首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Xu Y 《Chemosphere》2001,43(8):1103-1107
The degradation of a common textile dye, Reactive-brilliant red X-3B, by several advanced oxidation technologies was studied in an air-saturated aqueous solution. The dye was resistant to the UV illumination (wavelength λ  320 nm), but was decolorized when one of Fe3+, H2O2 and TiO2 components was present. The decolorization rate was observed to be quite different for each system, and the relative order evaluated under comparable conditions followed the order of Fe2+–H2O2–UV  Fe2+–H2O2 > Fe3+–H2O2–UV > Fe3+–H2O2 > Fe3+–TiO2–UV > TiO2–UV > Fe3+–UV > TiO2–visible light (λ  450 nm) > H2O2–UV > Fe2+–UV. The mechanism for each process is discussed, and linked together for understanding the observed differences in reactivity.  相似文献   

2.
Yuan BL  Li XZ  Graham N 《Chemosphere》2008,72(2):197-204
The photocatalytic degradation of dimethyl phthalate (DMP) in aqueous TiO2 suspension under UV illumination has been investigated using oxygen (O2) and ferrate (Fe(VI)) as electron acceptors. The experiments demonstrated that Fe(VI) was a more effective electron acceptor than O2 for scavenging the conduction band electrons from the surface of the catalyst. Some major intermediate products from DMP degradation were identified by HPLC and GC/MS analyses. The analytical results identified dimethyl 3-hydroxyphthalate and dimethyl 2-hydroxyphthalate as the two main intermediate products from the DMP degradation in the TiO2–UV–O2 system, while in contrast phthalic acid was found to be the main intermediate product in the TiO2–UV–Fe(VI) system. These findings indicate that DMP degradation in the TiO2–UV–O2 and TiO2–UV–Fe(VI) systems followed different reaction pathways. An electron spin resonance analysis confirmed that hydroxyl radicals existed in the TiO2–UV–O2 reaction system and an unknown radical species (most likely an iron–oxo species) is suspected to exist in the TiO2–UV–Fe(VI) reaction system. Two pathway schemes of DMP degradation in the TiO2–UV–O2 and TiO2–UV–Fe(VI) reaction systems are proposed. It is believed that the radicals formed in the TiO2–UV–O2 reaction system preferably attack the aromatic ring of the DMP, while in contrast the radicals formed in the TiO2–UV–Fe(VI) reaction systems attack the alkyl chain of DMP.  相似文献   

3.
Haggi E  Bertolotti S  García NA 《Chemosphere》2004,55(11):1501-1507
The aerobic visible-light-photosensitised irradiation of methanolic solutions of either of the phenolic-type contaminants model compounds (ArOH) p-phenylphenol (PP), p-nitrophenol (NP) and phenol (Ph), and for two additional phenolic derivatives, namely p-chlorophenol (ClP) and p-methoxyphenol (MeOP), used in some experiments, was carried out. Employing the natural pigment riboflavin (Rf) as a sensitiser, the degradation of both the ArOH and the very sensitiser was observed. A complex mechanism, common for all the ArOH studied, operates. It involves superoxide radical anion (O2√−) and singlet molecular oxygen (O2(1Δg)) reactions. Maintaining Rf in sensitising concentrations levels (≈0.02 mM), the mechanism is highly dependent on the concentration of the ArOH. Kinetic experiments of oxygen and substrate consumption, static fluorescence, laser flash photolysis and time-resolved phosophorescence detection of O2(1Δg) demonstrate that at ArOH concentrations in the order of 10 mM, no chemical transformation occurs due to the complete quenching of Rf singlet excited state. When ArOH is present in concentrations in the order of mM or lower, O2√− is generated from the corresponding Rf radical anion, which is produced by electron transfer reaction from the ArOH to triplet excited Rf. The determined reaction rate constants for this step show a fairly good correlation with the electron-donor capabilities for Ph, PP, NP, ClP and MeOP. In this context, the main oxidative species is O2√−, since O2(1Δg) is quenched in an exclusive physical fashion by the ArOH. The production of O2√− regenerates Rf impeding the total degradation of the sensitiser. This kinetic scheme could partially model the fate of ArOH in aquatic media containing natural photosensitisers, under environmental conditions.  相似文献   

