首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Impact of wastewater irrigation on some biological properties was studied in an area where treated sewage water is being supplied to the farmers since 1979 in the western part of National Capital Territory of New Delhi under Keshopur Effluent Irrigation Scheme. Three fields were selected which had been receiving irrigation through wastewater for last 20, 10 and 5 years. Two additional fields were selected in which the source of irrigation water was tubewell. The soil bacterial and fungal population density was studied in soil layers of 0?C15, 15?C30, 30?C60 and 60?C120 cm depths. Groundwater samples were collected from the piezometers installed in the field irrigated with sewage water for last 20, 10 and 5 years. Results indicate that there was significant increase in bacterial and fungal count in sewage-irrigated soils as compared to their respective control. The population density of bacteria and fungi in waste water-irrigated soils increased with the duration of sewage water application and decreased with increasing depth. The bacterial and fungal count was also directly proportional to organic carbon, sand and silt content and negatively correlated to the clay content, electrical conductivity, pH and bulk density of the soil. Groundwater under sewage-irrigated fields had higher values of most probable number (MPN) index as compared to that of tubewell water-irrigated fields. All the shallow and deep groundwaters were found to be contaminated with faecal coliforms. The vadose zone had filtered the faecal coliform to the tune of 98?C99%, as the MPN index was reduced from ??18,000 per 100 ml of applied waste water to 310 per 100 ml of groundwater under 20 years sewage-irrigated field. The corresponding values of MPN were 250 and 130 per 100 ml of shallow groundwater under 10 and 05 years sewage-irrigated fields, respectively. Rapid detection of faecal contamination suggested that the Citrobacter freundii and Salmonella were dominant in shallow groundwater, while Escherichia coli was dominant in deep groundwater collected from sewage-irrigated field.  相似文献   

2.
The aim of this study was to investigate the response of groundwater level and well yields in the Halacli aquifer to climate variations in Central Anatolia, Turkey. The Halacli aquifer is a typical aquifer due to its vulnerability to the climate variations. The aquifer is shallow and its recharge area is small. The waters from rains and snow melts can rapidly infiltrate down to the groundwater body because the vadose zone is thin and formed from coarse material. Therefore, the groundwater system responds to the short-term recharges by raising its level. Although any exploitation did not occur, the groundwater levels have declined from 1989 to 1997. However, the groundwater levels began rising when the exploitation started in the summer of 1998. After the year 2000, although the amount and duration of yearly exploitation was constant, fluctuations of water level continued. Fluctuation of groundwater levels and well yields bewilders the water users and imperils the sustainable water management in the study area and also in arid and semi-arid regions of Turkey. In order to overcome this problem, behavior of groundwater level and discharges of the wells must be recorded and the water users must be informed about the current conditions and the possible trend in the future of the system.  相似文献   

3.
乌鲁木齐河流域浅层地下水防污性能评价   总被引:2,自引:0,他引:2  
地下水防污性能的评价是确定地下水资源保护措施是否可行的关键。本文根据乌鲁木齐河流域浅层地下水水文地质状况,采用DRASTIC模型,选取包气带岩性、厚度与结构、地形作为评价因子,在乌鲁木齐河流域地下水污染现状评价的基础上,用模糊综合评判法评价了地下水防污性能,从而为乌鲁木齐河流域地下水污染防治提供了依据。  相似文献   

4.
A comprehensive subsurface monitoring program should include contaminant detectors in both the vadose and saturated zones. Vadose zone detectors can provide an early warning of an impending groundwater contamination problem, and also yield information relevant to placing groundwater monitoring wells. Moisture probes, gas monitoring wells, and pore-liquid samplers deployed in the vadose zone complement groundwater detection wells. The objective(s) of a monitoring program, spatial-scales, and hydrogeology are important considerations for designing subsurface monitoring networks. Often, these networks are used to detect potential releases or characterize existing contamination beneath land-based waste storage facilities. A case study in Santa Barbara, California, U.S.A., illustrates the utility of vadose zone monitoring in characterizing a gasoline contamination problem and guiding the placement of groundwater monitoring wells.  相似文献   

