首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
All-cellulose composite fibers were produced by electrospinning dispersions containing cellulose acetate (CA) and cellulose nanocrystals (CNCs). Precursor polymer matrices were obtained after dispersion of CA with different degrees of substitution in a binary mixture of organic solvents. The obtained fibers of CA loaded with CNCs had typical widths in the nano- and micro-scale and presented a glass transition temperature of 145?°C. The CA component was converted to cellulose by using alkaline hydrolysis to yield all-cellulose composite fibers that preserved the original morphology of the precursor system. Together with Fourier Transform Infrared Spectroscopy fingerprints the thermal behavior of the all-cellulose composite fibers indicated complete conversion of cellulose acetate to regenerated cellulose. Noticeable changes in the thermal, surface and chemical properties were observed upon deacetylation. Not only the thermal transitions of cellulose acetate disappeared but the initial water contact angle of the web was reduced drastically. Overall, we propose a simple method to produce all-cellulose composite fibers which are expected to display improved thermo-mechanical properties while keeping the unique features of the cellulose polymer.  相似文献   

2.
A template transfer method (TTM) and a fiber fixation technique were established for fiber handling and micro tensile stage mounting of aligned and non-aligned electrospun fiber mats. The custom-made template had been precut to be mounted on a variety of collectors, including a rapidly rotating collector used to align the fibers. The method eliminated need for direct physical interaction with the fiber mats before or during the tensile testing since the fiber mats were never directly clamped or removed from the original substrate. By using the TTM it was possible to measure the tensile properties of aligned poly(methyl methacrylate) (PMMA) fiber mats, which showed a 250?% increase in strength and 450?% increase in modulus as compared to a non-aligned system. The method was further evaluated for aligned PMMA fibers reinforced with cellulose (4 wt%) prepared as enzymatically derived nanofibrillated cellulose (NFC). These fibers showed an additional increase of 30?% in both tensile strength and modulus, resulting in a toughness increase of 25?%. The fracture interfaces of the PMMA?CNFC fibers showed a low amount of NFC pull-outs, indicating favorable phase compatibility. The presented fiber handling technique is universal and may be applied where conservative estimates of mechanical properties need to be assessed for very thin fibers.  相似文献   

3.
Application of Cellulose Microfibrils in Polymer Nanocomposites   总被引:1,自引:0,他引:1  
Cellulose microfibrils obtained by the acid hydrolysis of cellulose fibers were added at low concentrations (2–10% w/w) to polymer gels and films as reinforcing agents. Significant changes in mechanical properties, especially maximum load and tensile strength, were obtained for fibrils derived from several cellulosic sources, including cotton, softwood, and bacterial cellulose. For extruded starch plastics, the addition of cotton-derived microfibrils at 10.3% (w/w) concentration increased Young’s modulus by 5-fold relative to a control sample with no cellulose reinforcement. Preliminary data suggests that shear alignment significantly improves tensile strength. Addition of microfibrils does not always change mechanical properties in a predictable direction. Whereas tensile strength and modulus were shown to increase during addition of microfibrils to an extruded starch thermoplastic and a cast latex film, these parameters decreased when microfibrils were added to a starch–pectin blend, implying that complex interactions are involved in the application of these reinforcing agents.  相似文献   

4.
A novel process has been developed for separation of the cellulose, i.e. cotton and viscose, from blended-fibers waste textiles. An environmentally friendly cellulose solvent, N-methylmorpholine-N-oxide (NMMO) was used in this process for separation and pretreatment of the cellulose. This solvent was mixed with blended-fibers textiles at 120 °C and atmospheric pressure to dissolve the cellulose and separate it from the undissolved non-cellulosic fibers. Water was then added to the solution in order to precipitate the cellulose, while both water and NMMO were reused after separation by evaporation. The cellulose was then either hydrolyzed by cellulase enzymes followed by fermentation to ethanol, or digested directly to produce biogas. The process was verified by testing 50/50 polyester/cotton and 40/60 polyester/viscose-blended textiles. The polyesters were purified as fibers after the NMMO treatments, and up to 95% of the cellulose fibers were regenerated and collected on a filter. A 2-day enzymatic hydrolysis and 1-day fermentation of the regenerated cotton and viscose resulted in 48 and 50 g ethanol/g regenerated cellulose, which were 85% and 89% of the theoretical yields, respectively. This process also resulted in a significant increase of the biogas production rate. While untreated cotton and viscose fibers were converted to methane by respectively, 0.02% and 1.91% of their theoretical yields in 3 days of digestion, the identical NMMO-treated fibers resulted into about 30% of yield at the same period of time.  相似文献   