4.
采用气体扩散电极为阴极,钛基氧化物(Ti/SnO2-Sb2O5-IrO2)和金属铁构成组合阳极,构建了新型电化学氧化体系用于降解有机污染物。利用该氧化体系,在不同实验条件下考察了苯胺降解的效果与降解过程的相关规律。结果表明,阴极电位、铁阳极通电时间以及苯胺初始浓度均显著影响苯胺的降解效果。当阴极电位为-0.7V,pH3.0,铁阳极通电时间20min时,电化学处理200mg/L苯胺480min,TOC的去除效率达到80.4%,矿化电流效率(MCE)为8.6%,显示了该氧化体系具有良好的有机物降解能力。此外,苯胺降解过程中氨氮和硝态氮浓度的变化表明,苯胺分子中的氮主要转化为NH4和NO3^-。  相似文献   

5.
The aim of this study was to compare degradation rates of aniline in laboratory shake flask simulation tests with field rates in the river Rhine. The combined events of a low flow situation in the Rhine and residual aniline concentrations in the effluent from the BASF treatment plant in Ludwigshafen temporarily higher than normal, made it possible to monitor aniline at trace concentrations in the river water downstream the wastewater outlet by means of a sensitive GC headspace analytical method. Aniline was analyzed along a downstream gradient and the dilution along the gradient was calculated from measurements of conductivity, sulfate and a non-readily biodegradable substance, 1,4-dioxane. Compensating dilution, field first-order degradation rate constants downstream the discharge of BASF were estimated at 1.8 day−1 for two different dates with water temperatures of 21.9 and 14.7 °C, respectively. This field rate estimate was compared with results from 38 laboratory shake flask batch tests with Rhine water which averaged 1.5 day−1 at 15 °C and 2.0 day−1 at 20 °C. These results indicate that laboratory shake flask batch tests with low concentrations of test substance can be good predictors of degradation rates in natural water bodies––at least as ascertained here for short duration tests with readily degradable compounds among which aniline is a commonly used reference.  相似文献   

6.
The electrochemical performance of pure Ti–Pt/β-PbO2 electrodes, or doped with Fe and F (together or separately), in the oxidation of simulated wastewaters containing the Blue Reactive 19 dye (BR-19), using a filter-press reactor, was investigated and then compared with that of a boron-doped diamond electrode supported on a niobium substrate (Nb/BDD). The electrooxidation of the dye simulated wastewater (volume of 0.1 l, with a BR-19 initial concentration of 25 mg l−1) was carried out under the following conditions: current density of 50 mA cm−2, volume flow rate of 2.4 l h−1, temperature of 25 °C and electrode area of 5 cm2. The performances of the electrodes in the dye decolorization were quite similar, achieving 100% decolorization, and in some cases 90% decolorization was achieved by applying only ca. 0.3 A h l−1 (8 min of electrolysis). The reduction of the simulated wastewater organic load, monitored by its total organic carbon content (TOC), was greater for the Ti–Pt/β-PbO2–Fe,F electrode obtained from an electrodeposition bath containing 1 mM Fe3+ and 30 mM F. In this case, after 2 h of electrolysis the obtained TOC reduction was 95%, while for the pure β-PbO2 and the Nb/BDD electrodes the reductions were 84% and 82%, respectively.  相似文献   

7.
Wu Z  Zhou M  Wang D 《Chemosphere》2002,48(10):1089-1096
A novel electrocatalysis method for phenol degradation was described using a β-PbO2 anode modified with fluorine resin and a Ni–Cr–Ti alloy cathode. In case of air sparging at the cathodic zone, the techniques of anodic–cathodic electrocatalysis (ACEC) and ferrous ion catalyzed anodic–cathodic electrocatalysis (FACEC) in the presence of iron(II) were developed. Both of ACEC and FACEC were more effective than anodic electrocatalysis (AEC). The percentage of phenol eliminated by FACEC could increase by nearly 30% compared with that of AEC, and the current efficiency could reach to 70%. Important operating factors such as ferrous ion concentration, air-sparging rate and applied current were investigated and it was found that such beneficial effects could be achieved at a suitable current and ratio of the concentration of ferrous ion to the air sparged. The mechanism of phenol degradation is proposed to be the generation of hydroxyl radicals concerned with the two electrodes. Results also indicated that the process provided an efficient way to regenerate ferrous ion compared with the conventional Fenton's system.  相似文献   

