首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The results are presented of studies on the content of Zn, Pb, Cu, Ni and Cd inPleurozium schreberi moss within the spatial system of Kampinos National Park (KPN) adjacent to the Warsaw urban agglomeration. Over a large area (64.3–78.3%) of the Park, mosses contain the following amounts of metals in mg kg–1 dw: 80–120 of Zn, 60–80 of Pb, 10–15 of Cu, 4–8 of Ni and 0.6–0.9 of Cd. All trace metals were found to accumulate in elevated amounts in moss in the south-eastern portion of the Park bordering the urban area, and it is this part of the Park that should be considered as most polluted by heavy metals.  相似文献   

2.
Background, aim and scope Since 1990 the UN ECE Heavy Metals in Mosses Surveys provide data inventories of the atmospheric heavy metal bioaccumulation across Europe. In the survey 2005 the nitrogen accumulation was measured for the first time in most of the participating countries. In Germany, the surveys were conducted in close cooperation of the relevant authorities of both the Federal Republic and the sixteen states. Therefore, statistical evaluations of the moss survey data with regard to the whole German territory and single federal states are of interest. This article concentrates on Mecklenburg-Western Pomerania, dealing with the mapping of the spatiotemporal trends of metal accumulation from 1990 to 2005, the spatial patterns of nitrogen accumulation in 2005, and the spatial variability of bioaccumulation due to characteristics of the sampling sites and their surroundings. Materials and methods The bioaccumulation of up to 40 trace elements in mosses was determined according to a Europe-wide harmonised methodology. The according experimental protocol regulates the selection of sampling sites and moss species, the chemical analysis and quality control and the classification of the measured values for mapping spatial patterns. In Mecklenburg-Western Pomerania all sampling sites were described with regard to topographical and ecological characteristics and several criteria to be fulfilled according to the guideline. Together with the measurements this metadata was combined with other information regarding land use in the surroundings of the sampling sites in the WebGIS MossMet. The spatial structure of the metal bioaccumulation was analysed and modelled by variogram analyses and then mapped by applying different kriging techniques. Furthermore, multi metal indices (MMI) were derived for both the sampling sites and raster maps with help of percentile statistics: The MMI1990–2005 was calculated for As, Cd, Cr, Cu, Fe, Ni, Pb, Ti, V and Zn. The statistical association of the metal bioaccumulation, site specific characteristics as well as information on land use and emissions was analysed by bivariate nonparametric correlation analysis, contingency tables and Chi-square Automatic Interaction Detection (CHAID). Results The results of the quality controlled chemical analyses show a significant decrease of the metal bioaccumulation in Germany from 1990 to 2000 for all elements. However, in Mecklenburg-Western Pomerania the concentrations of Cr and Zn are even significantly higher than those found in 1990. From 2000 to 2005?a further non-significant increase can be stated for As, Cu, Ni and Ti. The concentrations of Cd and Pb decreased significantly throughout all four surveys. The MMI illustrates the temporal trend of the metal bioaccumulation as a whole: After a significant decrease from 1990 to 2000 it increased significantly till 2005. The N concentration in mosses in Mecklenburg-Western Pomerania reaches from 1.3 to 2.3?% in dry mass and is negatively correlated with the forest ratio in the surroundings of the moss sampling sites and to the same degree positively correlated with the area ratio of agricultural land uses. Except for Cd, Pb and Sb all metal concentrations in the mosses are negatively correlated with the forest ratio around the sampling sites. With the exception of Cr all metal concentrations are further negatively correlated with the precipitation sums of the accumulation periods. Only the Cu and Zn concentrations show no or rather a negative correlation with the tree height whereas all other elements exhibit positive correlations. Furthermore, all elements except Cr are significantly associated to the sampled moss species, the growth pattern and the frequency of occurrence of the mosses at the respective sampling sites. Exemplified for Cu multivariate correlations were furthermore detected by CHAID. It could be shown that the frequency of the mosses, the sampled moss species, the distance to motorways and the distance to the Baltic Sea are the statistically most significant boundary conditions of the Cu concentrations in the mosses sampled in Mecklenburg-Western Pomerania in 2005. No correlations were found between the modelled total depositions and the concentrations of Cd, Hg and Pb in the mosses at p < 0.1. For Pb in 1995?r is 0.52 at p = 0.012, for the other surveys no correlations at p < 0.05 could be found. Discussion The increase of the Cr bioaccumulation from 2000 till 2005 is particularly pronounced in Mecklenburg-Western Pomerania. This trend is confirmed with regional differences in the national average as well as in other participating countries like in Switzerland. Deposition measurements did not register this trend. In contrast to the UNECE area, the federal territory and several federal states no correlations were found between the modelled total depositions and the metal concentrations in the mosses. Conclusions The fact that no correlations were found between the modelled total depositions and the element concentrations in the mosses may be caused by the low spatial resolution (50?×?50?km) of the EMEP data. The moss surveys contribute to the heavy metal and the multi-component-model of CLRTAP because they prove on different spatial scales how air pollution control influences the accumulation of emitted substances in environmental subjects of protection like vegetation. In contrast to deposition measurement networks the moss monitoring identified a trend reversal in Mecklenburg-Western Pomerania: The continuous decrease of the metal bioaccumulation in mosses from 1990 till 2000 has changed to an increase of several metals between 2000 and 2005. This increase is significant for Cr and Zn. Recommendations and perspectives The spatial resolution of the EMEP deposition data should be enhanced based on the Europe-wide regression relationship between the element concentrations in the deposition and in the mosses. For regional studies the existing but so far not useable deposition measurement data of the federal states should be made available. It should further be investigated what caused the increase of the Cr concentrations above the level of 1990 – perhaps emissions or biogenic effects as a consequence of simultaneously increased nitrogen loads? The Heavy Metals in Mosses Surveys are a positive example for environmental monitoring activities reaching across three spatial and administrative levels: regional (e.?g. federal state or natural landscape), nation wide (e.?g. Germany) and continental (e.?g. Europe). In Germany the harmonised and quality controlled moss data are made available via a WebGIS portal. Therefore the moss data may easily be accessed for environmental monitoring purposes and the control of environmental political actions. Hence, the continuous task of environmental monitoring can be met and carried on in the future. It should further be considered to expand the moss monitoring on the survey of persistent organic pollutants and apply it in human-biomonitoring. This would facilitate the acquisition of indoor and outdoor pollution with the same receptor.  相似文献   

