首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 546 毫秒
1.
为研究经溢油分散剂(GM-2)处理阿曼原油对硬骨鱼类形态学发育毒性,将斑马鱼胚胎作为受试生物,采用半静态暴露方法,观察0~120 hpf(hour post-fertilization)斑马鱼胚胎的致死率、孵化率和畸形率,并应用斑马鱼胚胎发育毒性试验形态学得分系统(General Morphology Score(GMS)System)评估阿曼原油暴露诱导的斑马鱼胚胎形态发育毒性。结果显示,相较于水溶组分(water-accommodated fractions,WAF),加入GM-2后的化学增强型水溶组分(chemically enhanced water-accommodated fractions,CEWAF)水样中总石油烃(total petroleum hydrocarbons,TPH)浓度显著增加,由(5.233±0.213)mg·L-1增至(292.989±11.905)mg·L-1;120 hpf时,WAF和CEWAF组的致死率均有不同程度的升高,100%WAF的致死率为30.2%±2.8%,而≥40%CEWAF的致死率均已超过半数致死率,其半数致死浓度LC50为153.318 mg·L-1;通过对GMS分析,WAF和CEWAF暴露均会在不同程度上导致斑马鱼胚胎发育显著延迟,主要表现在鱼鳔未形成、心率异常、血液循环停滞和行动(胸鳍摆动、尾部摆动等)迟缓,且均能显著延迟胚胎孵化甚至造成胚胎不孵化;由畸形率可知,阿曼原油具有较强的致畸性,以心包水肿、背部弯曲和尾部弯曲最显著。由结果可知,经GM-2处理后的阿曼原油(CEWAF)比未处理的阿曼原油(WAF)对斑马鱼胚胎产生更严重的毒性效应。  相似文献   

2.
为探明溢油和消油过程对海洋浮游动物的毒性影响,采用实验生态学手段,在室内测定了原油水溶性成分(Water accommodated fraction,WAF)、消油剂及添加消油剂后的水溶性成分(Dispersant water accommodated fraction,DWAF)对我国近海常见浮游桡足类72h时的半致死浓度(Median lethal concentration,72h-LC50).结果表明:1)三类试验液对海洋桡足类的毒性大小顺序为消油剂(140.22~1227.75mgL~(-1))DWAF(82.33~856.64mgL~(-1))原油WAF(1.31~29.82mgL~(-1));2)水温影响污染物对桡足类的毒性,自然水温越高,桡足类对污染的耐受性越差;3)三类试验液对桡足类的毒性存在种间差异(P0.01),毒性作用随物种个体的增大而减弱.图3表3参40  相似文献   

3.
红霉素是大环内酯类抗生素,环境中红霉素残留具有较高的生态风险和健康风险,而中国目前尚缺乏红霉素的淡水水生生物基准值,因而研究适合中国流域水环境的红霉素水生生物基准,对于保护中国淡水水生生物以及水质基准的研究具有重要意义。该研究搜集筛选了红霉素对中国淡水生物的急慢性毒性数据,共获得3门8科的10个急性毒性数据和2门4科的4个慢性毒性数据。利用美国环境保护局推荐的物种敏感度排序法(SSR)推导红霉素的水生生物基准,同时以log-normal SSD法和log-logisticSSD法对基准计算结果进行了比对。比较了3种方法的优缺点,以及与国内外已有研究基准值之间的差异及形成原因,分析了影响红霉素水生生物基准的关键因素。得出采用SSR法推导的保护中国水生生物的红霉素急性基准值(CMC)为0.47μg·L~(-1),慢性基准值(CCC)为0.10μg·L~(-1)相对可行。将该研究推导出的红霉素慢性基准值(CCC)与中国部分江河和湖泊中红霉素暴露浓度相比较,采用风险商值(RQ)评价了红霉素的生态风险。结果表明,风险区域主要集中在辽河、海河和珠江,部分区域点位存在一定的红霉素暴露生态风险。研究结论可为红霉素水质标准制定和流域水环境管理提供科学依据。  相似文献   

