首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

In this article, flexural, impact and dynamic mechanical properties of the Pineapple leaf fibres (PALF) and Washingtonia trunk fibres (GW) based bio-phenolic hybrid composites were examined. The pure and hybrid composites were fabricated using the hand lay-up technique with an overall fibre weight ratio of 50% in which GW and PALF were maintained in the fibre weight ratios of 50:50, 30:70, and 70:30 denoted as 1G1P, 3G7P, and 7G3P, respectively. Hybrid composites displayed better flexural strength, flexural modulus and impact strength than the GW composites and better viscoelastic properties than the PALF composites. Results revealed that 1G1P hybrid composites exhibited 25% and 12% improvements in flexural strength and modulus compared to the GW composites. 3P7K composites showed a twofold increase in impact strength than GW composites. The storage modulus of the pure and hybrid composites declined rapidly beyond the glass transition temperature. Furthermore, it was observed that the values of storage modulus for all the composites at 150 °C were similar regardless of the composite configuration. The Peak of loss modulus was found to increase in the following order: GW?>?7G3P?>?3G7P?>?1G1P?>?PALF. Furthermore, the temperature at the peak tan delta was improved, and a reduction in the tan delta peak was observed for hybrid composites compared to the pure composites. Finally, the PALF and GW hybrid combinations can be suitable for use in various applications such as textiles, machinery part production industries, medicine, automobiles, etc.

  相似文献   

2.
Epoxy resin prepared by the reaction of a diglycidyl ether of bisphenol A (DGEBA) and m-xylylenediamine (m-XDA) was modified with 10% wt of epoxidized palm oil (EPO). The EPO was first pre-polymerized with m-XDA at various temperatures and reaction times. The resulting product was then mixed with the epoxy resin at 40?°C and allowed to react at 120?°C for another 3?h. The fully reacted DGEBA/m-XDA/EPO blend was characterized by using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analysis, tensile test, hardness indentation and dynamic mechanical analysis. The SEM study shows that different types of morphology, ranging from phase separated to miscible blends were obtained. A miscible blend was obtained when the m-XDA and EPO were reacted for more than 2?h. The results from DSC analysis show that the incorporation of EPO at 10% wt in the epoxy blend reduced the glass transition temperature (T g). The lowered T g and mechanical properties of the modified epoxy resins are caused by a reduction in crosslinking density and plasticizer effect.  相似文献   

3.
Comprehensive temperature monitoring was done in an in-vessel forced-aeration static-bed composting process using sewage sludge. The three layers that divided the compost pile horizontally showed different temperature distributions. The temperature of the top layer appeared not to be influenced by the ambient temperature. The temperature of the center area of the top layer was taken to be the representative temperature for evaluating composting start-up performance. The temperature of the bottom layer was strongly influenced by the ambient temperature, and the temperature of the center area of the bottom layer was taken to be the representative temperature for pathogen control as it was the minimum temperature in the reactor. Composting start-up performance was influenced by several factors when the ambient temperature was either below or above 20°C. When the ambient temperature was below 20°C, the time taken to reach 65°C (T 65) was influenced by the temperature of inflowing air, but when the temperature was higher than 20°C, it was influenced by the ratio of sewage sludge to seed compost (F/S). T 65 was least when F/S was 1–2. Received: January 9, 2001 / Accepted: October 10, 2001  相似文献   

4.
The aim of the present study is to investigate mechanical and morphological properties of pineapple leaf fibres (PALF) reinforced phenolic composites and its comparison with kenaf fibre (KF)/phenolic composites. Mechanical properties (tensile, flexural and impact) of untreated and treated PALF phenolic composites at different fibre loading were investigated. Tensile, flexural and impact properties of PALF and kenaf/phenolic composites were analyzed as per ASTM standard. Morphological analysis of tensile fracture samples of composites was carried out by scanning electron microscopy. Obtained results indicated that treated PALF/phenolic composites at 50% PALF loading exhibited better tensile, flexural and impact properties as compared to other untreated PALF/phenolic composites. Treated kenaf/phenolic composites at 50% fibre loading showed better tensile, flexural and impact properties than untreated kenaf/phenolic composite. It is concluded that treated 50% fibre loading kenaf and PALF/phenolic composites showed better mechanical properties than untreated kenaf and PALF/phenolic composites due to good fibre/matrix interfacial bonding. Results obtained in this study will be used for the further study on hybridization of PALF and KF based phenolic composites.  相似文献   