5.
In rural areas in Bangladesh, groundwater is the principal source of water supply. This underground water is available in considerable amount in shallow aquifers. It is free from pathogenic microorganisms and hence water-borne diseases. In plain lands, other than hilly areas, water supply to 97% rural population comes from tube-wells, which is regarded to be a phenomenal achievement in preserving public health. Besides, a dependable water supply system all throughout the country is offset by two factors: (a) high salinity in surface plus groundwater in coastal areas; (b) want of suitable groundwater aquifers in hilly areas and the high cost of setting up tube-wells due to deep underground water table and stony layers. However, presence of arsenic in underground water now poses a serious threat to the success once made in water supply by setting up of manually operated tube-wells in the village areas—the achievement is now on the brink of total collapse. In about 61 districts out of 64, presence of arsenic exceeds a quantity of 0.05 mg/1, a permissible limit as per Bangladeshi water quality standard. Harvesting rainwater can be a pragmatic solution to this problem, which is common in many places in Sylhet especially in the hilly areas on the north eastern part of the city. This can be an alternative source of drinking water because of availability of rainwater from March to October. Heavy rain occurs from end of May till mid September, which is commonly known as the rainy season. This paper focuses on the possibility of harvesting rainwater in rural communities and thickly populated urban areas of Sylhet. It also demonstrates the scopes of harvesting rainwater using simple and low-cost technology. With setting up of a carefully planned rainwater storage tank, a family can have all of its drinking water from rain. Planned use of rainwater through rainwater harvesting in the roof catchments may fulfill the entire annual domestic water demand of a family in the rural areas of Bangladesh.  相似文献   

6.
This paper summarizes the findings obtained in a monitoring study to understand the sources and processes affecting the quality of shallow and deep groundwater near central air conditioning plant site in Trombay region by making use of physicochemical and biological analyses. All the measured parameters of the groundwaters indicate that the groundwater quality is good and within permissible limits set by (Indian Bureau of Standards 1990). Shallow groundwater is dominantly of Na–HCO3 type whereas deep groundwater is of Ca–Mg–HCO3 type. The groundwater chemistry is mainly influenced by dissolution of minerals and base exchange processes. High total dissolved solids in shallow groundwater compared to deeper ones indicate faster circulation of groundwater in deep zone preferably through fissures and fractures whereas groundwater flow is sluggish in shallow zone. The characteristic ionic ratio values and absence of bromide point to the fact that seawater has no influence on groundwater system.  相似文献   

7.
Water availability in arid regions is both sporadic and highly variable in quantity. If the water quality shows large variations of salinity and concentration of other chemical constituents with depth and time span, it has considerable effect on the entire hydrological set up of the area. In the Saidabad tahsil area, the deep aquifers that supply water to borewells in the alluvial plain of the Mathura region, Uttar Pradesh, have higher salinity than those of the dugwells from the shallow aquifers. The excessive drilling of tubewells and high yield tubewells are resulting in deterioration of water quality of the shallow aquifers. On the contrary, the chemical constituents such as, Na+, K +, Cl -, andHCO 3 - show higher concentration in shallow aquifers than deep aquifers. A study carried out to monitor water quality in this region reveals that the groundwater quality varies with depth and time span in shallow and deep aquifers. Factors controlling variations in salinity and concentration of chemical constituents of the water in the two types of aquifers are discussed. The relative merits of the shallow water for potability are pointed out with respect to salinity concentrations and public health.  相似文献   

8.
The purpose of the present study was to evaluate the groundwater contamination due to the construction and operation of the municipal landfill of Amari, Rethymno, Crete. The groundwater flow and leachate transport in the vadose and saturated zones were studied and simulated, using three different models: the one-dimensional groundwater flow and contaminant transport model for the vadose zone Pesticide Root Zone Model (PRZM-3), the Geographical Information System (GIS) Argus ONE and the three-dimensional groundwater flow and contaminant transport model Princeton Transport Code (PTC). The simulation time was 30 and 20 years, and the results obtained, according to the models and the existing hydrogeological conditions, were very encouraging and reassuring about the groundwater quality of the broad region.  相似文献   