4.
通过开展毒性试验和查阅国内外相关文献,获取马拉硫磷对长江三角洲流域22个代表性物种毒性数据,采用物种敏感度分布法和毒性百分数排序法推导长江三角洲流域马拉硫磷水生生物基准值。结果显示,采用物种敏感度分布法得出的急性基准值和慢性基准值分别为0.865 5和0.036 2μg·L~(-1),采用毒性百分数排序法得出的急性基准值和慢性基准值分别为0.400 0和0.033 4μg·L~(-1)。为充分保护水生生物,建议以毒性百分数排序法推导出的基准值作为长江三角洲流域马拉硫磷水生生物基准推荐值。研究结果可为我国地表水环境质量标准修订及水生生态风险评估提供科学依据。  相似文献   

5.
考虑物种权重校验保护太湖水生生物的铅基准   总被引:1,自引:0,他引:1  
孙雪华  孙成  刘红玲 《环境化学》2020,39(6):1578-1589
铅是一种有毒重金属元素,位列我国水中优先控制污染物"黑名单".我国水系众多,水生生物多样,研究保护区域水生生物的铅基准十分必要.太湖作为中国周边经济最发达、大中城市最密集且污染最严重的淡水湖泊之一,本研究选取8种太湖本土水生生物实验补充铅的急性毒性数据并两步外推得到慢性毒性数据.结合文献建立铅的本土毒性数据库,基于水体硬度对铅毒性的影响,建立硬度和毒性关系.考虑太湖生物区系和水质特征,采用物种权重敏感度分布方法,得到保护太湖水生生物铅的最大浓度基准值(CMC)和持续浓度基准值(CCC)值分别为50.04—58.87μg·L~(-1)和3.99—4.69μg·L~(-1);现行地表水铅的Ⅲ类标准限值(50μg·L~(-1))下受铅急性毒性和慢性毒性影响的生物比例分别为4.42%和23.00%.  相似文献   

6.
繁殖/生殖毒性类化合物由于特殊的毒理作用模式(mode of action,MOA),通过影响生物繁衍影响到种群和群落,因此依靠基于急、慢性毒性测试终点和传统基准推导方法推导的水生态基准值并不能够为水生生物群落结构提供足够的保护。本文根据文献资料,分析了推导此类化合物水生态基准时的关键科学问题,包括繁殖/生殖毒性类化合物MOA,毒性数据类型,受试物种选择,以及不同生命阶段、多代毒性测试和测试终点的判别和选择。并用所收集的壬基酚数据,尝试推导了基于水生生物生殖毒性的水生态基准值。研究得出基于生殖毒性的壬基酚预测无观察效应浓度(PNEC)值为0.12μg·L-1,其数值比美国环境保护局根据传统基准方法推导的基准持续浓度(CCC)的6.59μg·L-1低了近50倍。因此,基于其繁殖毒性(包括产卵量、受精率、孵化率、多代效应以及种群变化等)的实验结果更适合用于具有繁殖/生殖毒性污染物水生态基准的推导。  相似文献   

7.
水环境中氯丙嗪污染对鲫鱼和大型蚤的急性毒性效应   总被引:3,自引:0,他引:3  
氯丙嗪作为一种镇静类兽药被广泛使用,已成为水环境中的一种新型污染物.为检验氯丙嗪对水生生物的生态毒性效应,采用实验室模拟的方法,研究了工业原料药盐酸氯丙嗪对鲫鱼(Carassius auratus)和大型蚤(Daphnia magna)的急性毒性效应.结果表明:氯丙嗪对两种水生生物的毒性效应(致死率、抑制率概率单位)均与其浓度呈显著线性正相关关系(p<0.05),且毒性强度随作用时间的延长而增加;氯丙嗪对鲫鱼的24、48和96h的半致死浓度(LC50)值分别为1.11、0.43和0.32mg·L-1,通过计算求得氯丙嗪对鲫鱼的安全浓度为19.5μg·L-1;氯丙嗪对大型蚤的24h LC50值为0.65mg·L-1,24h EC50值(使50%受试大型蚤活动受抑浓度)为0.57mg·L-1;48h LC50值为0.36mg·L-1,48h EC50值为0.28mg·L-1;对鲫鱼和大型蚤而言,氯丙嗪属极高毒性物质,大型蚤对氯丙嗪的敏感性大于鲫鱼。  相似文献   