5.
SBA-15/PAMAM Nano adsorbent was synthesized by the proficiency of SBA-15 as an original compound, 3-chloropropyltrimethoxysilane as a bridge chemical compound and polyamidoamine dendrimer (PAMAM) in the role of a multifunctional amine end group for adsorption of acid blue 62 (AB62) from aqueous media. The synthesized adsorbent was characterized by transmission electron microscope, field emission scanning electron microscope and Fourier-transform infrared spectroscope. A response surface methodology was employed to evaluate the simple and amalgamated factors of the operating variables subtending initial pH (2–12), adsorbent dosage(0.01–0.03 g), contact time (5–120 min), initial dye concentration (40–600 ppm) and temperature (25–45?°C) to optimize the operating statues of the treatment method. These parameters were altered at five levels pursuant to the central composite design to appraise their effects on AB62 removal through analysis of variance. Analysis of variance represented a high coefficient of definition amount (R2?=?0.9999) and acceptable prediction quadratic polynomial model was concluded which ascertain the suitability of the model and a high correlation among the predicted and empirical amounts. Utmost color removal efficiency was auspicated and empirically accredited. The optimum conditions relied on acquired results for AB62 removal were at an initial pH of 2, adsorbent dosage of 0.03 g SBA-15/PAMAM, dye concentration of 40 mg l?1, time contact of 60 min and temperature of 25?°C.  相似文献   

6.
The aim of this study was to investigate the application of grapeseed oil, a waste product from the wine industry, as a renewable feedstock to make polyesters and to compare the properties of these materials with those derived from soybean and rapeseed oils. All three oils were epoxidized to give renewable epoxy monomers containing between 3.8 and 4.7 epoxides per molecule. Polymerisation was achieved with cyclic anhydrides catalysed by 4-methyl imidazole at 170 and 210 °C. Polymers produced from methyl tetrahydrophthalic anhydride (Aradur917®) had greater tensile strength and Young’s Modulus (tensile strength = 12.8 MPa, Young’s Modulus = 1005 MPa for grapeseed) than methyl nadic anhydride (MNA) derived materials (5.6 and 468 MPa for grapeseed) due to increased volume of MNA decreasing crosslink density. Soybean and grapeseed oils produced materials with higher tensile strength (5.6–29.3 MPa) than rapeseed derived polyesters (2.5–3.9 MPa) due to a higher epoxide functionality increasing crosslinking. T g’s of the polyesters ranged from ?36 to 62 °C and mirrored the trend in epoxide functionality with grapeseed producing higher T g polymers (?17 to 17 °C) than soybean (?25 to 6 °C) and rapeseed (?36 to ?27 °C). Grapeseed oil showed similar properties to soybean oil in terms of T g, thermal degradation and Young’s Modulus but produced polymers of lower tensile strength. Therefore grapeseed oil would only be a viable substitute for soybean for low stress applications or where thermal properties are more important.  相似文献   

