudo-eulerian speed fields. The average travel speed of the turtles was 1.6 km h−1 and did not depend on the current speed or direction. We observed a connection between surface currents and the turtles’ migration routes, although not a conclusive one. These observations show that neritic stage loggerhead turtles conduct migration in two distinct alternate phases: the first characterized by high and constant speed of travel both when swimming with or against currents and the second typified by low travel speeds and a good concurrence between the trailed routes and the course of the currents. These two phases corresponded to two types of movements, one where the turtle migrates actively to reach a specific destination (either neritic foraging, wintering or nesting ground) and the other, where the turtle drifts with the mesoscale current and forages pelagically. It seemed thus, that the influence of currents on a turtle’s movements depends on the turtle’s momentary behaviour and location of residence.  相似文献   

7.
To study habitat use by loggerhead sea turtles in the Algerian Basin (western Mediterranean), ten juveniles (straight carapace length range: 39.0–63.3 cm) were tracked by satellite from March 2004 to September 2005. Swimming behaviour (characterized by speed of travel, time spent at the surface, and the cosine of turning angles) varied individually, but these differences were unrelated to body size. Despite individual differences in swimming behaviour, the ten immature loggerhead sea turtles spent most of their time in the oceanic waters of the Algerian Basin, although simulations indicated that the average tracking time (235.7 ± 98.7 SD days) was sufficiently long for them to leave the Algerian Basin and disperse through most of the Mediterranean. Furthermore, none of the ten turtles swam in any preferred direction, and their bearings were all randomly distributed. Finally, all them consistently avoided the continental shelf and did not migrate seasonally, as the average latitude, the average longitude, and the average distance of the population to the release point did not change seasonally. Seasonality also had only a weak influence in swimming behaviour, as the time spent at the surface during light hours was the only parameter that changed seasonally. We conclude that immature loggerhead sea turtles in the south of the western Mediterranean exhibit a strong fidelity to the Algerian Basin, where distribution is ruled mainly by the bathymetry, without any influence of seasonality. That fidelity to the Algerian Basin matches predictions based on genetic structuring and might result from a combination of factors: surface circulation patterns and habitat selection by the loggerhead sea turtles.  相似文献   

8.
Ten adult male loggerhead sea turtles, captured by trawlers or dip nets, were satellite-tracked from a neritic foraging ground in the Mediterranean in order to investigate adult spatio-temporal distribution and breeding migration. Five individuals migrated to potential breeding sites in Libya and one to Greece. The results complement previous studies and show that: (1) the Tunisian shelf may be more important for turtles from Libyan rookeries than previously thought; (2) male tracks corroborate a conservation hotspot previously identified for juveniles; (3) the north African coast represents a preferred migratory corridor, unless open sea routes are more direct; (4) adult males may exhibit high fidelity to relatively small areas, without evident seasonal differences; (5) adults home ranges were smaller and more neritic than juveniles frequenting the same area; (6) males may frequent multiple courtship areas; (7) the average remigration interval of males frequenting this region is longer than 1 year.  相似文献   

9.
Knowledge about migratory routes and highly frequented areas is a priority for sea turtle conservation, but the movement patterns of juveniles frequenting the Adriatic have not been investigated yet, although juveniles represent the bulk of populations. We tracked by satellite six juvenile and one adult female loggerhead from the north Adriatic. The results indicated that loggerhead juveniles (1) can either show a residential behaviour remaining in the Adriatic throughout the year or perform seasonal migrations to other areas, (2) can remain even in the coldest, northernmost area during winter, (3) can frequent relatively small foraging areas, (4) mostly frequent the eastern part of the Adriatic, and (5) follow preferred migratory routes along the western and eastern Adriatic coasts. The movements of the adult turtle also revealed (6) a behavioural polymorphism in Mediterranean adults, which included a lack of area fidelity and connection between distant neritic foraging grounds.  相似文献   