8.
双酚A(BPA)已被证实是一种类雌激素类物质。本研究根据BPA对水生生物毒性效应的特点,按照不同的毒性终点将BPA的毒性数据进行归类,采用物种敏感度分布法(species sensitivity distribution,SSD)推导了BPA对水生生物的预测无效应浓度(predicted no effect concentration,PNEC)。结果表明:以雌激素效应为暴露终点的急、慢性PNEC分别为25.11μg·L-1、1.075μg·L-1;而以所有数据的急、慢性毒性效应为暴露终点推导的PNEC值分别为355.7μg·L-1、7.549μg·L-1。BPA对水生生物的雌激素效应更为敏感,建议在推导BPA这类内分泌干扰物的PNEC值时,应依据其毒性终点分别推导,从而得到更加合理的基准值。研究成果以期为我国地表水环境质量标准的制修订提供数据支持。  相似文献   

9.
通过生态毒理试验,获得百菌清对长江三角洲流域14种代表性水生生物的毒性数据。分别采用评价因子法、物种敏感度分布法和毒性百分数排序法,推导长江三角洲流域百菌清水生生物基准值。评价因子法、物种敏感度分布法和毒性百分数排序法得出的急性基准值分别是0.066μg·L~(-1)、3.00μg·L~(-1)和0.51μg·L~(-1),慢性基准值分别是0.0089μg·L~(-1)、0.40μg·L~(-1)和0.136μg·L~(-1)。比较了3种方法得出的基准值之间的差异并分析了原因,在此基础上,提出了我国长江三角洲流域百菌清水生生物基准推荐值,并与国外基准值进行了比较。研究结果可为中国农药水质标准制修订及水生生物风险评估提供科学依据。  相似文献   

10.
我国六价铬淡水水生生物安全基准推导研究   总被引:1,自引:1,他引:0  
参照美国国家环境保护局(USEPA)"推导保护水生生物及其用途的国家水质基准的技术指南"的程序和规范,筛选了我国广泛存在的淡水水生生物物种,收集现有的急性和慢性毒性数据,结合课题组实验得到的部分本土生物毒性数据,分别采用物种敏感度排序法(SSR)、物种敏感度分布法(SSD)以及澳大利亚的水质基准技术方法对我国六价铬的淡水水生生物安全基准进行了推导。获得了我国淡水水生生物的六价铬的双值基准,3种方法得到的基准最大浓度(CMC)分别为23.97、22.84、29.06μg·L-1,基准连续浓度(CCC)分别为14.63、10.35、9.00μg·L-1,在同一个数量级上,但与美国的基准值有一些差异,建议使用SSD法推导CMC值和CCC值。研究结果可为我国水质基准的制定提供一些有用的基础资料。  相似文献   

11.
在溢油事故应急处置中,消油剂的使用备受争议。为探究消油剂和溢油对海洋底栖模式生物海胆(Hemicentrotus pulcherrimus)复合毒性效应,通过WAFs(Water-accommodated fractions)和CEWAFs(Chemically enhanced water-accommodated fractions)的96 h暴露实验,测定海胆肠和性腺中过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、谷胱甘肽硫转移酶(GST)、谷胱甘肽过氧化物酶(GPx)活性的变化。实验结果表明:随油水配比浓度的增加,4种酶活性呈现先升高后降低趋势,且酶活性峰值均极显著高于海水对照组水平(P0.01)。肠中4种酶活性最大诱导倍数均高于性腺。相同暴露浓度下,CEWAFs组4种酶活性诱导程度均高于WAFs组。消油剂对照组和海水对照组间4种酶活性则无显著性差异(P0.05)。  相似文献   

12.
溢油事故发生后喷洒溢油分散剂是常用的应急措施之一,这使得溢油分散剂中的表面活性剂与石油中的重要污染物多环芳烃(PAHs)在海水中共存。光化学转化是水中PAHs的重要转化途径,这些共存表面活性剂如何影响PAHs在海水中的光化学消减还有待阐明。本研究选取溢油分散剂的重要活性成分吐温80和石油中2种不同类型的PAHs(菲和二苯并噻吩),通过光化学实验考察不同浓度吐温80对菲(PHE)和二苯并噻吩(DBT)在海水中的光降解速率常数和光解量子产率的影响,并通过量子化学计算的手段研究其影响机制。研究发现:吐温80可以使PHE和DBT的阳离子自由基回到稳定的基态,降低PHE和DBT的光解量子产率,从而抑制PHE和DBT的光降解。该结果表明,在评价溢油分散剂的风险性时不可忽视其对PAHs环境转化行为的影响。  相似文献   