7.
The former process for the cementation of transuranic (TRU) low-level wastes poses several technical problems. Specifically in the US a TRU waste-form has not yet passed the Waste Isolation Pilot Plant prohibition for free liquid. For this reason, treatment of the portland cement based waste-form with supercritical carbon dioxide (SCCO2) is shown to satisfy regulations. The effect of SCCO2 treatment by applying different CO2 pressure and temperature conditions (8.4 MPa<p<28 MPa, 35°C<T<62°C) on the leachability, phase constitution, and microstructure of surrogate-doped portland cement type I/II samples is presented. Leaching studies were performed using a synthetic groundwater leaching procedure. Changes in phase constitution of the major crystalline phases (Ca(OH)2, CaCO3) as well as the microstructure were measured by X-ray diffraction and scanning electron microscopy. SCCO2 treatment at 8.4 MPa and 35°C can be shown as the most promising conditions to satisfy the requirements of the Department of Transportation (DOT) and to enhance the natural aging reaction of cement paste by carbonation, combined with the lowest release rates of the surrogates 232Th, and 151/153Eu.  相似文献   

8.
Lignins in general have been extensively studied, while beech wood lignin in particular is rarely researched. In the present work, Organosolv isolated lignin from beech wood (OBL) has been characterized. The isolation was done by two methods: (a) by using sulfuric acid at 170 °C and a reaction time of 120 min and (b) at a temperature of 180 °C for 240 min. A range of analytical methods were applied including elemental analysis, FT-IR, UV–Vis, 31P NMR, SEC, Pyrolysis-GC/MS and HPLC to gain information about establish the purity, structure, molecular weight, thermal behavior and to determine carbohydrate residues according to the NREL protocol. FT-IR and UV–Vis spectra of OBL revealed expected typical absorptions for lignins. NREL analysis presented a carbohydrate-free lignin fraction which has not been achieved to date. TGA and DSC are used to study the thermal behavior of the isolated lignins and showed a relatively low glass transition temperatures (Tg: 123 °C) and decomposition temperatures of 348 and 381 °C. The pyrograms generated from the pyrolysis–GC/MS at 550 °C consisted mainly of fragments of syringyl, guaiacyl and hydroxyphenyl units, thereby confirming the results of the NMR analysis. Our findings support Organolsolv as an efficient method to isolate pure lignin fractions from beech wood with practical value in industry.  相似文献   

9.
A closed incubation system was developed for laboratory simulation of composting conditions at the interior of a large compost pile. A conductive heat flux control system (CHFC) was used to adjust the temperature of the internal wall to that of the compost center and compensate for heat loss. Insulated small vessels (400 cm3) controlled by the CHFC system were compared with similar vessels maintained at 30°C (mesophilic) and 55°C (thermophilic), and with large vessels (10 000 cm3) with and without the CHFC. Compost temperature rose rapidly to a maximum within 2-4 days, then gradually decreased. In mesophilic treatments (no CHFC), temperature at the matrix center increased to a maximum of 36°C in the small vessel and 50°C in the large vessel, while temperature in both vessels reached 50°C with the CHFC. Microbial activity was maintained by allowing compost to self-heat and controlling temperature externally with the CHFC. Higher temperatures were sustained for longer periods in CHFC vessels than in vessels without the CHFC. Periodic mixing of the compost matrix increased temperature and CO2 evolution. Small vessels were successfully used in laboratory simulation of field-scale composting of a soil/organic matrix containing TNT and RDX munitions. The small vessel system reduced subsample error in compost monitoring from that of the large vessels. The CHFC has particular utility in research requiring expensive chemicals or hazardous substances.  相似文献   

10.
A modified sequential mass-suspension polymerization was employed to ensure adequate dispersion of lignin into the monomeric phase. Due to its complex macromolecular structure and low compatibility with styrene, eucalyptus wood-extracted lignin, via a modified Kraft method, was esterified with methacrylic anhydride to ensure organic phase homogeneity into the reaction medium. Infrared spectroscopy showed a decrease in the hydroxyl band, a characteristic of natural lignin (3200–3400 cm?1) and an increase in the characteristic ester band (1720–1740 cm?1) whereas nuclear magnetic resonance measurements exhibited intense peaks in the range from 1.7 to 2.05 ppm (–CH3) and 5.4 to 6.2 ppm (=CH2), related to methacrylic anhydride. Comparatively, the esterified lignin also displayed an increase of its glass transition temperature for 98?°C, related to natural lignin, whose T g was determined to be equal to 91?°C. Styrene/lignin-based polymers exhibited higher average molar masses in comparison to the values observed for polystyrene synthesized with similar amounts of benzoyl peroxide, due to the ability of lignin to act as a free-radical scavenger. Composites obtained with styrene and natural or esterified lignin were successfully synthesized, presenting regular morphology and proper lignin dispersion. Based on a very simple polymerization system, it is possible to enhance the final properties of polystyrene through the incorporation of lignin, which represents an important platform for developing attractive polymeric materials from renewable resources.  相似文献   