3.
4.
This article describes a biomonitoring using mosses in order to determine the amount and distribution of the atmospheric deposition of 37 elements in the European region of the Neisse river following the political and economic changes. These results are compared with the findings in other regions. Additionally, the accumulation characteristics ofPleurozium schreberi andPolytrichum formosum, the two moss species used in the study, were compared with one another. Until the beginning of the 1990s, this region was part of the socalled “black triangle”, an area characterised by extremely high atmospheric dust pollution. Through the closing of numerous factories, the equipment of power plants with filters, and the decreasing importance of brown coal as a source of household heating, the situation has changed considerably. Today, the pollution levels in the European region of the Neisse river are comparable with those in the western part of Germany. Higher levels were only determined for Fe and Ti, which can be attributed to the broader usage of brown coal as a source of energy. In the area around Katowice, Poland, the levels of certain elements were found to be more than ten times higher than in the European region of the Neisse. These highly elevated levels of atmospheric contamination in the industrial district of Upper Silesia indicate that action is urgently needed.  相似文献   

5.
Background, aim, and scope Since 1990 the UN ECE Heavy Metals in Mosses Surveys provide data inventories of the atmospheric heavy metal bioaccumulation across Europe. In the survey 2005 the nitrogen accumulation was measured for the first time in most of the participating countries. In Germany, the surveys were conducted in close cooperation of the relevant authorities of both the Federal Republic and the sixteen states. Therefore, statistical evaluations of the moss survey data with regard to the whole German territory and single federal states are of interest. This article concentrates on Lower Saxony, dealing with the mapping of the spatiotemporal trends of metal accumulation from 1990 to 2005, the spatial patterns of nitrogen accumulation in 2005, and the spatial variability of bioaccumulation due to characteristics of the sampling sites and their surroundings. Materials and methods The bioaccumulation of up to 40 trace elements and nitrogen in mosses was determined according to a Europe-wide harmonised methodology. The according experimental protocol regulates the selection of sampling sites and moss species, the chemical analysis and quality control and the classification of the measured values for mapping spatial patterns. In Lower Saxony all sampling sites were described with regard to topographical and ecological characteristics and several criteria to be fulfilled according to the guideline. Together with the measurements this metadata was combined with other information regarding land use in the surroundings of the sampling sites in the WebGIS MossMet. The spatial structure of the metal bioaccumulation was analysed and modelled by variogram analyses and then mapped by applying different Kriging techniques. Furthermore, multi metal indices (MMI) were derived for both the sampling sites and raster maps with help of percentile statistics: The MMI1990–2005 was calculated for As, Cd, Cr, Cu, Fe, Ni, Pb, Ti, V and Zn. The statistical association of the metal and nitrogen bioaccumulation, site specific characteristics as well as information on land use and emissions was analysed by bivariate nonparametric correlation analysis, contingency tables and Classification and Regression Trees (CART). Results The results of the quality controlled chemical analyses shows a significant decrease of the metal bioaccumulation in Germany from 1990 to 2000 for all elements but Zn. From 2000 to 2005 a further significant decrease can be stated for Cd, Hg and Pb, to most parts non significant increases can be observed for Cr, Cu, Fe, Sb and Zn. Cr thereby exhibits the highest accumulation in 2005 when compared to the results of 1990, 1995 and 2000. The MMI illustrates the temporal trend of the metal bioaccumulation as a whole: From 1990 to 2000 a continuous significant decrease can be observed. From 2000 to 2005 the median of the MMI increases, again significantly, from 3.4 to 4. The N concentration in mosses in Lower Saxony reaches from 1.1 to 1.9?% in dry mass. High N concentrations were detected in agriculturally intensively used areas. Highly significant bivariate correlations between the metal bioaccumulation and land use in the surroundings of the sampling sites were found reaching from 0.3 to 0.5. Other location criteria with similar correlation coefficients/Cramér’s V are moss species, altitude, distance to the North and Baltic Sea and the distance of the sampling site to the nearest tree crown. N only shows negative correlations to urban land use and the distance to the nearest tree. Exemplified for Sb multivariate correlations were furthermore detected by CART. It could be shown that the Sb bioaccumulation interacts with the moss species and the ratio of agriculture, forests and urban areas around the sampling site. Discussion The decrease of the continuously decrease of heavy metals reflects the improving air quality in the past 15 years. Compared to other environmental monitoring and modelling programmes the moss surveys registered increasing concentrations of toxic metal elements between 1990 and 2005, e.?g. Cr. High Cr loads in mosses were also registered in other European countries like in Switzerland. Further investigations are therefore necessary to investigate whether this is due to different emission conditions or biogenic effects (e.?g. as a result of increasing nitrogen depositions). Contrary to deposition measurements that exhibit a higher temporal resolution the moss surveys provide measurement data on a wide range of elements. Some of these elements are important with regard to human-toxicological aspects (e.?g. As, Al, Hg, Sb, V). Due to its ecotoxicological relevance nitrogen was monitored in the European moss survey 2005 for the first time. Compared to the metals regionally high emissions of nitrogen compounds into the atmosphere can be detected in Lower Saxony. The standardised biomonitoring of atmospheric pollution with mosses is an important link between the technical acquisition of depositions and the accumulation in biological material. To claim that the element concentrations in mosses should correlate to a high degree with measured or modelled depositions is not appropriate since these approaches are considering different biological or physical receptors. Nevertheless, the accumulation of air pollutants in terricolous mosses reflects the degree of air pollution which is permanently deposited and affects the system of plants and soils. The degree of correlation thereby depends on the boundary conditions of the physical processes, like regional and site-specific meteorological conditions within the accumulation period, the vertical and horizontal vegetation structure or land use conditions. Conclusions The moss surveys contribute to the heavy metal and the multi-component-model of CLRTAP because they prove on different spatial scales how air pollution control influences the accumulation of emitted substances in environmental subjects of protection like vegetation incl. arable crops. If environmental monitoring is seen as a continuous task and the applied methodology works well as an early warning system then environmental policy is enabled to act in preventative sense and to pursue unexpected developments. No other environmental monitoring programme provides such a wide range of ecotoxicologically relevant elements measured as spatially dense as the case for the moss surveys. The spatial distribution of environmental information is an essential criterion for their usability in terms of political measures for the federal states and the federation. Recommendations and perspectives Heavy Metals in Mosses Surveys are a positive example for environmental monitoring activities reaching across three spatial and administrative levels: regional (e.?g. federal state or natural landscape), nation wide (e.?g. Germany) and continental (e.?g. Europe). In Germany the harmonised and quality controlled moss data are made available via a WebGIS portal. Therefore the moss data may easily be accessed for environmental monitoring purposes and the control of environmental political actions. Hence, the continuous task of environmental monitoring can be met and carried on in the future.  相似文献   

