首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Waste plastics recycling process using coke ovens   总被引:3,自引:0,他引:3  
The Japan Iron and Steel Federation (JISF), as its voluntary energy-saving action plan, proposed a 10% energy reduction by 2010 with 1990 as the basis. Further, it has suggested an additional 1.5% energy saving by the use of waste plastics as a metallurgical raw material. The amount of processing of waste plastics which corresponds to this amount of energy conversion is about 1 million t scale during 1 year. Conventional known methods for recycle-processing of waste plastics include, for example, the method of injection into a blast furnace to use waste plastics as an iron-ore reducing agent instead of coal. On the other hand, the coking process is considered to be suitable as a waste plastic recycling facility because the process involves coal carbonization in a high-temperature and reducing atmosphere. Carbonization tests with mixed waste plastics were conducted with laboratory equipment and in actual coke ovens. As a result, it was confirmed that the waste plastics recycling process using coke ovens is feasible. Therefore, a waste plastics recycling process using coke ovens was started as a chemical recycling technology at Nippon Steel.  相似文献   

2.
This study proposes a recycling system of sludge into active cokes and the fundamental examinations for the application were carried out. In the system, active cokes were produced by carbonizing pellets of sludge in a steam stream. Pyrolysis gas yielded by carbonization can be available to a fuel for a steam generation boiler. The exhaust heat from the boiler is used sequentially for drying of sludge. The active cokes are applied to the adsorbent for dioxin removal in exhaust gas from incinerators of wastes, or for purification of gas obtained in a gasification process of wastes, particularly removal of H2S. The used adsorbent is not recycled, but incinerated in the furnace without a desorption process to decompose adsorbed dioxin or to oxidize H2S for a sequential desulfurization process of SO2. Dry pellets of sludge were carbonized in a quartz tube reactor under various atmospheres. The micro pore structure and the adsorption performance of the cokes produced without activation process were examined. The micro pore structure was influenced by the temperature, the sort of flow gas (N2, CO2 and steam) and carbonization time, and the active cokes produced under the condition of the temperature 823 K for 60 min in the steam atmosphere had a largest specific surface area in the diameter less than 5 nm. The amount of benzene adsorption as an alternative substance of dioxin into the active cokes had a similar quality to a commercial active char produced from coal if it was evaluated by adsorption per a unit specific surface area. This fundamental knowledge must be reflected to an optimum design for development of a simple continuous process to produce the active cokes by a fluidized bed type of the carbonization furnace.  相似文献   

3.
Waste polymers, essentially plastic packages, make up a significant fraction of solid wastes in a crewed space habitat. While logistic limitations preclude consideration of recovery/recycling technologies that have proven viable on Earth, the challenge in space is to provide materials and processes that minimize the volume of stored waste plastics and which allow recovery at the completion of a mission.  相似文献   

4.
In view of the environmental problem involved in the management of WEEE, and then in the recycling of post-consumer plastic of WEEE there is a pressing need for rapid measurement technologies for simple identification of the various commercial plastic materials and of the several contaminants, to improve the recycling of such wastes.This research is focused on the characterization and recycling of two types of plastics, namely plastic from personal computer (grey plastic) and plastic from television (black plastic). Various analytical techniques were used to monitor the compositions of WEEE. Initially, the chemical structure of each plastic material was identified by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). Polymeric contaminants of these plastics, in particular brominated flame retardants (BFRs) were detected in grey plastics only using different techniques. These techniques are useful for a rapid, correct and economics identification of a large volumes of WEEE plastics.  相似文献   

5.
炼焦副产物的综合利用及炼焦新工艺   总被引:1,自引:0,他引:1  
张志新  胡靖文 《化工环保》2001,21(5):293-296
概述了炼焦副产物焦炉气、煤焦油、废水和废渣的综合利用及炼焦新工艺。  相似文献   