5.
Green composites obtained from biodegradable renewable resources have gained much attention due to environmental problems resulting from conventionally synthetic plastics and a global increasing demand for alternatives to fossil resources. In this work we used different cellulose fibers from used office paper and newspaper as reinforcement for thermoplastic starch (TPS) in order to improve their poor mechanical, thermal and water resistance properties. These composites were prepared by using tapioca starch plasticized by glycerol (30 % wt/wt of glycerol to starch) as matrix reinforced by the extracted cellulose fibers with the contents ranging from 0 to 8 % (wt/wt of fibers to matrix). Properties of composites were determined by mechanical tensile tests, differential scanning calorimetry, thermogravimetric analysis, water absorption measurements, scanning electron microscopy, and soil burial tests. The results showed that the introduction of either office paper or newspaper cellulose fibers caused the improvement of tensile strength and elastic modulus, thermal stability, and water resistance for composites when compared to the non-reinforced TPS. Scanning electron microscopy showed a good adhesion between matrix and fibers. Moreover, the composites biological degraded completely after 8 weeks but required a longer time compared to the non-reinforced TPS. The results indicated that these green composites could be utilized as commodity plastics being strong, inexpensive, plentiful and recyclable.  相似文献   

6.
In this work, a two-step method for the extraction of pectin and cellulose fiber from mulberry branch bark, a by-product of sericultural industry, was described. The method was based on the acid extraction of pectin and subsequently alkali treatment for obtaining cellulose fibers. The obtained pectin was high purity with the total galacturonic acid content of 85.46% ± 2.76% and the degree of esterification of 71.13% ± 1.67%. The chemical composition analysis, FTIR spectroscopy, XRD and TG analysis were used to characterize the cellulose fiber at different processing stages. After the two-step chemical process, the cellulose content was increased from 37.38% in original bark to 92.60% in cellulose fiber. The FTIR spectra revealed the removal of pectin, hemicelluloses and lignin from the bark by acid extraction and alkali treatment. The XRD and TG results indicated that the obtained cellulose fibers were with the increased crystallinity and thermal stability, whose crystallinity and degradation temperature were 86.36% ± 5.56% and 355 °C, respectively. This work may provide a new approach for high utilization of mulberry branch bark.  相似文献   

7.
In this study, cellulose fibers were removed from crop by-products using a combination of sodium hydroxide treatment followed by acidified sodium chlorite treatment. The objective was to obtain high recovery of cellulose by optimizing treatment conditions with sodium hydroxide (5–20%, 25–75 °C and 2–10 h) followed by acidified sodium chlorite (1.7%, 75 °C for 2–6 h) to remove maximum lignin and hemicellulose, as well as to investigate the effect of lignin content of the starting materials on the treatment efficiency. Samples were characterized for their chemical composition, crystallinity, thermal behavior and morphology to evaluate the effects of treatments on the fibers’ structure. The optimum sodium hydroxide treatment conditions for maximum cellulose recovery was at 15% NaOH concentration, 99 °C and 6 h. Subsequent acidified sodium chlorite treatment at 75 °C was found to be effective in removing both hemicellulose and lignin, resulting in higher recovery of cellulose in lupin hull (~?95%) and canola straw (~?93%). The resultant cellulose fibers of both crop by-products had increased crystallinity without changing cellulose I structure (~?68–73%). Improved thermal stabilities were observed with increased onset of degradation temperatures up to 307–318 °C. Morphological investigations validated the effectiveness of treatments, revealing disrupted cell wall matrix and increased surface area due to the removal of non-cellulosics. The results suggest that the optimized combination of sodium hydroxide and acidified sodium chlorite treatments could be effectively used for the isolation of cellulose fibers from sweet blue lupin hull and canola straw, which find a great number of uses in a wide range of industrial applications.  相似文献   