6.
Background, aim and scope Since 1990 the UN ECE Heavy Metals in Mosses Surveys provide data inventories of the atmospheric heavy metal bioaccumulation across Europe. In the survey 2005 the nitrogen (N) accumulation was measured for the first time in most of the participating countries. In Germany, the surveys were conducted in close cooperation of the relevant authorities of both the Federal Republic and the sixteen states. Therefore, statistical evaluations of the moss survey data with regard to the whole German territory and single federal states are of interest. This article concentrates on Saxony, dealing with the mapping of the spatiotemporal trends of metal accumulation from 1990 to 2005, the spatial patterns of nitrogen accumulation in 2005, and the spatial variability of bioaccumulation due to characteristics of the sampling sites and their surroundings. Exemplified for Cadmium (Cd), Mercury (Hg) and Lead (Pb) the metal loads in mosses are furthermore related to modelled deposition data provided from the European Monitoring and Evaluation Programme (EMEP). Materials and methods In Saxony Pleurozium schreberi (1990, 1995 most frequent moss species, thereafter second most), Hypnum cupressiforme (1990, 1995 second most, thereafter most frequent moss species), Scleropodium purum and Brachytecium rutabulum (1995, 2000) were sampled at up to 83 sites. All sampling sites were described with regard to topographical and ecological characteristics and several criteria to be fulfilled according to the guideline. Together with the measurements this metadata was combined with other information regarding land use in the surroundings of the sampling sites in the WebGIS MossMet. The spatial structure of the metal bioaccumulation was analysed and modelled by variogram analyses and then mapped by applying different kriging techniques. Furthermore, multi metal indices (MMI) were derived for both the sampling sites and raster maps with help of percentile statistics: The MMI1990–2005 was calculated for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), lead (Pb), titanium (Ti), vanadium (V) and zinc (Zn). The statistical association of the metal bioaccumulation, site specific characteristics as well as information on land use and emissions was analysed by bivariate nonparametric correlation analysis, contingency tables and Classification and Regression Trees (CART). Results The results of the quality controlled chemical analyses show a decrease of the metal bioaccumulation in Saxony from 1990 to 2000. From 2000 to 2005?a significant increase can be stated for As, Cr, Cu, Fe, Ti and V. The element loads of Cd, Hg, Pb and Sb show a decreasing, although non significant, tendency. The MMI1990–2005 decreased significantly from 1990 to 2000 and increased significantly from 2000 to 2005. The N concentration in mosses in Saxony reaches from 1.36 to 1.96?% in dry mass showing significant correlations to the agriculture density (+), the height of the surrounding trees (+), altitude (–) and the precipitation sum for the accumulation period (–). The ratios of forests around the monitoring sites show a negative correlation to all elements but for Pb, Sb and V. Unlike Cd the moss loads of As, Cr, Cu, Fe, Hg, Ni, Pb, Ti and V are positively correlated to the density of urban areas calculated from the Corine Landcover map 2000. The same holds true for Cr, Cu Fe and Ni regarding traffic density and Cd, Cu, Hg and Ni regarding agricultural density. The precipitation sum within the accumulation period is positively correlated with As, Cd, Cr (1990–2000), Ni, Pb, Sb und V, negatively with Cr (2005), Cu, Fe and Zn. Regarding altitude a similar tendency can be observed. The slope gradient shows significant association to Cd, Cu, Ni and Pb. Regarding the canopy effect negative correlation coefficients were calculated for As, Pb and Sb regarding the distance of the sampling site to the nearest tree crowns and positive correlations were calculated for Cd, Cr, Fe and Sb with respect to the height of the surrounding trees. The distance of the moss site to human settlements is significantly related to As, Cd, Cr, Hg, Ni, Pb and Sb. The impact of traffic becomes apparent for As, Cr, Cu, Ni, Pb, Sb, V and Zn which are all negatively correlated with the distance of the moss site to the nearest road. The multivariate statistical CART analysis identifies the urban land use density in a radius of 5?km around the sampling site as well as the height of surrounding trees as the statistically most significant factors for the Cu concentrations in mosses sampled in 2005. The modelled total deposition of Cd, Hg and Pb (EMEP) and the respective concentrations in Saxon mosses are correlated significantly (1995 Hg: r s = 0.62, p = 0.004; 2005 Cd: r s = 0.43, p = 0.07, Hg: r s = 0.44, p = 0.06, Pb: r s = 0.39, p = 0,099). Discussion Unlike in e.?g. Baden-Württemberg the metal accumulation in mosses in Saxony increased between 2000 and 2005, Cr thereby increased dramatically. For Cd, Hg and Pb it could be shown that the metal loads in mosses are significantly correlated to the modelled total deposition provided by EMEP. Nevertheless, this does not hold true for all elements in all campaigns. Taking this into account, it can be verified that positive relationships between the metal bioaccumulation and the deposition for Saxony exist. Conclusions Contrary to deposition measurements that exhibit a higher temporal resolution the moss surveys provide measurement data on a wide range of elements. Some of these elements are important with regard to human-toxicological aspects (e.?g. Al, As, Hg, Sb, V). The standardised biomonitoring of atmospheric pollution with mosses is an important link between the technical acquisition of depositions and the accumulation in biological material. To claim that the element concentrations in mosses and in the deposition should correlate to a high degree is not appropriate since both approaches are physically related but are not identical. The degree of correlation thereby depends on the boundary conditions of the physical processes, like regional and site-specific meteorological conditions within the accumulation period, the vertical and horizontal vegetation structure or land use conditions. Recommendations and perspectives The Heavy Metals in Mosses Surveys are a positive example for environmental monitoring activities reaching across three spatial and administrative levels: regional (e.?g. federal state or natural landscape), nation wide (e.?g. Germany) and continental (e.?g. Europe). It can therefore be claimed that the moss survey is the only environmental monitoring network that provides high density and surface covering information on the metal and N exposition of near-natural and agricultural ecosystems. The correlations of the metal bioaccumulation and the modelled deposition should therefore be used to complement the deposition measurement activities across Europe.  相似文献   