6.
Increasing awareness of environmental and energy problems has promoted greater governmental interest in selected waste collection and consequently has attracted the interest of several research groups to the challenge of converting recovered plastics into useful materials. The reactive blending of postconsumer polyethylene terephthalate (PET) with different polyolefins (PO) was studied in attempts to obtain a new material with enhanced properties with respect to the starting materials. The success of the project depends mainly on the possibility of obtaining a compatibilized blend between two starting polymers that, from chemical and thermomechanical viewpoints, are very different. This was approached by employing polyolefins bearing functional groups capable of specific interaction or chemical reaction with PET end groups. Ternary blends of very low density polyethylene (VLDPE)/PET/functionalized polyolefin (FPO) in a weight composition of 70/20/10 and binary blends of FPO/PET in a weight composition of 90/10 were prepared and studied to obtain reinforced polyolefin thermoplastic materials. Reactive blending was achieved in a Brabender Plastograph with a mixing chamber of 30 or 50cm3, at 250°C, and 40rpm for 10min. Differential scanning calorimetry, scanning electron microscopy, and tensile tests were used to investigate the phase behavior, the efficiency of compatibilization, and the mechanical properties of the blends.  相似文献   

7.
In this paper new analytical inspection strategies, based on hyperspectral imaging (HSI) in the VIS–NIR and NIR wavelength ranges (400–1000 and 1000–1700 nm, respectively), have been investigated and set up in order to define quality control logics that could be applied at industrial plant level for polyolefins recycling. The research was developed inside the European FP7 Project W2Plastics “Magnetic Sorting and Ultrasound Sensor Technologies for Production of High Purity Secondary Polyolefins from Waste”. The main aim of the project is the separation of pure polyethylene and polypropylene adopting an innovative process, the magnetic density separation (MDS). Spectra of plastic particles and contaminants resulting from post-consumer complex wastes and of virgin polyolefins have been acquired by HSI and by Raman spectroscopy. The classification results obtained applying principal component analysis (PCA) on HSI data have been compared with those obtained by Raman spectroscopy, in order to validate the proposed innovative methodology. Results showed that HSI sensing techniques allow to identify both polyolefins and contaminants. Results also demonstrated that HSI has a great potentiality as a tool for quality control of feed (identification of contaminants in the plastic waste) and of the two different pure polypropylene and polyethylene flow streams resulting from the MDS-based recycling process.  相似文献   

8.
Plastic pellets of polyethylene (PE), polypropylene (PP), and polystyrene (PS) were gasified in a two-stage thermal degradation process. The first stage is the conversion of polyolefins to distilled oils using a melting vessel. In the second stage, the oils from the first stage are gasified using a tubular reactor. The distilled oil yields of PE, PP, and PS in the first stage were 84, 89, 92 wt%, respectively, each at 470°C. The total gas yields of PE, PP, and PS in the second stage were 80, 74, and 6.2 wt%, respectively, each at 800°C. The main components of the product gas for PE and PP were methane and olefins such as ethene and propene. Some aromatic oils, including benzene, toluene, and xylene, were also produced as by-products. The amount of carbonaceous residue, or coke, was very low (less than 1 wt%). By dividing the process into two stages, the coking rate was considerably reduced compared with direct gasification of the polyolefins. Received: July 19, 2000 / Accepted: September 17, 2000  相似文献   

9.
Use of recycled plastic in concrete: a review   总被引:4,自引:1,他引:3  
Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.  相似文献   

10.
废塑料生产汽柴油技术分析与应用中的误区   总被引:2,自引:0,他引:2  
赵志海 《化工环保》2002,22(5):268-270
从废塑料生产汽柴油技术的工艺流程入手,对该项技术中存在的一些问题进行了分析,内容涉及原料来源及范围,裂化反应条件,传热与除焦,油品质量及收率,新形成的污染和经济效益评估等;指出了此项技术在应用中存在的误区。  相似文献   