9.
Riyadh, Saudi Arabia is supplied with drinking water fromboth desalinated sea water and treated groundwater sources. Sampleswere analysed for NO3 from selected deep and shallow wells, two locations within the city's six groundwater treatment plants, thedesalinated sea water and distribution network. Average nitrateconcentrations (as NO3) were 8.2 and 15.8 mg/L for deep andshallow well waters, respectively. The average nitrate concentrations (asNO3) in the groundwater treatment plants influent waters and thefinal product water were 16.2 and 8.5 mg/L, respectively. Due toblending of the plants' product water with the desalinated sea water, theaverage network nitrate concentration was 4.4 mg/L. The scheduledwater interruption does not seem to cause any appreciable change in thenitrate levels in the distribution network.  相似文献   

10.
The present study deals with detailed hydrochemical assessment of groundwater within the Saq aquifer. The Saq aquifer which extends through the NW part of Saudi Arabia is one of the major sources of groundwater supply. Groundwater samples were collected from about 295 groundwater wells and analyzed for various physico-chemical parameters such as electrical conductivity (EC), pH, temperature, total dissolved solids (TDS), Na+, K+, Ca2+, Mg2+, CO3 ?, HCO3 ?, Cl?, SO4 2?, and NO3 ?. Groundwater in the area is slightly alkaline and hard in nature. Electrical conductivity (EC) varies between 284 and 9,902?μS/cm with an average value of 1,599.4 μS/cm. The groundwater is highly mineralized with approximately 30 % of the samples having major ion concentrations above the WHO permissible limits. The NO3 ? concentration varies between 0.4 and 318.2 mg/l. The depth distribution of NO3 ? concentration shows higher concentration at shallow depths with a gradual decrease at deeper depths. As far as drinking water quality criteria are concerned, study shows that about 33 % of samples are unfit for use. A detailed assessment of groundwater quality in relation to agriculture use reveals that 21 % samples are unsuitable for irrigation. Using Piper’s classification, groundwater was classified into five different groups. Majority of the samples show Mix-Cl-SO4- and Na-Cl-types water. The abundances of Ca2+ and Mg2+ over alkalis infer mixed type of groundwater facies and reverse exchange reactions. The groundwater has acquired unique chemical characteristics through prolonged rock-water interactions, percolation of irrigation return water, and reactions at vadose zone.  相似文献   

11.
以豫东平原惠北试验区为研究区域,根据研究区域包气带土壤蓄水库容、土壤前期含水量、地表径流、潜水蒸发量等资料数据计算地下水入渗补给规律,确定降雨对地下水的补给系数.研究结果显示:单次短时强降雨条件下,降雨强度与研究区域浅层地下水入渗补给系数呈反比例关系;当降雨强度一致时降雨量与研究区域浅层地下水入渗补给系数呈正比例关系,在降雨强度低于15 mm/h的条件下,降雨量主要用于补充包气带缺失的水分和土壤、作物、植物等的蒸发蒸腾消耗,无法对研究区域浅层地下水进行有效补给.  相似文献   

12.
This paper investigates the organic pollution status of shallow aquifer sediments and groundwater around Zhoukou landfill. Chlorinated aliphatic hydrocarbons, monocylic aromatic hydrocarbons, halogenated aromatic hydrocarbons, organochlorine pesticides and other pesticides, and polycyclic aromatic hydrocarbons (PAHs) have been detected in some water samples. Among the detected eleven PAHs, phenanthrene, fluorine, and fluoranthene are the three dominant in most of the groundwater samples. Analysis of groundwater samples around the landfill revealed concentrations of PAHs ranging from not detected to 2.19 μg/L. The results show that sediments below the waste dump were low in pollution, and the shallow aquifer, at a depth of 18–30 m, was heavily contaminated, particularly during the wet season. An oval-shaped pollution halo has formed, spanning 3 km from west to east and 2 km from south to north, and mainly occurs in groundwater depths of 2–4 m. For PAH source identification, both diagnostic ratios of selected PAHs and principal component analysis were studied, suggesting mixed sources of pyro- and petrogenic derived PAHs in the Zhoukou landfill. Groundwater table fluctuations play an important role in the distribution of organic pollutants within the shallow aquifer. A conceptual model of leachate migration in the Quaternary aquifers surrounding the Zhoukou landfill has been developed to describe the contamination processes based on the major contaminant (PAHs). The groundwater zone contaminated by leachate has been identified surrounding the landfill.  相似文献   