10.
Sea turtle populations worldwide suffer from reduced survival of immatures and adults due to fishery bycatch. Unfortunately, information about the whereabouts of turtles outside the breeding habitat is scarce in most areas, hampering the development of spatially explicit conservation plans. In the Mediterranean, recoveries of adult females flipper-tagged on nesting beaches suggest that the Adriatic Sea and Gulf of Gabès are important foraging areas for adults, but such information could be heavily biased (observing and reporting bias). In order to obtain unbiased data, we satellite-tracked seven loggerhead sea turtles after they completed nesting in the largest known Mediterranean rookery (Bay of Laganas, Zakynthos, Greece). Three females settled in the north Adriatic Sea, one in the south Adriatic Sea and two in the Gulf of Gabès area at the completion of their post-nesting migrations (one individual did not occupy a distinct foraging area). The concordance of tracking results with information from recoveries of flipper-tagged turtles suggests that the north Adriatic Sea and the Gulf of Gabès represent key areas for female adult Mediterranean loggerhead sea turtles.  相似文献   

11.
Few long-term mark-recapture tagging datasets exist to estimate population parameters for loggerhead sea turtle (Caretta caretta) recovery units. Using a two-state open robust design model, we analyzed a 20-year (1990–2009) mark-recapture dataset from the Keewaydin Island loggerhead nesting assemblage off the southwest coast of Florida (USA) in the eastern Gulf of Mexico. For this analysis, 2,292 turtle encounters were evaluated, representing 841 individual nesting turtles. Survival was estimated at 0.73 (95 % CI 0.69–0.76). This estimate is comparable with survival estimates elsewhere in the Peninsular Florida subpopulation and is among the lowest estimates for the Northwest Atlantic loggerhead population. We documented no changes in remigration rates or clutch frequency over time. These are the first survival and remigration probabilities estimated for a loggerhead nesting assemblage in the eastern Gulf of Mexico.  相似文献   

12.
13.
F. Bentivegna 《Marine Biology》2002,141(4):795-800
The movements of four Mediterranean loggerhead sea turtles (Caretta caretta; three females, one male) were tracked via satellite telemetry for between 108 and 457 days. Total length of the routes traveled by the turtles varied between 2554 and 7098 km, and the average travel rate was 1.2 km h-1. Long-distance movement between the western and eastern Mediterranean basins followed a seasonal pattern and seemed to be triggered by temperature and food availability. In the autumn/winter months turtles moved from west to east in search of warmer waters, and returned to the western basin in spring, where food resources are generally more plentiful. Three (two females, one male) of the four turtles migrated eastward through the Straits of Messina, which is characterized by high fishing pressure and intense boat traffic. Information about turtle migration patterns and routes will serve to plan effective conservation strategies.  相似文献   

14.
For sea turtles, an ability to detect land masses from a considerable distance away, and to distinguish coastal areas from the open sea, might be adaptive. The loggerhead turtle, Caretta caretta, can detect airborne odorants associated with food. To investigate whether sea turtles can also detect odors associated with land, we studied the responses of juvenile loggerheads to odors from coastal mud. Turtles were tested in a water-filled arena in which odorants could be introduced to the air above the water surface. Turtles exposed to air that had passed over a cup containing mud spent more time with their noses out of the water than did control turtles exposed to air that had passed over a cup containing distilled water. The results demonstrate for the first time that loggerheads can detect airborne odorants associated with land, an ability that might play a role in foraging, navigation, or both.  相似文献   

