首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
研究多环芳烃在二层一次薄层色谱(TLC)和高压液相色谱(HPLC)的分离行为,是为了发展一种新的分析方法。这种方法既能为致突变试验提供分离的多环芳烃(PAH)样品,又能作为一般分析测定用,PAH用甲醇—乙醚—水(4:4:1,V/V)为展开剂,在TLC板[硅藻土层(5×20cm-26%乙酰纤维素 微晶纤维素)(95:5,W/W)层(15×20cm)]上分离。连续展开至溶剂前沿到达TLC板后层刻度10cm处,展开时间约60分钟,PAH在HPLC中的分离行为的研究用下述两个色谱系统进行:Nucloesil 7C_(13)柱(35mm×4.6mm内径 250mm×4.6mm内径)—乙腈—水(6:4—9:1V/V)系统和Nucleosil 5NO_2柱(35mm×4.6mm内径 250mm×4.6mm内径)—正己烷—苯(5:5—95:5V/V)系统, PAH的分离谱图与通常的TLC上的谱图比较是相当好的。而且一些致癌物质彼此容易分离,PAH的相对Rf值稳定,重现性高,在HPLC中,PAH的保留时间的对数和柱的绝对温度的倒数之间呈线性关系,PAH的保留时间也随着乙腈—水流动相中乙腈含量的增加成对数地减少,在PAH的碳原子数和它们的保留时间之间呈线性关系。 试验了48个PAH中的大多数能够容易地用TLC与Nu-cloesil 7C_(13)的HPLC相结合的方法彼此分离。 用这种方法不能彼此分离的PAH,可借助萤光光谱鉴别,已经证明,这种方法对分析大气飘尘中的PAH以及用其分  相似文献   

2.
采用便携式顶空/气相色谱—质谱(GC—MS)法与吹扫捕集/GC—MS法对实验室加标固体样品和实际固体废物(以下简称固废)中的挥发性有机物(VOCs)含量进行比对测定,探讨了便携式顶空/GC—MS法现场快速测定固废中VOCs的标准曲线时间有效性。结果表明:采用便携式顶空/GC—MS法测定固体样品中54种VOCs的准确度(以加标回收率计)和精密度分别为70%~123%、4.8%~17.6%,均能满足应急监测分析的要求,其检出限略高于吹扫捕集/GC—MS;其标准曲线在3d内有效性很好,7d后有效性明显下降,14d后需重新做标准曲线进行定量分析。便携式顶空/GC—MS测定固废中的VOCs基体加标回收率为69%~145%,测定结果与吹扫捕集/GC—MS相比,相对偏差小于10%,现场出具的监测数据有效,可为后续固废属性的鉴别和固废的处置提供依据。  相似文献   

3.
气相色谱/质谱联用法(简称气—质联用GC—MS)已趋于成熟,成为有机定性、定量和结构分析的强有力手段,在许多领域内获得广泛的应用。然而它仍存在着一些固有的局限性,最主要的如:只能分析全部有机化合物的20%左右(若不进一步衍生的话),而对其余大部分则无能为力。液相色谱由于分析范围广且仪器技术的不断改进,已成为近几年内发展最快的一种分析仪器。但是,在检测器的通用性、灵敏度和选择性等方面存在困难。为了解  相似文献   

4.
以预浓缩系统—气相色谱(GC)/飞行时间质谱(TOF-MS)法采集、分析大气中六氟异丙醇(HFIP),即HFIP经苏玛罐采样后,加入三氯甲烷内标,直接进入三级冷阱预浓缩系统进行浓缩,然后经过GC/TOF-MS分离、定量。同时,通过条件试验优化前处理条件和分析参数。结果表明,该方法可实现大气中HFIP的准确测定,线性相关系数可以达到0.999,日内和日间精密度均小于5%,加标回收率为85%~94%,当进样体积为200mL时大气中HFIP的检出限为0.01μg/m3。该方法简便、可靠,适用于大气中HFIP的常规和应急监测。  相似文献   