13.
Increasing nitrogen (N) immobilization and weed interference in the early phase of implementation of conservation agriculture (CA) affects crop yields. Yet, higher fertilizer and herbicide use to improve productivity influences greenhouse gase emissions and herbicide residues. These tradeoffs precipitated a need for adaptive N and integrated weed management in CA-based maize (Zea mays L.)—wheat [Triticum aestivum (L.) emend Fiori & Paol] cropping system in the Indo-Gangetic Plains (IGP) to optimize N availability and reduce weed proliferation. Adaptive N fertilization was based on soil test value and normalized difference vegetation index measurement (NDVM) by GreenSeeker? technology, while integrated weed management included brown manuring (Sesbania aculeata L. co-culture, killed at 25 days after sowing), herbicide mixture, and weedy check (control, i.e., without weed management). Results indicated that the ‘best-adaptive N rate’ (i.e., 50% basal + 25% broadcast at 25 days after sowing + supplementary N guided by NDVM) increased maize and wheat grain yields by 20 and 14% (averaged for 2 years), respectively, compared with whole recommended N applied at sowing. Weed management by brown manuring (during maize) and herbicide mixture (during wheat) resulted in 10 and 21% higher grain yields (averaged for 2 years), respectively, over the weedy check. The NDVM in-season N fertilization and brown manuring affected N2O and CO2 emissions, but resulted in improved carbon storage efficiency, while herbicide residuals in soil were significantly lower in the maize season than in wheat cropping. This study concludes that adaptive N and integrated weed management enhance synergy between agronomic productivity, fertilizer and herbicide efficiency, and greenhouse gas mitigation.  相似文献   

14.
Hierakonpolis, Greek for City of the Hawk, nearly 25 km NW of Idfu (Egypt), is an important and extensive archaeological discovery covering a large area. Its richness in archaeological artifacts makes it a valuable site. It has a valid claim to be the first nation state, as indicated by the Palette of Narmer discovered in its main mound. Geological and hydrogeological investigations at the Hierakonpolis Temple Town site documented nearly a 4.0-m water table rise from as early as 1892 to the present. In addition to the rising water levels, the increase of both subsoil water salinity and humidity threatens and damages fragile carvings and paintings within tombs in Kingdom Hill, the foundation stability of the site, and the known and still to be discovered artifact that recent pottery finds dates at least 4,000 BCE. Representative rock and soil samples obtained from drilled cores in the study area were chosen for conducting detailed grain size and X-ray analysis, light and heavy mineral occurrences, distribution of moisture and total organic matter, and scanning electron microscopy investigations. Mineralogical analysis of clays indicated that the soil samples are composed of smectite/illite mixed layers with varying proportions of smectite to illite. Kaolinite is the second dominant clay constituent, besides occasional chlorite. Swelling of the clay portion of the soil, due to the presence of capillary groundwater, in contact with buried mudbrick walls expands and causes severe damage to important exposed and buried mudbrick structures, including the massive ancient “fort” believed to date from the Second Dynasty (from 2,890 to 2,686 BC). The “fort” is 1.0 km south of the Temple Town mounds near to confluence of Wadi Abu Sufian. Groundwater samples from the shallow aquifer close by the intersection of Wadi Abu Sufian and the Nile flood plain were analyzed for chemical composition and stable isotope ratios. The groundwater in the upper zone (subsoil water) within fine-grained Nile alluvium is characterized by high salinity which varies from 415 to 4,500 mg/L total dissolved solids. In contrast, most of the groundwater samples in the lower zone (Quaternary aquifer) are characterized by a low salinity in the order of 164–792 mg/L. Values of δD and δO18 obtained from this deep (9–20 m) aquifer ranged from 16.98 to 19.87?‰ and from 1.67 to 2.99?‰, respectively. These values indicated that the Quaternary aquifer waters are recharged directly from recent Nile water. Subsoil water is very shallow in the area; it ranged from 0 to 2.6 m with a mean of 1.1 m within the main mound of the Hierakonpolis Temple Town site by 2003, in contrast to its more than 4.5-m depth in 1897. The exposure of subsoil water to increased evaporation is expected, with a consequent increase in the concentrations of dissolved solids and usually large proportions of chloride and sulfate. Artifacts recovered from the Temple Town site are becoming damaged and destroyed by crystallization processes caused by repeated wetting and drying of salt and the accumulation of new salts.  相似文献   