7.
Investigations in 23 pine stands, a widespread type of forest on sandy soils in Northern Germany, were made to compare the concentration of the total N in pine needles, the overall rates and concentrations of nitrogen in precipitation water (NH4?N+NO3?N) to concentrations of total N in shoots ofPleurozium schreberi (Brid.) Mitt., a common bryophyte in these forests. Within the investigation period from 1996 to 1998, a total deposition of nitrogen in a range from 10 to 32 kg ha?1a?1 and mean values of nitrogen concentrations in the precipitation water between 2.8 and 6.9 ppm were observed. N concentrations in both bryophytes and pine needles also varied in a large scale from 1.3 to 2.3% d.wt. High correlations between concentrations of total N in moss tissue and total N concentrations in pine needles (r2=0.75, p<0.001) as well as N concentrations in the precipitation water (r2=0.81, p<0.001) were found. Lower correlations of N concentrations inPleurozium with overall rates of nitrogen calculated for the year before moss sampling in 1997 until 1999 can be attributed to temporary variations of N concentrations in precipitation due to different amounts of rainfall. Comparing the results of only one year (1998), the correlation was higher (r2=0.86). The role of other effects, e.g. growth rate and dry deposition, is discussed as well. Aside from the monitoring of heavy metals and organic compounds,Pleurozium schreberi is seen to be a useful indicator for estimating the amount of N deposition.  相似文献   

8.
This paper presents measurements of major, minor, metal trace elements and radionuclides in sediments and in Posidonia oceanica samples from north-western Sicily (Italy). The mineralogical and chemical composition of sediments were determined by X-ray diffraction and X-ray fluorescence techniques, respectively. A flame atomic absorption spectrophotometry was used to measure concentrations of Cu, Zn, Cd and Pb in P. oceanica samples and in sediments. Specific activities of selected radionuclides have been determined by high-resolution gamma spectrometry. Standard statistical analysis was used to assess correlations between different elements and different sample types.  相似文献   

9.