8.
Nahar MS  Hasegawa K  Kagaya S 《Chemosphere》2006,65(11):1976-1982
Fe-doped TiO2 was prepared by the calcination of FexTiS2 (x = 0, 0.002, 0.005, 0.008, 0.01) and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV–visible diffuse reflectance spectra. All the Fe-doped TiO2 were composed of an anatase crystal form and showed red shifts to a longer wavelength. The activity of the Fe-doped TiO2 for the degradation of phenol was investigated by varying the iron content during UV (365 nm) and visible light (405 nm and 436 nm) irradiation. The degradation rate depended on the Fe content and the Fe-doped TiO2 was responsive to the visible light as well as the elevated activity toward UV light. The molar ratio of 0.005 was the optimum for both the UV and visible light irradiations. The result was discussed on the basis of the balance of the excited electron–hole trap by the doped Fe3+ and their charge recombination on the doped Fe3+ level. The Fe-doped TiO2 (x = 0.005) was more active than P25 TiO2 under solar light irradiation. The suspended Fe-doped TiO2 spontaneously precipitated once the stirring of the reaction mixture was terminated.  相似文献   

9.
Brillas E  Casado J 《Chemosphere》2002,47(3):241-248
The degradation of 10-30 l of a 1000 ppm aniline solution in 0.050 M Na2SO4 + H2SO4 at pH 3.0 and 40 degrees C by Electro-Fenton and peroxi-coagulation processes at constant current until 20 A has been studied using a pilot flow reactor in recirculation mode with a filter-press cell containing an anode and an oxygen diffusion cathode, both of 100 cm2 area. H2O2 is produced by the two-electron reduction of O2 at the cathode, being accumulated with a current efficiency between 60% and 80% at the first stages of electrolyses performed with a Ti/Pt anode. In the presence of 1 mM Fe2+, less H2O2 is accumulated, but it is not detected using an Fe anode. The Electro-Fenton process with 1 mM Fe2+ and a Ti/Pt or DSA anode yields an insoluble violet polymer, while the soluble total organic carbon (TOC) is gradually removed, reaching 61% degradation after 2 h at 20 A. In this treatment, pollutants are preferentially oxidized by hydroxyl radicals formed in solution from reaction of Fe2+ with H2O2. The peroxi-coagulation process with an Fe anode has higher degradation power, allowing to remove more than 95% of pollutants at 20 A, since some intermediates coagulate with the Fe(OH)3 precipitate formed. Both advanced electrochemical oxidation processes (AEOPs) show moderate energy costs, which increase with increasing electrolysis time and applied current.  相似文献   

10.
Suryaman D  Hasegawa K  Kagaya S 《Chemosphere》2006,65(11):2502-2506
Phenol is degraded by biological treatment, however mineralization requires long time. To decrease the time and operational cost necessary for the mineralization of phenol, an optimum operation condition of the combined biological–photocatalytical treatment was investigated. The mineralization of phenol (50 mg l−1) was conducted in a flow-type biomembrane tank combined with a batch-type TiO2-suspended photocatalytic reactor. Phenol was degraded biologically to the concentration of 6.8 mg l−1, an effective concentration for further photocatalytic treatment. After the biological treatment, the biotreated phenol was treated photocatalytically to complete the mineralization of phenol. The combined treatment shortened the mineralization time compared to the biological treatment and electric cost compared to the photocatalytic treatment only. The combined treatment may be suitable for a short-time mineralization of phenol in wastewater.  相似文献   

11.
Awad HS  Galwa NA 《Chemosphere》2005,61(9):1327-1335
Electrocatalytic degradation of Acid Blue and Basic Brown dyes from simulated wastewater on lead dioxide anode was investigated in different conductive electrolytes. It was shown that complete degradation of these dyes is dependent primarily on type and concentration of the conductive electrolyte. The highest electrocatalytic activity was achieved in the presence of NaCl (2g/l) and could be attributed to indirect oxidation of the investigated dyes by the electrogenerated hypochlorite ions formed from the chloride oxidation. In addition, contribution from direct oxidation could also be possible via reaction of these organic compounds with the electrogenerated hydroxyl radicals adsorbed on the lead dioxide surface. In the presence of NaOH, the electrocatalytic activity of the employed anode was not comparable to that in NaCl due primarily to the absence of chloride. This indicates that dyes degradation in NaOH occurs exclusively via direct electrochemical process. However, in H2SO4, the electrode performance was poor due partially to the absence of chloride from the conductive solution. The possibility of electrode poisoning as a result of growth of adherent film on the anode surface or production of stable intermediates not easily further oxidized by direct electrolysis in H2SO4 might also be accountable for the poor performance observed in this conductive electrolyte. Optimizing the conditions that ensure effective electrochemical degradation of Acid Blue and Basic Brown dyes on lead dioxide electrode necessitates the control of all the operating factors.  相似文献   