11.
This study analyzed the recycling potential of plastic wastes generated by health care facilities. For this study, we obtained waste streams and recycling data from five typical city hospitals and medical centers and three animal hospitals in Massachusetts. We analyzed the sources, disposal costs and plastic content of medical wastes, and also determined the components, sources, types and amounts of medical plastic wastes. We then evaluated the recycling potential of plastic wastes produced by general city hospital departments, such as cafeterias, operating rooms, laboratories, emergency rooms, ambulance service and facilities, and animal hospitals. Facilities, laboratories, operating rooms, and cafeterias were identified as major sources of plastic wastes generated by hospitals. It was determined that the recycling potential of plastics generated in hospital cafeterias was much greater than that in other departments. This was mainly due to a very slight chance of contamination or infection and simplification of purchasing plastic components. Finally, we discuss methods to increase the recycling of medical plastic wastes. This study suggests that a classification at waste generating sources, depending upon infection chance and/or plastic component, could be a method for the improved recycling of plastic wastes in hospitals.  相似文献   

12.
It is necessary to remove chlorine efficiently from municipal waste plastics (MWP) that contain polyvinyl chloride (PVC) and other plastics containing chlorine. In this article we consider thermal degradation liquefaction technology. In Japan, the chlorine content of reclamation oil products must be kept below 100 ppm owing to the quality standard for pyrolysis oil. Liquefaction dechlorination technology for MWP is still an important issue to study. The twin-screw extruder that has been developed as dechlorination technology for blast furnaces and coke ovens has a shorter residence time for dechlorination than other dechlorination technologies. In this article, we used a single-screw extruder for the dechlorination process because it also has a short residence time. Experiments on the dechlorination process were carried out by using a single-screw extruder to assess its dechlorination performance. Practical use of the single-screw was demonstrated by the operation of a commercial oil reclamation plant operated by Sapporo Plastic Recycle Co., Ltd. (SPR). Moreover, an investigation of cascade recycling was carried out in 2008 in which material recycle wastes were mixed with MWP and processed by chemical recycling (liquefaction). It was demonstrated that cascade recycling is an efficient recycling combination and contributes to local feedstock recycling. However, it was shown that MR wastes affect the quality of the reclamation oil when they make up more than 40% of the feed mix. If the quantity of MR wastes is kept below 40%, the reclamation oil is able to meet the quality standard. The SPR plant can be operated safely and in a stable manner.  相似文献   

13.
More and more polymer wastes are generated by industry and householders today. Recycling is an important process to reduce the amount of waste resulting from human activities. Currently, recycling technologies use relatively homogeneous polymers because hand-sorting waste is costly. Many promising technologies are being investigated for separating mixed thermoplastics, but they are still uneconomical and unreliable. At present, most waste polymers cause serious environmental problems. Burning polymers for recycling is not practiced since poisonous gases are released during the burning process. Particularly, polyvinyl chloride (PVC) materials among waste polymers generate hazardous HCl gas, dioxins containing Cl, etc., which lead to air pollution and shorten the life of the incinerator. In addition, they make other polymers difficult to recycle.Both polyethylene terephthalate (PET) and PVC have densities of 1.30–1.35 g/cm3 and cannot be separated using conventional gravity separation techniques. For this reason, polymer recycling needs new techniques. Among these techniques, froth flotation, which is also used in mineral processing, can be useful because of its low cost and simplicity.The main objective of this research is to recycle PET and PVC selectively from post-consumer polymer wastes and virgin polymers by using froth flotation. According to the results, all PVC particles were floated with 98.8% efficiency in virgin polymer separation while PET particles were obtained with 99.7% purity and 57.0% efficiency in post-consumer polymer separation.  相似文献   