Environmental geochemistry classifies elements into essential, non-essential and toxic elements in relationship to human health. To assess the environmental impact of mining at Datoko-Shega area, the distributions and concentrations of trace elements in stream sediments and soil samples were carried out. X-ray fluorescence analytical technique was used to measure the major and trace element concentrations in sediments and modified fire assay absorption spectrometry in soils. The results showed general depletion of major elements except titanium oxide (TiO2) compared to the average crustal concentrations. The retention of TiO2 at the near surface environment probably was due to the intense tropical weathering accompanied by the removal of fine sediments and soil fractions during the harmattan season by the dry north-east trade winds and sheet wash deposits formed after flash floods. The results also showed extreme contamination of selenium (Se), cadmium (Cd) and mercury (Hg), plus strong contaminations of arsenic (As) and chromium (Cr) in addition to moderate contamination of lead (Pb) in the trace element samples relative to crustal averages in the upper continental crust. However Hg, Pb and Cd concentrations tend to be high around the artisanal workings. It was recognised from the analysis of the results that the artisanal mining activity harnessed and introduces some potentially toxic elements such as Hg, Cd and Pb mostly in the artisan mine sites. But the interpretation of the trace element data thus invalidates the elevation of As concentrations to be from the mine operations. It consequently noticed As values in the mine-impacted areas to be similar or sometimes lower than As values in areas outside the mine sites from the stream sediment results.

  相似文献   

10.

Background

In order to map exceedances of critical atmospheric deposition loads for nitrogen (N) surface data on the atmospheric deposition of N compounds to terrestrial ecosystems are needed. Across Europe such information is provided by the international European Monitoring and Evaluation Programme (EMEP) in a resolution of 50 km by 50 km, relying on both emission data and measurement data on atmospheric depositions. The objective of the article at hand is on the improvement of the spatial resolution of the EMEP maps by combining them with data on the N concentration in mosses provided by the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops (ICP Vegetation) of the United Nations Economic Commission for Europe (UNECE) Long-range Transboundary Air Pollution (LTRAP) Convention.

Methods

The map on atmospheric depositions of total N as modelled by EMEP was intersected with geostatistical surface estimations on the N concentration in mosses at a resolution of 5 km by 5 km. The medians of the N estimations in mosses were then calculated for each 50 km by 50 km grid cell. Both medians of moss estimations and corresponding modelled deposition values were ln-transformed and their relationship investigated and modelled by linear regression analysis. The regression equations were applied on the moss kriging estimates of the N concentration in mosses. The respective residuals were projected onto the centres of the EMEP grid cells and were mapped using variogram analysis and kriging procedures. Finally, the residual and the regression map were summed up to the map of total N deposition in terrestrial ecosystems throughout Europe.

Results and discussion

The regression analysis of the estimated N concentrations in mosses and the modelled EMEP depositions resulted in clear linear regression patterns with coefficients of determination of r 2 = 0.62 and Pearson correlations of r p = 0.79 and Spearman correlations of r s = 0.70, respectively. Regarding the German territory a nationwide mean of 18.1 kg/ha/a (standard deviation: 3.49 kg/ha/a) could be derived from the resulting map on total N deposition in a resolution of 5 km by 5 km. Recent updates of the modelled atmospheric deposition of N provided a similar estimate for Germany.

Conclusions

The linking of modelled EMEP data on the atmospheric depositions of total N and the accumulation of N in mosses allows to map the deposition of total N in a high resolution of 5 km by 5 km using empirical moss data. The mapping relies on the strong statistical relationship between both processes that are physically and chemically related to each other. The mapping approach thereby relies on available data that are both based on European wide harmonized methodologies. From an ecotoxicological point of view the linking of data on N depositions and those on N bioaccumulation can be considered a substantial progress.  相似文献   

11.

Goal and Scope

Several studies show that the concentration of metals in mosses depends not only on metal deposition but also on factors such as moss species, canopy drip, precipitation, altitude, distance to the sea and the analytical technique used. However, contrasting results have been reported and the interpretation of the spatial variability of the metal accumulation in mosses remains difficult. In the presented study existing monitoring data from the European Heavy Metals in Mosses Surveys together with surface data on precipitation, elevation and land use are statistically analysed to assess factors other than emissions that have an influence on the metal accumulation in the mosses.

Main Features

Inference statistics and Spearman correlation analysis were applied to examine the association of the metal accumulation and the distance of the monitoring sites to the sea as well as the altitude. Whether or not significant differences of the metal loads in the mosses exist at national borders was examined with help of the U-test after Mann and Whitney. In order to identify and rank the factors that are assumed to have an influence on the metal uptake of the mosses Classification and Regression Trees (CART) were applied.

Results

No clear tendency could be derived from the results of the inference statistical calculations and the correlation analyses with regard to the distance of the monitoring site to the sea and the altitude. According to the results of the CART-analyses mainly the moss species, potential emission sources around the monitoring sites, canopy drip and precipitation have an effect on the metal bioaccumulation. Assuming that each participating country followed strictly the manual for sampling and sample preparation the results of the inference statistical calculations furthermore suggest that in most cases different techniques for digestion and analysis bias the measurements significantly.

Discussion

For the first time a national monitoring data base consisting of measurement data and metadata as well as surface information on precipitation, land use and elevation was applied to examine influence factors on the metal bioaccumulation in mosses. The respective results mirror existing knowledge from other national studies to a large extend, although further analyses are necessary to affirm the findings. These analyses should include data from other national monitoring programmes and should additionally be carried out with other decision tree algorithms than CART.