12.
电解质种类对电催化氧化降解苯酚的影响   总被引:1,自引:1,他引:0  
研究了不同电解质对有机物电催化氧化性能的影响。以高温热解法制备了Ti/SnO2+Sb2O3阳极,用SEM和XRD对电极结构进行了表征。以苯酚为目标有机物,考察了Na2SO4、NaCl和NaNO33种不同电解质对苯酚降解效果的影响。用循环伏安法研究了苯酚在不同支持电解质条件下的电化学行为。采用碘量法测定了在不同电解质溶液中氧化性物质的生成量。研究结果表明,电极的活性涂层主要由SnO2和微量的Sb2O3组成,均匀完整地覆盖住了Ti基体表面。以NaCl为支持电解质时苯酚降解效果明显优于用Na2SO4、NaNO3为支持电解质,并且苯酚的降解主要以电极表面电化学生成的HClO和ClO-的间接化学氧化为主。以Na2SO4为支持电解质时有利于降低和稳定槽电压。在3种电解质条件下,苯酚的降解均遵循一级反应动力学规律。在降解过程中NaCl溶液中生成的氧化性物质浓度最大,且随降解时间延长逐渐增大。  相似文献   

13.
为有效处理含异草酮除草剂废水,以Sb掺杂Ti/SnO2电极为阳极,不锈钢板为阴极,采用电催化氧化技术对异草酮废水进行降解,研究了不同影响因素对异草酮去除率的影响,并分析了异草酮的降解效果。结果表明,当异草酮初始浓度为100 mg/L、电流密度为20 mA/cm2、电解质投加量为0.10 mol/L,反应120 min后,异草酮去除率达到94%,此时TOC去除率为57.9%,能耗为25 kWh/m3,且废水的可生化性能显著提高。  相似文献   

14.
Fenton''s type reaction and chemical pretreatment of PCBs   总被引:3,自引:0,他引:3  
This study evaluates the effects of Fenton's reagent (FR) on the rate and extent of the oxidative degradation of individual mono, di-, tri- and tetrachlorobiphenyls in the commercial mixture DELOR 103, equivalent to AROCLOR 1248. The oxidation effect of FR strongly increased with increasing the molar ratio of Fe2+/H2O2. The most effective oxidation of DELOR 103 (10 μg.ml−1) was achieved in a solution containing 1M H2O2 and 1 mM Fe2+. The FR elimination rate constants of PCB congeners decrease with increasing number of chlorine substituents in the biphenyl molecule and show a good correlation with the values of molecular weights of the PCB congeners and their 1-octanol/water partition coefficients.  相似文献   

15.
为有效处理含异噁草酮除草剂废水,以Sb掺杂Ti/SnO2电极为阳极,不锈钢板为阴极,采用电催化氧化技术对异噁草酮废水进行降解,研究了不同影响因素对异噁草酮去除率的影响,并分析了异噁草酮的降解效果。结果表明,当异噁草酮初始浓度为100mg/L、电流密度为20mA/cm2、电解质投加量为0.10mol/L,反应120min后,异噁草酮去除率达到94%,此时TOC去除率为57.9%,能耗为25kWh/m2,且废水的可生化性能显著提高。  相似文献   

16.
Wu TN 《Chemosphere》2007,69(2):271-278
This study utilized the electrocatalytic characteristics of nickel electrode to perform degradation of methyl tert-butyl ether (MTBE) in aqueous solution. Lab experiments were conducted in a spiltless bath type cell equipped with a nickel electrode as working electrode, a platinum wire as counter electrode, and an Ag/AgCl electrode as reference electrode. Effects of controlled potential, supporting electrolyte, and solution pH on the efficiency of MTBE removal were examined under the control of the constant-potential conditions. Experiment results showed that the optimum electrolytic condition was operated at 0.35 V in a 1M KOH electrolyte solution, and the initial 20 mgl(-1) MTBE was reduced by 73% within 180 min under the optimum control. As using 1M Na2SO4 and 1M KCl as electrolyte, the efficiency of MTBE removal dropped to 60% and 50% under the similar controls. Comparing with various pH controls, the strong basic condition is favorable for electrocatalytic oxidation of MTBE in the Ni-electrolytic system. The efficiency of MTBE removal showed a rising trend with increasing initial pH of the solution. The formation of a redox NiOOH/Ni(OH)2 layer on the anode surface, which was observed on the SEM image, can explain that nickel plays a mediator role on improving electrocatalytic oxidation of MTBE at 0.35 V in a strong basic condition. The by-products of MTBE degradation were identified as acetone and CO(2) by GC/MS, and the distributions of carbon atoms in acetone, CO2, and MTBE were found 22%, 51%, and 27% through the optimum control of electrochemical oxidation.  相似文献   