11.
Poly(lactic acid)/halloysite nanoclay composites (PLA/HNC) containing maleic anhydride grafted styrene-ethylene/butylene-styrene (SEBS-g-MAH) were produced using melt compounding followed by compression molding. The effects of hygrothermal aging on the thermal properties and functional groups changes of the HNC reinforced PLA (with and without SEBS-g-MAH) at three different temperatures (i.e., 30, 40 and 50 °C) were analyzed using differential scanning calorimetry and Fourier transform infrared spectroscopy techniques. The diffusion coefficient (D) of PLA was decreased by the incorporation of HNC and SEBS-g-MAH. The activation energy of water diffusion (E a ) of PLA/HNC/SEBS-g-MAH nanocomposites was higher than that of pure PLA. The glass transition temperature (T g ), cold-crystallization temperature (T cc ) and melting temperature (T m ) of the PLA sample were shifted to lower temperature and the effect was more pronounced at 50 °C. The carbonyl index values of all PLA samples increased after immersed in 40 and 50 °C, which is due to the formation of higher amount of carboxyl groups during the hydrolysis process.  相似文献   

12.
The development of synthetic biodegradable polymers using solvent free polymerization has a unique potential to be used as sustainable polymers in biomedical applications. The aim of this work was to synthesize and characterize a sustainable class of poly(lactic acid) (PLA) under different operating conditions via direct polycondensation of lactic acid (LA). Several parameters were tested including the absence of solvents and catalysts on the polymerization, in addition to polymerization temperature and time. Polymerization conditions were evaluated using response surface method (RSM) to optimize the impact of temperature, time, and catalyst. Results showed that molecular weight (Mw) of PLA increased with increasing polymerization time. Highest Mw of 28.4 kD with relatively a broad polydispersity 1.9 was achieved at polymerization temperature 170?°C at 24 h in the free solvent polymerization. This led to a relevant inherent viscosity of 0.37 dl/g. FTIR spectra exhibited a disappearance of the characteristic peak of the hydroxyl group in LA at 3482 cm?1 by increasing the intensity of carbonyl group. The 1H nuclear magnetic resonance (NMR) exhibited the main chain at 5.22 ppm and the signal of methyl proton at 1.61 ppm as well as a signal at 4.33 and 1.5 assigned to the methane proton next to the terminal hydroxyl group and carboxyl group respectively. Meanwhile, the PLA synthesized with a catalyst [Sn(Oct)2] in a free solvent demonstrated comparatively high thermal transition properties of glass transition, melting, and crystallinity temperatures of 48, 106, and 158?°C, respectively. These results are of significant interest to further expand the use of PLA in biomedical applications.  相似文献   

13.
Poly(ethylene terephthalate) from used colorless beverage bottles was solvolyzed by ethane-1,2-diol. Hydroxyl end-groups present in the mixture of polyols formed were used to initiate the polymerization of ??-caprolactone (CLO) at 190?°C. Polycondensation (190?°C) of the reaction mixture containing an equilibrium amount of lactone corresponding to the reaction temperature yield an aliphatic?Caromatic copolyester. A variety of copolyesters containing 20?C60?mol. % CLO structural units was prepared. The microstructure of their macromolecules was analyzed using 1H?NMR spectroscopy. Copolyesters were characterized by thermal analysis and tensile tests and their biodegradation potential was checked by the composting test.  相似文献   