Conclusions

The local variability in the metal concentration in mosses can be uncovered in terms of predictors or underlying hidden causes by using CART. Ideally, such an approach should be applied across the whole of Europe. This will only be feasible if all participating countries provide additional information about site characteristics as currently is done in for example the German moss surveys.

Recommendations

The UNECE Metals in Mosses Survey experimental protocol should be improved in order to reduce the observed influences, to enhance standardisation, and to strengthen the quality control. This implies the integration of sampling site describing metadata into the assessment. Furthermore, basis research is needed to test the hypothesis concerning moss species-specific accumulation of depositions.

Perspectives

Provided that the presented results hold true in further analyses correction factors should be applied on the moss data in order to get the depicted spatial patterns and temporal trends of metal bioaccumulation unbiased. Such factors should be calculated for natural landscape units or ecoregions that are homogeneous with regard to climate, vegetation and altitude.  相似文献   

12.
Cu, Cr, Mn, Ni and Zn contents were quantified for three wild-growing edible species of macrofungi (Boletus edulis, Macrolepiota procera and Cantharellus cibarius) and underlying soil samples collected at forest sites in Lubuskie voivodeship, Poland. The total concentration of the analysed elements was determined using an ASA iCE 3000 series atomic absorption spectrometer. The analysis found significant differences in bioaccumulation between species and differing distributions of trace elements in the caps and stalks of fruiting bodies. Bioaccumulation factors revealed that Zn and Cu are the most bioaccumulated elements, whereas Cr and Mn are excluded from bioaccumulation. Macrolepiota procera showed the highest bioaccumulation of Cu, and Zn is accumulated to the greatest extent by Boletus edulis. A few significant differences (p≤0.05) between the examined species were observed.  相似文献   

13.
Uptake of Pb, Cu and Zn by different epiphytic moss species Floribundaria floribunda (Doz. &; Molk.) Fleisch., Taxiphyllum giraldii (C. Muell.) Fleisch. and Thuidium sparsifolium (Mitt.) Jaeg., an epilithic moss Thuidium delicatulum (L.) Mitt. and a leafy liverwort Ptychanthus striatus (Lehm. &; Linderb.) Nees. was studied experimentally. The plant bodies were treated with single metal and mixed metal solutions of Pb(NO3)2, CuCl2 and ZnCl2 at different concentrations ranging from 10?10 to 10?2 mol L?1. Higher uptake of Pb, Cu and Zn by T. giraldii, T. sparsifolium and P. striatus than by F. floribunda and T. delicatulum was shown in both treatments. Compared with the single metal treatment, the uptake of Zn was very low at higher concentrations in the mixed metal treatment. A slight depletion of Zn was noticed in the long-term exposure. Leaching of naturally accumulated Zn from the mosses and leafy liverwort was also observed when treated with higher concentrated (10?4, 10?2 mol L?1) Pb(NO3)2 and CuCl2 solutions. Similarly, the leaching of naturally accumulated Cu was observed in leafy liverwort P. striatus with 10?2 mol L?1 Pb(NO3)2 and ZnCl2 treatments. However, insignificant changes were observed on naturally accumulated Pb and Cu in mosses. From these experiments, the epiphytic mosses T. giraldii and T. sparsifolium, which have high Cation exchange capacity and large leaf surface area, have been found to be suitable for assessing heavy metal concentration in a moderately or slightly contaminated environment.  相似文献   

14.
Active biomonitoring of the air quality in Belgrade, Serbia, was performed using the moss Sphagnum girgensohnii. Moss bags were exposed in parallel with and without irrigation for 3 and 6 months, respectively, at three different sites. Twenty-nine elements were determined in the exposed moss samples by INAA. For all exposure periods, higher uptake in the irrigated moss bags was evident for Al, Cr, Fe, Zn and Sr. Elements such as Cl, K, Rb and Cs were depleted in the moss tissue during the time of exposure. For most of the elements the accumulation after 6 months exceeded that observed after 3 months.  相似文献   

15.
There have been significant efforts to establish a widely usable method for the prediction of trace element bioavailability in soil. In this work, we used extraction with 0.01 M CaCl2 and 0.05 M ethylenediaminetetraacetic acid (EDTA) to estimate bioavailable concentrations of As, Cd, Cu, Pb, and Zn in a soil moderately contaminated with trace elements 1 and 2 years after the application of three amendments. The experiment took place in a field plot of a soil affected by the toxic spill of the Aznalcóllar mine. Four treatments were established: three with amendments (biosolid compost, sugar beet lime, and a combination of leonardite plus sugar beet lime) and a control without amendment. Trace element concentrations of two representative species in each year (Lamarckia aurea and Poa annua in 2004 and Lamarckia aurea and Bromus rubens in 2005) were analyzed. The results showed a positive effect of the amendments both on soil and vegetation. Trace element concentrations in plants growing in the amended subplots were lower than those in plants from nonamended subplots. As a rule, concentrations of CaCl2-soluble Cd, Cu, and Zn in soil were positively correlated with trace elements in plants, whereas EDTA extraction was scarcely correlated with plant concentration. For species of grasses, especially L. aurea, CaCl2 seems to be a more suitable extractant to predict trace element bioavailability in this contaminated soil.  相似文献   