8.
Bionanocomposites of poly(lactic acid) (PLA) and chemically modified, nanofibrillated cellulose (NFC) powders were prepared by extrusion, followed by injection molding. The chemically modified NFC powders were prepared by carboxymethylation and mechanical disintegration of refined, bleached beech pulp (c-NFC), and subsequent esterification with 1-hexanol (c-NFC-hex). A solvent mix was then prepared by precipitating a suspension of c-NFC-hex and acetone-dissolved PLA in ice-cold isopropanol (c-NFC-hexsm), extruded with PLA into pellets at different polymer/fiber ratios, and finally injection molded. Dynamic mechanical analysis and tensile tests were performed to study the reinforcing potential of dried and chemically modified NFC powders for PLA composite applications. The results showed a faint increase in modulus of elasticity of 10?% for composites with a loading of 7.5?% w/w of fibrils, irrespective of the type of chemically modified NFC powder. The increase in stiffness was accompanied by a slight decrease in tensile strength for all samples, as compared with neat PLA. The viscoelastic properties of the composites were essentially identical to neat PLA. The absence of a clear reinforcement of the polymer matrix was attributed to poor interactions with PLA and insufficient dispersion of the chemically modified NFC powders in the composite, as observed from scanning electron microscope images. Further explanation was found in the decrease of the thermal stability and crystallinity of the cellulose upon carboxymethylation.  相似文献   

9.
Cellulose Fiber/Bentonite Clay/Biodegradable Thermoplastic Composites   总被引:1,自引:0,他引:1  
Adding cellulose fiber reinforcement can improve mechanical properties of biodegradable plastics, but fiber must be well dispersed to achieve any benefit. The approach to dispersing fiber in this study was to use aqueous gels of sodium bentonite clay. These clay-fiber gels were combined with powdered compostable thermoplastics and calcium carbonate filler. The composite was dried, twin-screw extruded, and injection molded to make thin parts for tensile testing. An experimental design was used to determine the effect of fiber concentration, fiber length, and clay concentration. Polybutylene adipate/terephthalate copolymer (PBAT) and 70/30 polylactic acid (PLA)/PBAT blend were the biodegradable plastics studied. The composite strength decreased compared to the thermoplastics (13 vs. 19 MPa for PBAT, 27 vs. 38 MPa for the PLA/PBAT blend). The composite elongation to break decreased compared to the thermoplastics (170% vs. 831% for PBAT, 4.9% vs. 8.7% for the PLA/PBAT blend). The modulus increased for the composites compared to the thermoplastic standards (149 vs. 61 MPa for PBAT, 1328 vs. 965 MPa for the PLA/PBAT blend). All composite samples had good water resistance.  相似文献   

10.
With an industrial trend of going green, the use of natural fibers in polymer composites is growing rapidly, especially in the automotive industry. The objectives of this research are to investigate mechanical performance of kenaf/polypropylene nonwoven composites (KPNCs) in production of automotive interior parts, and to develop preliminary linear models for quantifying elastic range of the KPNCs under various loading conditions. Using polypropylene (PP) fiber as bonding fiber, the KPNCs were fabricated with 50/50 blend ratio by weight. Unlike the manufacturing method of fiber reinforced plastics, all KPNCs were produced by carding and needle-punching techniques and thermally bonded by a panel press with 3-mm thickness gauge. Mechanical properties of the KPNCs in terms of uniaxial tensile, open-hole tensile, tensile at different strain rates, flexural, and in-plane shear were measured instrumentally. It was found that sample which was processed at higher temperature (230?°C) but shorter time (60?s) had the best mechanical performance. KPNCs were relatively insensitive to the notch but sensitive to strain rates. The linear elastic finite element model of KPNCs agreed well with the experimental results in the valid strain range of 0?C0.5?% for uniaxial tensile test and 0?C1?% for flexural test.  相似文献   

11.
Biodegradability, renewability and high specific strength properties of cellulose nanofibres and microfibrils have made them very attractive in nano-biocomposite science. Treatment of natural fibers with suitable enzymes or fungus has been found to substantially alleviate the high energy requirement associated with the isolation of cellulose nanofibers via high shear refining and subsequent cryocrushing. This article briefly describes a novel enzymatic fiber pretreatment developed to facilitate the isolation of cellulose nanofibres and explores the effect of pre-refining of fibers on the effectiveness of bio-treatment. Soft wood Kraft pulp was pre-sheared to different degree and treated with a genetically modified fungus isolated from fungus infected Dutch elm tree. Cellulose nanofibres were isolated from these treated fibers by high shear refining. The percentage yield of nanofibres from pre-refined fibers in the less than 50 nm range showed a substantial increase and at the same time the number of revolutions required during the high shear refining to attain a comparable level of nanofibres isolation decreased. This observation may be attributed to the better fiber internal accessibility of the enzymes due to loosening up of the fibers and increased number of fiber ends as a result of pre-refining.  相似文献   