14.
As an attempt to synthesize new biodegradable polymers from renewable cellulose resources, melt polycondensation of 5-hydroxylevulinic acid (5-HLA) was reported for the first time. The resulting product, poly(5-hydroxylevulinic acid) (PHLA), was synthesized and characterized with GPC, FTIR, 1H NMR and DSC. The in vitro degradation behaviors in phosphate-buffered saline (PBS) and in deionized water (DW) were also examined. The molecular weight of PHLA is not high (several 1,000s), but it possesses unordinary high glass transition temperature (as high as 120 °C). This is very different from existing aliphatic polyesters that usually have T gs lower than 60 °C. The high T g is attributed to the formation of inter- and/or intramolecular hydrogen bonds due to a characteristic keto–enol tautomerism equilibrium in the polymer structure. PHLA readily degraded hydrolytically in aqueous media.  相似文献   

15.
Combined ultrasonic (US) irradiation and sodium peroxodisulfate (Na2S2O8) treatment has been investigated for promotion of both decomposition of (4-chloro-2-methylphenoxy) acetic acid (MCPA) and mineralization of organic residues. This treatment is expected to accelerate both reactions, because the US cavitation effect promotes the production of radicals, such as SO 4 ? · and OH·, by the decomposition of Na2S2O8 and water. In this study, decomposition experiments were performed on 100?ppm MCPA aqueous solutions in a sonoreactor at reaction temperatures of 298?C333?K with US irradiation alone, Na2S2O8 treatment alone, and the combination of US and Na2S2O8 treatment. It was found that the combined treatment achieved a higher MCPA decomposition rate and total organic carbon (TOC) removal ratio than either treatment alone. The decomposition ratios of both MCPA and TOC increased with reaction temperature, and especially steep increases were observed at 333?K due to a significant promotion of thermal decomposition of Na2S2O8. The production of radical species was also promoted by the combined treatment. These results suggest that the higher MCPA decomposition rate and TOC removal ratio are due to the increased formation of sulfate and hydroxyl radicals via thermal and US decomposition of Na2S2O8.  相似文献   

16.
In this study, polyvinyl alcohol-chitosan-cysteine-functionalized graphene oxide (PCCFG) hydrogel was synthesized from l -cysteine-functionalized graphene oxide (CFG), chitosan (CS), and polyvinyl alcohol (PVA). The hydrogel was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy and employed for removing lead ion (Pb2+) and cadmium ion (Cd2+) from aqueous solution. The effects of initial metal ion concentration, hydrogel dose, pH, time, and temperature were studied. The experimental data were well described by a pseudo-second-order kinetic model and Langmuir isotherm with maximum adsorption capacities of 250 and 192 mg g−1 at 25°C for Pb2+ and Cd2+, respectively. The adsorption capacity of the PCCFG hydrogel increased with an increase in temperature. The value of ∆G° was negative, which shows the spontaneity of the reaction (electron exchange or ion exchange) between the metal ion and electron-rich atoms (–N, –S, –O). The positive ∆H° shows that the adsorption reaction consumes energy and the positive ∆S° shows the strong affinity of PCCFG toward the Pb2+ and Cd2+ ions. Pb2+ had better affinity and less spontaneity than Cd2+. The results show that the coexistence of Pb2+, Cd2+, and Cu2+ in the solution inhibits the adsorption capacity of PCCFG.  相似文献   