13.
以一种重要的化工原料硝基苯为研究对象,通过收集、筛选我国本土物种的硝基苯海水生物毒性数据,同时针对我国海区生物特点补充8种典型海洋受试生物的毒理学实验,应用物种敏感度分布(SSD)方法推导了用于保护水生生物的我国硝基苯海水水质基准值。在此基础上,尝试应用2种概率生态风险评估方法初步评估了硝基苯在我国东海椒江口水体中的生态风险。研究结果表明,用于保护我国海水生物的硝基苯水质基准高值为1.42 mg·L-1,低值为0.037 mg·L-1,与应用SSD方法推导的硝基苯淡水水质基准差异不大。商值概率分布法和联合概率曲线法的风险表征结果表明,硝基苯对椒江口中的水生生物存在潜在的生态风险,需要管理部门采取一定的风险管控措施。研究结果有望为我国水质基准、生态风险研究及硝基苯的海水水质标准制定提供参考。  相似文献   

14.
水环境中藻毒素生态风险的物种敏感性分布评价   总被引:2,自引:0,他引:2  
藻毒素对人体的健康风险已受普遍关注,然而其对水生态物种敏感性分布的影响尚不明朗。本研究采集已有实验数据,利用种间相关性分析(ICE)模型和物种敏感性分布评估(SSDs)方法,筛选了64个水生生物物种的71组急性毒性数据(EC50),构建水生生物对肝毒素(节球藻毒素、柱孢藻毒素)和神经毒素(类毒素、贝毒素)的SSD方程。在此基础上,计算不同暴露浓度下的潜在影响比例(PAF)以及保护95%物种基础上藻毒素对水生生物的生态风险阈值(HC5),比较不同类别生物对藻毒素的敏感性以及藻毒素对水生生物的生态风险。结果表明:(1)在95%物种保护保证率下,节球藻毒素、柱孢藻毒素、类毒素和贝毒素对全部物种的HC5值分别为74.96、205.39、194.39、0.3μg·L~(-1),贝毒素水生态风险最高,柱孢藻毒素最低。(2)柱孢藻毒素、类毒素对无脊椎动物的HC5值分别为122.93、95.19μg·L~(-1),低于全部物种的HC5值,无脊椎动物受柱孢藻毒素、类毒素影响较其他物种大。(3)物种潜在影响比例可明确表征敏感性,柱孢藻毒素、类毒素在各浓度暴露情景下对无脊椎动物的PAF值均高于脊椎动物,显示无脊椎动物的敏感性较高。  相似文献   

15.
铜对水生生物的毒性:类群特异性敏感度分析   总被引:3,自引:0,他引:3  
铜的毒性因受多种环境因素(如温度、pH等)的影响,其水质基准和标准经历过多次修改。由于不同区系生物受生活环境等因素的影响,不同物种对铜的耐受性和敏感度上存在很大的差异。本文通过构建类群特异性敏感度分布,以及对10%安全浓度值(10%hazardous concentration,HC_(10))及其95%置信区间(95%confidence interval,95%CI)的比较,分析了铜对淡水和海水各类群的敏感度差异,以期为我国在制定相关水质基准的物种选择上提供参考。结果显示,淡水系统中藻类为对铜毒性最敏感类群,其次为甲壳类,软体动物类,鱼类,寡毛类,而昆虫类为对铜的最耐受类群。海水各类群对铜的敏感度顺序与淡水类似,只是在寡毛类和鱼类顺序上有所不同。相对于海洋物种,淡水水体生物总体上比海水中各相应类群生物对铜更为敏感。  相似文献   