14.
The aim of this research was to separate the different plastics of a mixed post-consumer plastic waste by the combination of a three-stage sink-float method and selective flotation. By using the three-stage sink-float method, six mixed-plastic wastes, belonging to the 0.3-0.5 cm size class and including high density polyethylene (HDPE), polypropylene (PP), polyvinylchloride (PVC), polystyrene (PS), polyethylene terephthalate (PET) and acrylonitrile-butadiene-styrene copolymers (ABS) were separated into two groups, i.e., a low density plastic group (HDPE and PP) and a high density plastic group (PET, PVC, PS and ABS) by tap water. Plastic whose density is less than that of the medium solution floats to the surface, while the one whose density is greater than that of the medium solution sinks to the bottom. The experimental results elucidated that complete separation of HDPE from PP was achieved by the three-stage sink-float method with 50% v/v ethyl alcohol. To succeed in the separation of a PS/ABS mixture from a PET/PVC mixture by the three-stage sink-float method, a 30% w/v calcium chloride solution was employed. To further separate post-consumer PET/PVC and PS/ABS based on plastic type, selective flotation was carried out. In order to succeed in selective flotation separation, it is necessary to render hydrophilic the surface of one or more species while the others are kept in a hydrophobic state. In flotation studies, the effects of wetting agent, frother, pH of solution and electrolyte on separation were determined. The selective flotation results showed that when using 500 mg l(-1) calcium lignosulfonate, 0.01 ppm MIBC, and 0.1 mg l(-1) CaCl2 at pH 11, PET could be separated from PVC. To separate ABS from PS, 200 mg l(-1) calcium lignosulfonate and 0.1 mg l(-1) CaCl2 at pH 7 were used as a flotation solution. Wettability of plastic increases when adding CaCl2 and corresponds to a decrease in its contact angles and to a reduction in the recovery of plastic in the floated product.  相似文献   

15.
The huge increase in the generation of post-consumer plastic waste has produced a growing interest in eco-efficient strategies and technologies for their appropriate management and recycling. In response to this, PROQUIPOL Project is focused on developing, optimizing and adapting feedstock recycling technologies as an alternative for management for the treatment of complex plastic waste. Among the different plastic wastes studied, PROQUIPOL Project is working on providing a suitable treatment to the highly colored and complex multilayered post-consumer waste fractions of polyethylene terephthalate (PET) by chemical depolymerisation methods. Glycolysis and alkali hydrolysis processes have been studied with the aim of promoting the transformation of PET into the bis(2-hydroxyethyl) terephthalate monomer and terephthalic acid, respectively. In both cases operational conditions such as temperature, reaction time, catalyst to PET rate and solvent to PET rate have been considered to optimize product yield, achieving values near to 90 % and monomer purities over 95 % in both processes. This paper presents results obtained for each treatment as well as a simplified comparison of technical, economic and environmental issues.  相似文献   

16.
Plastic packaging wastes increased considerably in recent decades, raising a major and serious public concern on political, economical and environmental levels. Dealing with this kind of problems is generally done by landfilling and energy recovery. However, these two methods are becoming more and more expensive, hazardous to the public health and the environment. Therefore, recycling is gaining worldwide consideration as a solution to decrease the growing volume of plastic packaging wastes and simultaneously reduce the consumption of oil required to produce virgin resin. Nevertheless, a major shortage is encountered in recycling which is related to the sorting of plastic wastes. In this paper, a feasibility study was performed in order to test the potential of an innovative approach combining mid infrared (MIR) spectroscopy with independent components analysis (ICA), as a simple and fast approach which could achieve high separation rates. This approach (MIR-ICA) gave 100% discrimination rates in the separation of all studied plastics: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS) and polylactide (PLA). In addition, some more specific discriminations were obtained separating plastic materials belonging to the same polymer family e.g. high density polyethylene (HDPE) from low density polyethylene (LDPE). High discrimination rates were obtained despite the heterogeneity among samples especially differences in colors, thicknesses and surface textures. The reproducibility of the proposed approach was also tested using two spectrometers with considerable differences in their sensitivities. Discrimination rates were not affected proving that the developed approach could be extrapolated to different spectrometers. MIR combined with ICA is a promising tool for plastic waste separation that can help improve performance in this field; however further technological improvements and developments are required before it can be applied at an industrial level given that all tests presented here were performed under laboratory conditions.  相似文献   