16.
Four zooplankton species, three Arthropoda and one Chaetognata, from the Sea of Japan were analyzed in 1984 for eight major and fifteen trace elements, mainly by instrumental neutron activation analysis. Major and trace element contents on a dry weight basis varied little within a factor of 3.7, except for Ca (a factor of 5.7) among the four species. A log-log linearity with a slope of almost-1 was observed between mean oceanic residence time calculated from the mean dissolved river-water input R and the concentration factor with respect to mean seawater concentration (CF SW )for each species. The products of R and CF SW were nearly constant within a factor of 10, except for Br and Sb over seven orders of variation of CF SW for each zooplankton species. It demonstrates a new regularity in trace element contents of marine zooplankton species. This relationship leads to the conclusion that the concentration factors of elements for these zooplankton species with respect to elements for these zooplankton species with respect to mean dissolved river-water concentration (CF RW )are nearly constant within a factor of 10 with average values of 2.98 to 3.43 in logarithm.  相似文献   

17.
Investigations of the dandelion, Taraxacum officinale Web. in Poland, Romania and Germany showed that the species concentrates various elements dependent on the intensity of the pollutants. In this study, we followed up the question of whether T. officinale enriches pollutants by the atmospheric deposition on the leaves or via the soil. Therefore, samples from at least 10 plants and a soil sample at 57 sample sites were collected from a grid of 500 m × 500 m. In addition to the analysis of the total soil sample, the (mobile) ion pool of the soil (DIN V 19739) was analysed. The elements Al, As, Ba, Ca, Cd, Ce, Co, Cr, Cu, Fe, Ga, K, Mg, Mn, Mo, Na, Ni, Rb, Sr, Ti, Tl, V, and Zn were determined through the use of spectrometry with inductive coupled plasma (ICP-MS and ICP-OES). The results are compared with the element concentrations of washed and unwashed leaf samples in T. officinale. We could only find two direct correlations (Ti and Zn) between the element content, of the entire soil samples, but 14 correlations (As, Ba, Cd, Cu, Ga, K, Mn, Mo, Na, Ni, Rb, Ti, Tl und Zn) between the ion pool of the soil and the washed samples. The grid point data interpolation by ArcInfo showed a similar distribution pattern for the unwashed leaf elements Al, Ce, Fe, Ti and V (r≥0.75). The elements Al, Ce, Fe, Ti, and V are washed out at the same ratio. Thus, although the concentration of these elements were significantly reduced by the washing procedure, the correlations were not influenced. The admissibility of the grid point data interpolation for a distribution map of the town area was investigated, as well. It is shown that the element content varies with the land use (meadow, field, rural areas), the sampling point and the local pollutants. However, none of the discussed elements, Al, Ce, Fe, Ti, and V, is significantly influenced by the land use. The data allows one to make the conclusion that the elements of Al, Ce, Fe, Ti and V are dependent on the dry and wet deposition on the leaves of T. officinale. These elements are taken up not only by the roots, but also by the surface of the leaves. This is evident because there is no correlation between one of these elements in the leaves and the ion pool of the soil.  相似文献   