5.
焦化废水泡沫分离液的Fenton催化氧化预处理   总被引:1,自引:0,他引:1  
以焦化废水处理过程产生的泡沫分离液为研究对象,对其进行Fenton催化氧化处理实验,考察H2O2用量、Fe2+浓度、pH和反应时间4个因素对处理效果的影响,并结合GC/MS方法比较处理前后泡沫分离液中有机物的种类及其生物降解性的变化。结果表明,采用[H2O2]=100 mmol/L、[Fe2+]=100 mg/L、pH=3、反应时间为30 min的Fenton催化氧化反应条件,可以使分离液的COD去除率达到68%以上;经Fenton处理后,分离液的B/C值由0.12提高至0.38,生物降解性明显改善;通过GC/MS的分析,基本明确分离液中含有的有机物主要为酚、胺、腈、酯类有机物及喹啉、吡啶等杂环化合物,大多数属于难降解且生物毒性较强的有机物。针对这些复杂组分共存的泡沫分离液,利用Fenton试剂较强的氧化能力能够将其含有的有毒/难降解有机物转化为低毒或无毒的小分子有机物,为其后续的生物处理创造良好的条件。  相似文献   

6.
研究了序批式生物反应器(SBR)—芬顿氧化工艺对焦化反渗透浓水(以下简称浓水)的TN和COD去除率,采用全二维气相色谱—飞行时间质谱(GC×GC—TOF/MS)解析了处理过程中有机物的组成变化。结果表明:(1)SBR稳定运行225d,浓水经过SBR处理后出水TN平均质量浓度为10mg/L,去除率为79.2%,达到了《炼焦化学工业污染物排放标准》(GB 16171—2012)的排放限值(20mg/L);(2)当pH=4.0,Fe2+质量浓度为200mg/L,芬顿氧化出水COD平均质量浓度可降至60mg/L左右,SBR—芬顿氧化工艺对COD的去除率可达44.4%,也达到了GB 16171—2012的排放限值(80mg/L);(3)目标筛查共检出8种多环芳烃,浓水进水、SBR出水和芬顿氧化出水的多环芳烃总质量浓度分别为1.950、1.390、0.917μg/L,组合工艺对多环芳烃的去除率达到50%以上;(4)GC×GC—TOF/MS非目标筛查在浓水进水、SBR出水和芬顿氧化出水中分别检出237、125、53种化合物。  相似文献   

7.
基于气相色谱仪 (GC)和电子捕获检测器 (ECD) ,设计了一种连续测量大气中痕量氯氟烃的自动系统。系统色谱基线稳定 ,分离效果好 ,定性、定量准确可靠 ,系统高度自动化 ,长期运行无需人值守 ,自动校正数据 ,定时进行严格的质量控制 ;系统具有较高的现场测量频率 (6次 /h) ,改进的反吹 /外切设计使CFCs色谱峰不再受氧峰的干扰 ,大大延长了检测器的寿命 ,使长期连续观测成为可能。系统设计在分离效果方面优于世界气象组织 (WMO)全球大气监测网 (GAW )目前所使用的测量大气本底CFCs的方法 ,采用美国EPA认可的标气 ,外标工作曲线法测定大气CFCs的浓度 ,最低检测限可达1pL/L ,检测精密度小于 1 % ,准确度在± 3%之内 ,可用于我国本底大气观测站对CFCs的连续测定  相似文献   

8.
1983—1990年,在松花江中游(哨口—松花江村)138公里江段中,进行七次五断面追踪水团采样,采用高分子微球GDX—502吸附富集,GC定性定量,GC/MS定性验证。依据有机物检出率、毒性持久性、有点源排放、分析方法适用等因素,筛选出65种主要有毒有机物。化合物总浓度逐年降低,石油烷烃、芳烃浓度增加;属致癌致变性化合物21种,EPA优测物21种,建议的优先控制黑名单20种;有点源排入的占90%以上,污染源来自吉化主要入江污水口;封冰期比其它水文期污染增强;该江段污染特征为氯代链烃、氯代苯类、硝基芳烃种类多、浓度高,应为重点控制对象。  相似文献   