17.
Recycling requires the separation of materials appearing in a mass of wastes of heterogeneous composition and characteristics, into single, almost pure, component/material flows. The separation of materials (e.g., some types of plastics) with similar physical properties (e.g., specific gravity) is often accomplished by human sorting. This is the case of the separation of packaging plastics in municipal solid wastes (MSW). The low cost of virgin plastics and low value of recycled plastics necessitate the utilization of low cost techniques and processes in the recycling of packaging plastics. An experimental study was conducted to evaluate the feasibility of production of a PET product, cleaned from PVC and PS, using a wet shaking table. The wet shaking table is an environmentally friendly process, widely used to separate minerals, which has low capital and operational costs. Some operational variables of the equipment, as well as different feed characteristics, were considered. The results show that the separation of these plastics is feasible although, similarly to the mineral field, in somewhat complex flow sheets.  相似文献   

18.
Flame treatment has been used for many years to modify the surface of plastics to allow coatings to be added. The effect of the treatment is to produce hydrophilic species on the surface of the plastic making it water-wettable. The production of hydrophilic plastic surfaces is also required in the selective separation of plastics by froth flotation. For the process to be selective one plastic must be rendered hydrophilic while another remains hydrophobic. In this study the potential for separation of PVC and PET has been investigated. Flame treatment was shown to be very effective in producing a hydrophilic surface on both plastics, although the process was not selective under the conditions investigated. Raising the temperature of the plastics above their softening point produced a hydrophobic recovery. As the softening point of PVC was significantly lower than for PET it was possible to produce a significant difference in hydrophobicity, as judged using contact angle measurement. When immersed in water the contact angle of the PVC was found to be strongly dependent on the pH. Good separation efficiency of the two plastics was achieved by froth flotation from pH 4 to 9. One particular advantage of the technique is that no chemical reagents may be required in the flotation stage. The practicalities of designing a flake treatment system however have to be addressed before considering it to be a viable industrial process.  相似文献   

19.
Thermal cracking of oils from waste plastics   总被引:2,自引:0,他引:2  
Thermal cracking of decomposed waste plastic oil produces a good yield of olefins. The solvent extraction of such waste plastic oil seems to be efficient for increasing gas yields and recycling monomers. To assess the potential of monomer recovery from municipal waste plastics, the oils were cracked using a laboratory-scale quartz-tube reactor. The waste plastic oils were provided by two commercial plants of the Sapporo Plastic Recycle Co. and the Dohoh Recycle Center Co. in Japan. A model waste plastic oil made in a laboratory was also examined. Yields of ethene, propene, and other products were measured at different temperatures. Two-step pyrolysis reduces coking compared with the direct thermal degradation of plastics. The raffinates from waste plastic oils extracted by sulfolane were also cracked. The primary products were almost the same as those from nontreated oils. The maximum total gas yield was 78wt%–85wt% at 750°C, an increase of about 20wt% compared with that of nonextracted oil. Solvent extraction removes stable aromatic hydrocarbons such as styrene, which is more coked than cracked.  相似文献   

20.
The continuous increase in generation of solid wastes and gradual declining of fossil fuels necessities the development of sustainable conversion technologies. Recent studies have shown that the addition of biomass with hydrogen-rich co-reactants (plastics) altogether enhances the quality of bio-fuels using pyrolysis process. It was observed that red mud (which is produced as by-product in Bayer process) was used as a catalyst in few conversion process. In this study, pyrolysis of biomass (Pterospermum acerifolium) and waste plastic mixture with activated red-mud catalyst was investigated using thermo-gravimetric analysis. The kinetic parameters (activation energy and pre-exponential factor) of this process were determined using distributed activation energy model (DAEM). The DAEM was effectively applied to decide the activation energy (E) and pre-exponential factor (A) for each sample at various conversions during the catalytic co-pyrolysis. The biomass, plastic, biomass–plastic, and biomass–plastic–catalyst exhibited activation energies in the ranges of 78–268, 172–218, 67–307, and 202–292 kJ/mol, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号