18.
Background, aim and scope Since 1990, the UN ECE Heavy Metals in Mosses Surveys provide data inventories of the atmospheric heavy metal bioaccumulation across national boundaries in Europe. The results prove how air pollution control in Germany and in all of Europe affected the bioaccumulation of metals in those ecosystems that are not directly influenced by nearby emission sources. This article focuses on the assessment of spatiotemporal patterns of the metal bioaccumulation in Germany since 1990. Furthermore, the spatial variance of the metal bioaccumulation is analysed with regard to sampling site-specific and regional land characteristics. Special focus hereby relies on the correlation of the metal concentration in mosses and in depositions. Hence, the moss surveys contribute to §?12 of the German Federal Nature Conservation Act as well as to the “Convention on Long-range Transboundary Air Pollution” (CLRTAP). Materials and methods The bioaccumulation of up to 40 trace elements in mosses was determined according to a European wide harmonised methodology. The according experimental protocol regulates the selection of sampling sites and moss species, the chemical analysis and quality control and the classification of the measured values for the mapping of spatial patterns. In Germany all sampling sites were described with regard to topographical and ecological criteria as well as other aspects seen as relevant in the mandatory guideline. Together with the measurements this metadata was combined with other information regarding emissions and land use in the surroundings of the sampling sites in the WebGIS MossMet. The spatial structure of the metal bioaccumulation was analysed and modeled by variogram analyses and then mapped by applying different kriging techniques. Furthermore, different multi-metal indices (MMI) were derived for both the sampling sites and raster maps with the help of percentile statistics: The MMI1990 aggregates the data for Cr, Cu, Fe, Ni, Pb, Ti, V and Zn determined in 1990. The MMI1995, MMI2000, MMI2005 furthermore include As, Cd, Hg and Sb for 1995, 2000 and 2005, respectively. Two other MMI allow for a time integrating view on the metal bioaccumulation in Germany: The MMI1990–2005 was calculated on behalf of all measured/geostatistically estimated data for Cr, Cu, Fe, Ni, Pb, Ti, V and Zn. Therefore the integrated assessment of the metal bioaccumulation in Germany from 1990 to 2005 is possible. The MMI1995–2005 furthermore includes the element-specific data of As, Cd, Hg and Sb therefore integrating 12 elements over the last three surveys. The statistical association of the metal bioaccumulation, site-specific characteristics as well as information on land use and emissions was analysed by bivariate correlation analysis and multivariate decision tree models (Classification and Regression Trees – CART, Chisquare Automatic Interaction Detection – CHAID). Results The results of the quality-controlled chemical analyses show a significant decrease of the metal bioaccumulation in Germany from 1990 to 2000. From 2000 to 2005 a further decrease can be stated for Hg, Pb and Ti. However, a significant increase for Cd, Cr, Cu, Sb and Zn can be observed. This especially holds true for Cr (+ 160?%) that almost reaches as high concentrations in mosses as in 1990. In 2005, the metal loads in mosses, except for Cr, show spatial distributions similar to those in 1990, 1995 and 2000. Hot spots are mostly found in the urbanised and industrially influenced Ruhr Area, the densely populated Rhine–Main region and in the industrially influenced regions of former East Germany (e.?g. Halle–Leipzig region). The spatial variance of the metal bioaccumulation can mainly be explained by site-specific (moss species, canopy drip effects) and site-surrounding (land use, depositions, emissions) characteristics. Discussion High Cr loads in mosses were also registered in other European countries like in Switzerland. Further investigation is therefore necessary to investigate whether this is due to different emission conditions or biogenic effects (e.?g. as a result of increasing nitrogen depositions). Compared to other environmental monitoring and modelling programmes the moss surveys registered increasing concentrations of toxic metal elements between 1990 and 2005. Contrary to deposition measurements that exhibit a higher temporal resolution the moss surveys provide measurement data on a wide range of elements. Some of these elements are important with regard to human-toxicological aspects (e.?g. Hg, Sb, As, Al, V). The standardised biomonitoring of atmospheric pollution by mosses is an important link between the technical acquisition of depositions and the accumulation in biological material. To claim that the element concentrations in mosses and in the deposition should correlate to a high degree is not appropriate since both approaches are physically related but are not identical. The degree of correlation thereby depends on the boundary conditions of the physical processes, like regional and site-specific meteorological conditions within the accumulation period, the vertical and horizontal vegetation structure or land use conditions. Conclusions The moss surveys contribute to the heavy metal and multi-component model of CLRTAP because they prove on different spatial scales how air pollution control influences the accumulation of emitted substances in environmental subjects of protection like vegetation. If environmental monitoring is seen as a continuous task and the applied methodology works well as an early warning system then environmental policy is enabled to act in preventative sense and to pursue unexpected developments. No other environmental monitoring programme provides such a wide range of ecotoxically relevant elements measured as spatially dense as the case for the moss surveys. The spatial distribution of environmental information is an essential criterion for their usability in terms of political measures for the federal states and the federation. Recommendations and perspectives The Heavy Metals in Mosses Surveys are a positive example for environmental monitoring activities reaching across three spatial and administrative levels: regional (e.?g. federal state or natural landscape), nationwide (e.?g. Germany) and continental (e.?g. Europe). In Germany the harmonised and quality-controlled moss data are made available via an internet-based webGIS portal. Therefore the moss data may easily be accessed for environmental monitoring purposes and the control of environmental political actions. Hence, the monitoring of Heavy Metals by Mosses Surveys is an important task among the European environmental observations, which should be continued in future for scientific and political reasons in its current extent.  相似文献   

19.
An major research area in environmental chemistry is the development of methods for the analysis of biomarkers. Metallothioneins are used as biomarkers in studies of heavy metals exposure in water, because metallothioneins are synthesized and accumulated when organisms are exposed to toxic concentrations of pollutants. In this work, simple and sensitive voltammetric methods were developed for metallothionein and copper (II) determinations in fish liver Lepomis gibbosus. Both analytical methodologies were optimized and applied to samples extracted from individuals previously submitted to sub-lethal toxicological trials with copper sulphate (CuSO4) and cadmium chloride (CdCl2). The obtained results showed that both methods are very precise, sensitive, and involve simple sample preparation processes. Moreover, metallothioneins showed better correlation with the toxic exposure than Cu2+. To the best of our knowledge, this is the first time that hepatic metallothioneins and Cu2+ contents are voltammetrically determined in order to be compared in their function as heavy metal biological indicators.  相似文献   

20.
Addendum     
Bags of S. auriculatum and a low‐volume aerosol sampler with filters were exposed, in parallel, to the urban atmosphere of Oporto at four sampling points and for about two months periods, between 1991 and 1994. The levels of lead in the moss (weekly samples) and in the filters (daily samples) were determined by atomic absorption spectrophotometry and the results were compared. In dry weather periods (relative humidity ≤ 76%) the rate of lead uptake by moss was approximately constant and proportional to the levels of the metal in atmospheric aerosols. A converting factor (CF = lPbmoss l (μg/g.day)/ l Pbair l (μg/m3)) allowed conversion of the lead levels in S. auriculatum to those in the atmospheric aerosols. Because the moss fixed lead from gas, aerosol and particulated matter, the rate of sorption depends markedly on the distance to the lead sources (traffic) and on surrounding obstacles which retain particles. Therefore, specific calibration by mechanic monitoring at each point of sampling is required when moss bag samplers are used to provide quantitative information about lead levels in the atmosphere. In wet weather periods, higher but irregular rate of lead uptake was observed. In contrast, the lead levels in atmospheric aerosols decreased when the humidity increased due to wet deposition. Therefore, no proportionality between the lead levels in the moss and in the air were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号