9.
采用吹扫捕集石英毛细管柱DB-624分离、GC/MS测定废水中丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸乙酯和丙烯酸丁酯。水样吹扫时,通过加硫酸钠盐大幅度降低检出限,最低检出浓度达到0.001 mg/L,加标回收率在83.3%-109%之间,变异系数在3.8%-6.9%之间。  相似文献   

10.
本文采用溶剂萃取、毛细管GC分离、GC/MS定性的方法,初步探查了江西省蓬塘镇地区地下水有机污染物的状况。从该地区地下水中,可定性鉴别出60个有机污染物,主要是高烷烃、有机酸、酰胺及邻苯二甲酸酯等化合物,对其中某些有机污染物进行了定量测定。地下水中有机污染物的来源与当地工业污水的排放密切相关。  相似文献   

11.
水中痕量有机磷农药的高效液相色谱/质谱分析   总被引:1,自引:0,他引:1  
农药对饮用水以及饮用水源的污染在西方发达国家是一项极为关注的课题。有机磷农药作为农药中的一大类,至今仍是世界上生产和使用最多的农药品种。因此,饮用水以及饮用水源中痕量有机磷农药残留的状况受到人们关注。水中痕量有机磷农药的分析方法正在不断地改进,针对GC/MS测定某些有机磷农药时存在热分解以及在气相色谱柱上发生吸附的不足。结合高灵敏度、高选择性的质谱鉴定器,本文主要介绍最新的HPLC/APIMS方法在水中痕量有机磷农药测定方面的进展和应用。  相似文献   

12.
本文综述了国内外近20年来环境样品中有机锡化合物的分析技术。对有机锡样品的衍生技术进行了评价:系统介绍了检测有机锡化合物的气相色谱(GC)联用技术、高效液相色谱(HPLC)联用技术以及超临界流体液相色谱(SFC)联用技术。  相似文献   

13.
本文比较系统地讨论了空气中多环芳烃(PAHs)的研究现状。重点介绍了空气颗粒物及气相中多环芳烃的采样分析新办法,城市大气及居民室内外空气中多环芳烃的污染状况及其来源,简单介绍了人体接触多环芳烃的水平,指标及空气中多环芳烃的健康风险评价的研究概况。共引文献129篇。  相似文献   

14.
Analysis of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) has been performed using gas chromatography mass spectrometry (GC-MS). Analysis of the most toxic isomers, in particular, 2,3,7,8-substituted PCDD/PCDF in the presence of other isomers requires a special isomer specific capillary column or high performance liquid chromatography (HPLC) fractionation prior to GC-MS analysis. Commercially available long (>50 m) polar columns can separate 2,3,7,8-TCDD from other tetra isomers. However, those columns are not satisfactory for the analyses of total PCDD/PCDF in the environmental samples. Gas chromatography -high resolution mass spectrometry (GC-HRMS) and GC-MS/MS techniques are not helpful in the analysis of 2,3,7,8-TCDD unless it is separated from the other tetra isomers. The analysis of 2,3,7,8-TCDD and total PCDD and PCDF in a single GC-MS run can ease the laborious techniques presently used. In this study we have developed a new stationary phase for the GC capillary column. The capillary column developed using this new stationary phase showed unsurpassed selectivity for the separation of 2,3,7,8-TCDD from other tetra isomers. There are several advantages of the newly developed GC capillary column.  相似文献   

15.
Electrically conductive silicone tubing is used to minimize losses in sampling lines during the analysis of airborne particle size distributions and number concentrations. We report contamination from this tubing using gas chromatography–mass spectrometry (GC–MS) of filter-collected samples as well as by particle mass spectrometry. Comparison of electrically conductive silicone and stainless steel tubing showed elevated siloxanes only for the silicone tubing. The extent of contamination increased with length of tubing to which the sample was exposed, and decreased with increasing relative humidity.  相似文献   