15.
Sex ratios are a crucial parameter for evaluating population viability. In species with complex life history patterns and temperature sex determination mechanisms, such as the loggerhead turtle (Caretta caretta), sex ratios may vary within a population and among populations. In the Mediterranean, juvenile sex ratios appear to not differ significantly from 1:1, although estimates for hatchling sex ratios are highly female biased. The immigration of males from the Atlantic has been suggested as a possible cause of such variation. Here, we present results of a multi-year investigation (2000–2011) on the sex ratios of loggerhead turtles foraging along the south Tyrrhenian coast, Western Mediterranean, with the aim of providing a better understanding of the potentially underlying forces that drive regional and age-dependent differences in sex ratios. Sex was determined through visual examination of the gonads in 271 dead turtles (curved carapace length range 29.5–89 cm). A fragment of the mitochondrial DNA control region was sequenced from 61 specimens to characterise the demographic composition of this foraging assemblage by applying a many-to-many mixed stock analysis approach. No significant association was found between sex ratios and years or size classes, although the largest size was male biased. Juvenile sex ratio was 1.56:1, which was different from an even sex ratio but still less female biased than hatchling sex ratios from Mediterranean beaches. Results of the mixed stock analysis indicate that juvenile sex ratios in the Mediterranean are largely unaffected by immigration of Atlantic individuals into the basin, as previously suggested. Continued long-term monitoring of juvenile sex ratios is necessary to detect biologically significant sex ratio shifts in the Mediterranean loggerhead turtle population.  相似文献   

16.
Dietary information obtained from stomach contents can provide a wealth of information on an animal’s ecology. Where animals are cryptic, such as the post-hatchling life history stage of a sea turtle, the ecological insight that dietary analyses can provide, may be otherwise unobtainable. Investigations into post-hatchling turtle stomach contents have found planktonic organisms, dominated by pelagic molluscs and crustaceans, hydrozoans, Sargassum and fish eggs. The nature of these dietary organisms provides evidence for the widely accepted hypothesis that, with the exception of the flatback turtle (Natator depressus), the post-hatchling stage of a sea turtle’s life history is pelagic and oceanic. As the majority of studies that have investigated the stomach contents of post-hatchling sea turtles have been conducted on loggerhead turtles (Caretta caretta) in the northern Atlantic and Pacific Oceans, insight derived from dietary investigations into post-hatchling ecology is biased. This study investigates the diet of post-hatchling green turtles (Chelonia mydas) and loggerhead turtles in the southwest Pacific Ocean. Stomach contents were obtained from 55 green and loggerhead post-hatchling turtles that had stranded or been consumed by Coryphaena hippurus. Our findings demonstrate that loggerhead and green post-hatchlings in the southwest Pacific share similar feeding ecology and feed on a variety of neustonic items that are indicative of an oceanic and pelagic existence. The dietary items consumed by both species investigated belong to similar taxonomic groups as those found in previous studies with species level distinctions occurring owing to the different geographical location.  相似文献   

17.
Body temperatures, ambient water temperatures, light intensities and vertical positions (depth) of eight loggerhead turtles, Caretta caretta, were monitored by small recorders during internesting periods from 1991 through 1993 off Wakayama Prefecture, Japan. Body temperatures of eight loggerhead turtles were higher than ambient water temperatures through-out their internesting periods. Light intensities were compared with body temperatures and no evidence was obtained to suggest that the raised body temperatures were caused by the direct influence of solar radiation. Body temperatures were kept higher than water temperatures in cloudy weather or even at night. Mean thermal differences between body and water temperatures were significantly different among individuals, and larger turtles had a greater mean thermal difference. Elevations in body temperatures of adult loggerhead turtles can reasonably be assumed to result from the accumulation of metabolically produced heat. Surfacing times (spent at depths shallower than 2 m) of seven turtles were only 10.3 to 38.9% of their internesting periods, with the exception of one turtle who spent 66.3% of her time at the surface. Loggerhead turtles did not seem to bask positively at the sea surface to absorb radiative heat.  相似文献   