16.
典型消油剂对溢油鉴别生物标志物指示作用的影响   总被引:3,自引:0,他引:3  
在一定条件下,分别对添加消油剂的原油和重质燃料油进行了风化模拟实验,采用气相色谱质谱联用(GC-MS)对风化样品中的生物标志化合物进行了检测,通过生物标志化合物特征比值的变化趋势,对以往溢油鉴别过程中常规生物标志化合物特征比值进行筛选.结果表明,在溢油经消油剂处理后,以往经常选用的指纹信息(主峰碳数、CPI、(C21+C22)/(C28+C29)、C21前/C22后、Pr/Ph(姥鲛烷/植烷)、Pr/C17、Ph/C18)受到消油剂中相关组分的干扰,失去指示意义;消油剂加剧了某些多环芳烃及其烷基化系列生物标志化合物的风化作用,使与其相关的生物标志化合物比值(C2-D/C2-P、C3-D/C3-P、ΣP/ΣD、2-MP/1-MP、4-MD/1-MD)失去指示意义;绝大部分甾、萜烷类生物标志化合物的抗风化能力较强,相关比值仍具有较好的指示意义.  相似文献   

17.
Spanning over a half century, over 38 “major” oil spill accidents have occurred, with the Deep Water Horizon disaster proving to be one of the largest oil spills on record. It is during these environmental disasters where the public community gathers together to participate in the clean-up effort and government entities coordinate various action plans. Whether it is using (1) workers to apply chemical dispersants to facilitate the remediation of oil in impacted areas or (2) volunteers to pick up “tar balls” from the beach shorelines; public health concerns during an oil spill are warranted for consideration. The purpose of this review was to illustrate a need for increase in scientific advancement and governmental focus on detecting and mitigating public health effects following an oil spill disaster. With focus on the Exxon Valdez, Prestige, and Gulf oil spills, the governmental and scientific community responses were assessed. Using the human-environmental system model, this review illustrates how the model can be used to address human-health concerns following exposure to an oil spill stressor.  相似文献   

18.
The ability for the water accommodated fraction (WAF) of oil-dispersant mixtures to become aerosolized following natural sea surface activity markedly increases the probability of inhalation exposure to this aerosolized mixture and subsequent adverse respiratory health effects. Thus, the purpose of this study was to elucidate the chemical composition of WAF of these mixtures as well as determine how this relates to lung epithelial cell cytotoxicity. WAF was prepared by mixing each dispersant (Corexit 9500/9527/9580) with crude oil. For “chemical constituent fingerprinting,” these prepared WAF were extracted prior with dichloromethane, analyzed by Gas chromatography/mass spectrometry, and qualitatively evaluated using the NIST08 database. Results from chemical analysis revealed an increase in structure complexity of the WAF oil-dispersant mixtures when compared to WAF of crude oil only. This complexity was characterized by high molecular weight compounds such as alkyl derivatives, esters, and polycyclic aromatic hydrocarbons. Previously a concentration-dependent reduction in cultured A549 cells was noted at 2 or 24?h time points following exposure to either the WAF-oil/9500 or WAF-oil/9527. Thus, a possible correlation exists between the chemical complexity of these mixtures and the ability to induce lung epithelial cell death in potentially exposed individuals.  相似文献   

19.
生物敏感性分布法(Species Sensitivity Distributions,SSD)是一种基于单物种测试和概率统计学的、较高级的外推风险评估方法。该方法在国内外均被广泛应用于各种污染物风险评价中。本文选取了采用logistic和normal这2种SSD分布模型,分析了国内外毒死蜱对3组水生生物组合的毒性数据;并且获得各自SSD的HCx值。3组毒性数据分别为:浙江稻田水生生物组,长三角地区水生生物组和美国水生生物组。浙江稻田水生物SSD分布的HC5为:0.32μg·L~(-1)(logistic模型)和0.35μg·L~(-1)(normal模型);HC10为1.50μg·L~(-1)(logistic模型)和1.26μg·L~(-1)(normal模型);HC20为8.13μg·L~(-1)(logistic模型)和5.96μg·L~(-1)(normal模型);HC50为145.44μg·L~(-1)(logistic模型)和115.74μg·L~(-1)(normal模型)。据此判断水稻种植季节,稻田水域毒死蜱对食蚊鱼、鳑鲏、泽蛙蝌蚪、轮虫、常见腹足类和双壳类软体动物以及绝大多数藻类等的风险较小。利用冗余分析研究了生物物种数量、物种组成结构和拟合模型对HCx影响。结果表明:物种组成结构对HCx有较为明显的影响。具体表现为对毒死蜱较为敏感物种数量与HCx存在明显的负相关性;对毒死蜱不敏感的物种则与HCx呈现正相关性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号