16.
Comprehensive two-dimensional gas chromatography, GC 2 GC, is a new analytical tool with a tremendous capability to separate and identify organic compounds in complex environmental samples. GC 2 GC uses two different chromatography columns coupled serially by a modulator to produce a volatility by polarity separation and distribute compound peaks across a two-dimensional retention time plane. The two-dimensional separation produces an order of magnitude more resolved peaks than traditional GC methods. The grouping or ordering of the peaks in the GC 2 GC chromatogram facilitates the identification of unknown compounds and the comparison of complex environmental samples. When a mass spectrometer detector is used, each resolved GC 2 GC peak yields a single-component, interference-free mass spectrum that leads to accurate matching with mass spectral libraries. GC 2 GC examination of marine sediment extracts identified a wide variety of chemical contaminants including polychlorinated biphenyls, p -nonylphenol isomers, polycyclic aromatic hydrocarbons, benzotriazoles, and the alkane, cycloalkane, alkylbenzene, alkylnaphthalene, and biomarker fractions of petroleum. The two-dimensional GC 2 GC chromatogram image permits rapid screening of the sediment extracts for these and other unknown contaminants.  相似文献   

17.
Roy S  Mysior P  Brzezinski R 《Chemosphere》2002,48(8):833-842
High resolution mass spectrometry gas chromatography (GC/MS) is the standard method for dioxin and furan analysis in environmental matrices. Considered as very accurate, this method is however time consuming and expensive. Methods based on biological interactions have the necessary sensitivity but began only recently to be investigated in the context of environmental applications. We have compared dioxin and furan toxicity levels (expressed as toxic equivalent quantities (TEQs)) in soil samples by three analytical approaches: the micro-ethoxyresorufin-o-deethylase (EROD) bioassay (a receptor-based method), an immunoassay (antibody-based method) and GC/MS analysis (used as a reference) using a shortened extraction-purification method. Both biological methods were sensitive to interferences from compounds co-extracted from samples. Most samples were underestimated by the immunoassay and, at a greater extent, overestimated by the EROD bioassay. The average accuracy of TEQ estimation (86 +/- 45% of values established by GC/MS) and the absence of false-negatives showed by the immunoassay suggest the usefulness of this method for semi-quantitative, preliminary characterization of potentially contaminated sites.  相似文献   

18.
Analysis of nitrated polynuclear aromatic hydrocarbons   总被引:2,自引:0,他引:2  
Jinhui X  Lee FS 《Chemosphere》2001,42(3):245-250
A derivatization-gas chromatography/electron capture detector (GC/ECD) method has been developed for the measurement of trace nitrated polynuclear aromatic hydrocarbons (NPAHs) in air. The method involves first the derivatization of parent nitro-PAHs to their corresponding fluorinated derivatives, followed by GC/ECD analysis. The sensitivity of the method is an order of magnitude higher than those of direct GC/ECD analysis of NPAHs themselves. The method is simple and robust and thus ideally suited for the routine monitoring of NPAHs in air samples. The sensitivity and reproducibility of GC/negative ion chemical ionization MS (NICIMS) for the measurement of NPAHs after derivatization has been evaluated. The method has sensitivity comparable to GC/ECD, but is less reproducible in quantification. The method is therefore suitable for method validation and NPAHs peak confirmation rather than routine operations.  相似文献   

19.
Chlorinated derivatives of bisphenol A were detected in the final effluents of eight paper manufacturing plants in Shizuoka, Japan, where thermal paper and/or other printed paper is used as the raw material. Their amounts were determined by gas chromatography/mass spectrometry (GC/MS) after treatment with N, O-bis(trimethylsilyl)trifluoroacetamide, and ranged from traces to 2.0 microg/l. They are likely produced by chlorination of bisphenol A, which was released into the effluents from the pulping process of wastepaper, during or after bleaching with chlorine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号