18.
Diet items and habitat constitute some of the environmental resources that may be used differently by individuals within a population. Long-term fidelity by individuals to particular resources exemplifies individual specialization, a phenomenon that is becoming increasingly recognized across a wide range of species. Less is understood about the consequences of such specialization. Here, we investigate the effects of differential foraging ground use on reproductive output in 183 loggerhead sea turtles (Caretta caretta) nesting at Wassaw Island, Georgia (31.89°N, 80.97°W), between 2004 and 2011 with resulting possible fitness effects. Stable isotope analysis was used to assign the adult female loggerheads to one of three foraging areas in the Northwest Atlantic Ocean. Our data indicate that foraging area preference influences the size, fecundity, and breeding periodicity of adult female loggerhead turtles. We also found that the proportion of turtles originating from each foraging area varied significantly among the years examined. The change in the number of nesting females across the years of the study was not a result of uniform change from all foraging areas. We develop a novel approach to assess differential contributions of various foraging aggregations to changes in abundance of a sea turtle nesting aggregation using stable isotopes. Our approach can provide an improved understanding of the influences on the causes of increasing or decreasing population trends and allow more effective monitoring for these threatened species and other highly migratory species.  相似文献   

19.
Atlantic bluefin tuna (Thunnus thynnus) are highly migratory predators whose abundance, distribution, and somatic condition have changed over the past decades. Prey community composition and abundance have also varied in several foraging grounds. To better understand underlying food webs and regional energy sources, we performed stomach content and stable isotope analyses on mainly juvenile (60–150 cm curved fork length) bluefin tuna captured in foraging grounds in the western (Mid-Atlantic Bight) and eastern (Bay of Biscay) Atlantic Ocean. In the Mid-Atlantic Bight, bluefin tuna diet was mainly sand lance (Ammodytes spp., 29% prey weight), consistent with historic findings. In the Bay of Biscay, krill (Meganyctiphanes norvegica) and anchovy (Engraulis encrasicolus) made up 39% prey weight, with relative consumption of each reflecting annual changes in prey abundance. Consumption of anchovies apparently declined after the local collapse of this prey resource. In both regions, stable isotope analysis results showed that juvenile bluefin tuna fed at a lower trophic position than indicated by stomach content analysis. In the Mid-Atlantic Bight, stable isotope analyses suggested that >30% of the diet was prey from lower trophic levels that composed <10% of the prey weights based upon traditional stomach content analyses. Trophic position was similar to juvenile fish sampled in the NW Atlantic but lower than juveniles sampled in the Mediterranean Sea in previous studies. Our findings indicate that juvenile bluefin tuna targeted a relatively small range of prey species and regional foraging patterns remained consistent over time in the Mid-Atlantic Bight but changed in relation to local prey availability in the Bay of Biscay.  相似文献   

20.
This study is the first report of post-nesting migrations of loggerhead sea turtles (Caretta caretta) nesting in Sarasota County (Florida, USA), their most important rookery in the Gulf of Mexico (GOM). In total, 28 females (curved carapace length CCL between 82.2 and 112.0 cm) were satellite-tracked between May 2005 and December 2007. Post-nesting migrations were completed in 3–68 days (mean ± SD = 23 ± 16 days). Five different migration patterns were observed: six turtles remained in the vicinity of their nesting site while the other individuals moved either to the south-western part of the Florida Shelf (n = 9 turtles), the Northeast GOM (n = 2 turtles), the South GOM (Yucatán Shelf and Campeche Bay, Mexico, and Cuba; n = 5 turtles) or the Bahamas (n = 6 turtles). In average, turtles moved along rather straight routes over the continental shelf but showed more indirect paths in oceanic waters. Path analyses coupled with remote sensing oceanographic data suggest that most of long-distance migrants reached their intended foraging destinations but did not compensate for the deflecting action of ocean currents. While six out of seven small individuals (CCL < 90 cm) remained on the Florida Shelf, larger individuals showed various migration strategies, staying on the Florida Shelf or moving to long-distance foraging grounds. This study highlights the primary importance the Western Florida Shelf in the management of the Florida Nesting Subpopulation, as well as the need of multi-national effort to promote the conservation of the loggerhead turtle in the Western Atlantic. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号