17.
MnO2催化Fenton试剂降解苯酚废水   总被引:2,自引:1,他引:1  
实验对MnO2催化Fenton试剂氧化高浓度苯酚废水的动力学特性和去除效果进行了研究。结果表明,MnO2可以提高Fenton试剂体系对苯酚的降解率以及COD的去除率;Fenton试剂以及MnO2催化Fenton试剂氧化苯酚废水体系中苯酚的降解都符合拟一级动力学模型。在MnO2催化Fenton试剂氧化体系中,苯酚的降解速率常数有明显提高,反应活化能也有所降低,说明MnO2的加入可以使反应容易进行。废水降解前后紫外可见吸收光谱和红外谱图表明,Fenton试剂法将苯酚可能降解为羧酸、烯烃等有机物中间体。  相似文献   

18.
Yassaa N  Cecinato A 《Chemosphere》2005,60(11):1660-1666
The absolute contents and relative distributions of organic aerosols [n-alkanes, n-alkanoic and n-alkenoic acids, n-alkan-2-ones and polycyclic aromatic hydrocarbons (PAH)] were determined in torched gases emitted during the crude oil extraction and in the free atmosphere of the Hassi-Messaoud city (Algeria). Monocarboxylic acids, both saturated and monounsaturated (from 9802 to 20 057 ng m−3), accounted for the major fraction of the total particulate organic matter identified both in torch exhaust and atmospheric particulate. n-Alkanes were also abundant both in the direct emission (from 460 to 632 ng m−3) and city atmosphere (462 ng m−3) and displayed a peculiar fingerprint characterised by the presence of a set of branched congeners around even carbon-numbered homologues and a strong even-to-odd predominance along the whole carbon number range (C16–C34). Whilst n-alkan-2-ones were absent in the city and poor in smokes emitted from the torches (from 31 to 42 ng m−3), PAH were present at low extents in all sites (from 18 to 65 ng m−3). The incomplete thermal combustion of torched crude oil was very likely the main source of these particle-bound organic constituents in the city and its surrounding region.  相似文献   

19.
臭氧催化氧化降解苯胺的机理   总被引:1,自引:0,他引:1  
对臭氧单独氧化和臭氧催化氧化下的苯胺降解效率进行了比较,并通过液质联机分析了氧化过程中产物变化情况。实验结果表明,催化剂MnO2-CuO-CeO2/沸石的添加能有效地提高臭氧氧化苯胺的降解率,当苯胺初始浓度为200mg/L,反应20 min后,苯胺的去除率由原来的75%提高到89%;通过LC-MS分析,臭氧催化氧化苯胺降解过程中代谢产物依次为对亚胺醌、对苯醌、马来酸和草酸,并由此推断出了臭氧催化氧化降解苯胺的途径。  相似文献   

20.
Zhang W  Xu Z  Pan B  Zhang Q  Du W  Zhang Q  Zheng K  Zhang Q  Chen J 《Chemosphere》2007,66(11):2044-2049
Adsorption equilibria of phenol and aniline onto nonpolar macroreticular adsorbents were investigated in single and binary-solute aqueous systems at 293 K and 313 K. All adsorption isotherms can be well represented by the Langmuir equation. Larger uptake of aniline than phenol onto all the adsorbents probably results from the higher hydrophobicity of the former compound as well as the greater electronic density of the aromatic ring of aniline. It is interestingly observed that at a relatively high loading, the total uptake of phenol and aniline in a binary system is remarkably higher than those in a single system. Such uptake difference was elucidated by the cooperative effect arising from the lateral acid–base interaction between the loaded phenol and aniline molecules. Moreover, larger average pore size of the adsorbent is found to result in a greater cooperative coefficient, as observed from the equimolar phenol/aniline adsorption system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号