12.
This work is focused on the hydrolysis of cotton fibers from waste textiles to obtain micro and nanofibers to be used as reinforcements in polymer composites. To promote their compatibility with polymeric matrix, hydrolyzed cotton fibers were surface modified with various silane compounds. Thus, these fibers were mixed with commercial poly(lactic acid) (PLA) at 5% w/w loading by melt compounding. Acid treatments caused a decrease of the crystallinity index whereas the thermal stability was significantly improved, especially for cellulose fibers hydrolyzed in two steps. Morphological analysis revealed a reduction of the fibers diameter and a decrease of their length as a consequence of the hydrolysis. NMR analysis confirmed the silanization of the fibers by reaction with the silane agent. Tensile tests revealed that silanization treatments were able to increase the composite Young’s modulus and the stress at break with respect to the neat matrix, indicating that silanization improved the polymer/fiber compatibility interfacial adhesion. The overall results demonstrated that applying suitable surface modification strategies, waste cotton textiles can be effectively recycled as fillers in polymer based composites.  相似文献   

13.
This article presents approaches to maximize the mechanical performance of bacterial cellulose/poly(lactic acid) composites through chemical modification of the interface. This is achieved by both cross-linking the layered bacterial cellulose structure and by grafting maleic anhydride to the matrix material. Unmodified and glyoxalized bacterial cellulose (BC) networks have been embedded in poly(lactic acid) (PLA) resin and then in maleated resin using a compression molding method. The effect of these chemical modifications on the physical properties of these composites is reported. The tensile properties of the composites showed that Young??s moduli can be increased significantly when both BC networks and PLA were chemically modified. Interface consolidation between layers in BC networks has been achieved by glyoxalization. The effect of these modifications on both stress-transfer between the fibers and between the matrix and the fibers was quantified using Raman spectroscopy. Two competitive deformation mechanisms are identified; namely the mobility between BC layers, and between BC and PLA. The coupling strength of these interfaces could play a key role for optimization of these composites?? mechanical properties.  相似文献   

14.
In the first part of this work, composites based on polypropylene (PP) and maple wood flour (MF) were prepared by melt compounding using twin-screw extrusion followed by compression molding. The morphological and mechanical properties of the composites were analyzed for three samples: PP, MF/PP and MF/PP containing maleic anhydride grafted polypropylene (MAPP) as coupling agent. The results showed that MF/PP composites have improved mechanical properties, especially tensile modulus (+33 %), with only 8 % increase in density. The addition of MAPP further improved the mechanical properties, in particular tensile modulus (up to 51 %), which could be related to better fiber/matrix adhesion. In the second step, nano crystalline cellulose (NCC) was added to all samples to produce NCC-MF/PP hybrid composites. From the mechanical analysis performed, the hybrid composites with MAPP have improved properties, especially tensile (+53 %) and flexural (+40 %) moduli. These results confirmed that multi-scale hybrid NCC-MF composites can substantially improve the mechanical properties of polyolefins with limited increase in density (14 %) leading to high specific properties.  相似文献   

15.
In the present study, hybrid electrospun polylactide (PLA) fibers reinforced with highly dispersed crystalline bacterial cellulose nanowhiskers (BCNW) in solution concentrations up to 15 wt% were developed and characterized. The overall aim was to encapsulate dispersed BCNW in fibers to be later re-dispersed in virgin PLA by melt compounding. Initially, the suitability of three different solvents [1,1,1,3,3,3-hexafluoro-2-propanol (HFP), acetone–chloroform and chloroform/polyethylene glycol (PEG)] for fiber production was evaluated and solutions containing 5 wt% BCNW were used to generate electrospun hybrid PLA fibers. These fibers presented a homogeneous morphology, as assessed by scanning electron microscopy, and transmission electron microscopy images demonstrated that BCNW were well distributed along the fibers. Differential scanning calorimetry analyses showed that the incorporation of PEG into the fibers resulted in a Tg drop due to a plasticization effect and decreased thermal stability as a result of low interactions between the matrix and the BCNW. Subsequently, fibers were produced from the selected solutions (HFP and acetone–chloroform) containing up to 15 wt% BCNW. As a result of the great increase in the viscosity of the solutions, lower solids contents were required, leading to a better dispersion and incorporation degree of BCNW within the fibers. HFP was found to be a more suitable solvent, since higher incorporation levels were estimated by X-ray diffraction and improved matrix–filler interactions were suggested by a slight increase in the Tg of the fibers.  相似文献   