17.
This study focused on investigating the potential of using canola protein fractions as bio-degradable wood adhesives. Native and sodium bisulfite (NaHSO3)-modified canola protein fractions isolated successively at different pH values (7.0, 5.5, and 3.5) was used as adhesives. Wood specimens were assembled with adhesives at a pressure of 2?MPa at 150, 170, or 190?°C for 10?min. The adhesion performance of adhesives were evaluated by wet, soak, and dry shear strength. Their physicochemical properties: extractability, electrophoresis profiles, thermal, rheological and morphological properties were also characterized. Results showed that canola protein had the highest protein yield and purity at pH 5.5. Electrophoresis profile proved that NaHSO3 cleaved the disulfide bonds in canola protein. This could induce extra charges (RS-SO3 ?) on the protein surface, leading to the reduced apparent viscosity. Thermal analysis implied that the thermal transition temperature of canola protein decreased with modification of NaHSO3. Canola protein adhesives showed excellent dry and soak shear strength with 100?% wood cohesive failure in all curing temperatures. The wet adhesion strength of native and modified canola protein fraction adhesives at pH 5.5 and pH 3.5 (3.9?C4.1?MPa) was higher than the fractions at pH 7.0. NaHSO3 had insignificant effects on the adhesion performance of canola protein adhesives but notably improved the handling and flow-ability properties of canola protein adhesives.  相似文献   

18.
In this study, a very promising way of treating and recycling spent nickel catalysts of fertilizer plants in Vietnam was proposed. Firstly, nickel was recovered from spent catalyst using HNO3—leaching process. Results show that nickel recovery of over 90% with a purity of over 90% can be achieved with HNO3 2.1–2.5 M at 100?°C in 75 min. The residue after leaching is not considered as a hazardous waste according to the Vietnamese regulations. Then, the leachate solution was used as a precursor to prepare a model catalyst for exhaust gas (CO, HC, NOx) treatment. In comparison with the catalyst prepared from the commercial nickel nitrate solution, the catalyst synthesized from recovered nickel exhibits similar properties and activities. The influence of Ni loading of Ni/alumina catalyst as well as the modification of active phase by some metals addition (Mn, Ba, Ce) was also investigated. It is feasible to modify active phase by transition metals such as Mn, Ba, and Ce for complete oxidation of CO and HC at 270?°C and a reduction of NOx below 350?°C at high volumetric flow condition (GHSV?=?110.000 h?1).  相似文献   

19.
Biochemical methane potentials (BMP) of two different substrates from macroalgae (MA) and market place wastes (MPW) were investigated using anaerobic granulated sludge from food industry with different ratios of substrate to inoculum (S/X). The substrates were used as MA only, MPW only, MA–MPW mixture, pretreated MA, and pretreated MA–MPW mixture. Research involved investigation of the effects of parameters such as temperature (35, 45, and 55 °C), substrate to inoculum ratio (S/X = 0.5, 2.0, 4.0, and 6.0 as g VSsubstrate/g VSinoculum), and the type of pretreatment (by microwave, thermal, and ultrasonic) on BMP. BMP assays were performed for all substrates. The highest cumulative biogas production (and BMP) were obtained for MA only at an S/X ratio of 4.0 g VS/g VS as 357 Lbiogas/kg VS (197 L CH4/kg VS) and 33 Lbiogas/kg VS (17 L CH4/kg VS), respectively, at 35 and 55 °C. For pretreated substrates, the highest cumulative biogas production and BMP were observed as 287 Lbiogas/kg VS and 146 L CH4/kg VS using pretreated macroalgae at 35 °C. Results suggested that MA only and MA–MPW mixtures are suitable substrates for biogas production. It is also concluded that any type of pretreatment has adverse effects on biogas and methane productions.  相似文献   

20.
Pyrolysis of sewage sludge was studied in a free-fall reactor at 1000–1400 °C. The results showed that the volatile matter in the sludge could be completely released to gaseous product at 1300 °C. The high temperature was in favor of H2 and CO in the produced gas. However, the low heating value (LHV) of the gas decreased from 15.68 MJ/N m3 to 9.10 MJ/N m3 with temperature increasing from 1000 °C to 1400 °C. The obtained residual solid was characterized by high ash content. The energy balance indicated that the most heating value in the sludge was in the gaseous product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号