16.
In this study, we performed the facile preparation of chitin/cellulose composite films using two ionic liquids, 1-allyl-3-methylimidazolium bromide (AMIMBr) and 1-butyl-3-methylimidazolium chloride (BMIMCl); the former dissolves chitin and the latter dissolves cellulose. First, solutions of chitin in AMIMBr and cellulose in BMIMCl were individually prepared by heating each mixture at 100 °C for 24 h. Then, the homogeneous mixture of the two solutions was thinly casted on a glass plate, followed by standing at room temperature for 2 h. After the material was subjected to successive Soxhlet extractions with ethanol for 12 h and with water for 12 h, the residue was dried at room temperature to give a composite film. The crystalline structures of the polysaccharides were evaluated by the X-ray diffraction measurement. Furthermore, the thermal stability and mechanical property of the resulting composite film were estimated by the thermal gravimetric analysis measurement and tensile testing, respectively.  相似文献   

17.
We describe a simple method for measuring cellulose in soil. We used this method to measure the recovery of shredded office paper and pure medium fiber cellulose added to a Helvetia silt loam clay soil. This method consists of solvating cellulose from soil with 77% H2SO4 and analysis of the cellulose recovered by the phenol-sulfuric acid carbohydrate assay. Unlike previous related methods the modifications we propose allow good recovery of cellulose (~99%) and eliminate the need to autoclave the samples. We verified this method on soil spiked with up to 12% cellulose and found a good linear relationship between the amounts of cellulose added relative to that recovered. With proper fragmentation and dilution of the acid-treated soil samples, higher concentrations can be easily measured. We propose this technique as a robust and high throughput means to monitor the degradation of cellulose in paper spiked soil.  相似文献   

18.
分别采用熔融接枝法和共混法制备聚丙烯(PP)/苯乙烯(St)改性纤维(PP-g-St)和聚丙烯/聚苯乙烯(PS)改性纤维(PP/PS),研究了熔融接枝条件对St接枝率的影响,考察了PP纤维、PP/PS纤维和PP-g-St纤维对纯苯系物和水中乳化、溶解态苯系物的吸附性能,并探讨了再生后的重复吸附性能。实验结果表明:PP熔融接枝St的最优配比为w(St)=9%,w(过氧化二异丙苯)=0.5%,此时St接枝率为4.7%,且能顺利纺丝;相比于PP纤维,PP-g-St纤维和PP/PS纤维对纯苯系物和水中乳化、溶解态苯系物的吸附量显著提高;吸油饱和的PP-g-St纤维和PP/PS纤维通过离心法再生5次后吸附性能再生率仍能够分别达到82.0%和87.6%。  相似文献   

19.
Blends of zein and nylon-6 (55?k) in formic acid were used to produce solution cast films and electrospun fibers. When the amount of nylon-6 was 8?% or less blends were formed that had improved tensile strength and reduced solubility. The blends were analyzed using physical property measurements, DSC and IR spectra. Using between 2 and 8?% nylon-6 provided a 33?% increase in tensile strength. Young??s modulus increased by over 50?% in this range. In general elongation was lower for all formulations. Surprisingly the cast films having 0.5?C8?% nylon-6 had improved solvent resistance to 90?% ethanol/water. Electrospun fibers were produced from formic acid solutions of zein and nylon-6 where the amount of nylon was 0, 2 and 6. Fibers produced from 27?% spinning solids had average diameters on the order of 0.5???m. Reducing the spinning solids to 21?% provide slightly smaller fibers however, the fibers had more defects.  相似文献   

20.
The goal of this work was to evaluate the effect of chemical modification of cellulose nanofibers (CNF) on the properties of polylactic acid (PLA) nanocomposites. Acetylated nanofibers (ACNF), with degree of substitution 1.07, were isolated from acetylated kenaf fibers by mechanical treatments. Acetylated nanofibers showed more hydrophobic properties compared to non-acetylated ones. The results showed that both crystallinity and thermal stability of acetylated nanofibers were lower than non-acetylated ones. The nanocomposites were prepared by premixing two PLA master batches, one with a high concentration of ACNF and the second with CNF. These were diluted to final concentrations (5?wt%) during the extrusion. The morphology studies of PLA and its nanocomposites showed nanofiber aggregates in both materials. The results showed that the tensile and dynamic mechanical properties were enhanced for both acetylated and non-acetylated nanocomposites compared to the neat PLA matrix while no significant improvement was observed for the acetylated nanocomposites compared to non-acetylated ones. However, the storage modulus increased slightly for acetylated nanocomposites compared to non-acetylated ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号