15.
Hydrogeochemical data of groundwater from the semi-confined aquifer of a coastal two-tier aquifer in Amol–Ghaemshahr plain, Mazandaran Province, Northern Iran reveal salinization of the fresh groundwater (FGW). The saline groundwater zone is oriented at an angle to both Caspian Sea coastline and groundwater flow direction and extends inland from the coastline for more than 40 km. Spearman’s rank correlation coefficient matrices, factor analysis data, and values of C ratio, chloro-alkaline indices, and Na+/Cl? molar ratio indicate that the ionic load in the FGW is derived essentially from carbonic acid-aided weathering of carbonates and aluminosilicate minerals, relict connate saline water, and ion exchange reactions. Saline groundwater samples (SGWS) (n?=?20) can be classified into two groups. SGWS of group 1 (n?=?17) represent the saline groundwater zone below the Caspian Sea level, and salinization is attributed essentially to (1) lateral intrusion of Caspian seawater as a consequence of (a) excessive withdrawal of groundwater from closely spaced bore wells located in the eastern part of the coastal zone and (b) imbalance between recharge and discharge of the two-tier aquifer and (2) upconing of paleobrine (interfaced with FGW) along deep wells. SGWS of this group contain, on average, 7.9 % of saltwater, the composition of which is similar to that of Caspian seawater. SGWS of group 2 (n?=?3) belong to the saline groundwater zone encountered above the Caspian Sea level, and salinization of the groundwater representing these samples is attributed to irrigation return flow (n?=?2) and inflow of saline river water (n?=?1).  相似文献   

16.
For groundwater conservation and management, it is important to accurately assess groundwater pollution vulnerability. This study proposed an integrated model using ridge regression and a genetic algorithm (GA) to effectively select the major hydro-geological parameters influencing groundwater pollution vulnerability in an aquifer. The GA-Ridge regression method determined that depth to water, net recharge, topography, and the impact of vadose zone media were the hydro-geological parameters that influenced trichloroethene pollution vulnerability in a Korean aquifer. When using these selected hydro-geological parameters, the accuracy was improved for various statistical nonlinear and artificial intelligence (AI) techniques, such as multinomial logistic regression, decision trees, artificial neural networks, and case-based reasoning. These results provide a proof of concept that the GA-Ridge regression is effective at determining influential hydro-geological parameters for the pollution vulnerability of an aquifer, and in turn, improves the AI performance in assessing groundwater pollution vulnerability.  相似文献   

17.
以沧州地区的地下水、土壤和小麦中的氟元素为研究对象,探讨氟元素在地下水、土壤和小麦等不同介质中的含量、空间分布与来源成因。通过绘制各介质中氟元素分布图,获得氟元素在各介质中不同深度的含量及水平空间上的分布特征。结果显示,当地深层地下水氟含量平均为2.25 mg/L,高于浅层地下水的平均值0.80 mg/L;深层和浅层土壤氟含量接近,平均值分别为557.18、569.20 mg/kg;小麦中的氟含量最高值为0.96 mg/kg,当地小麦氟含量均低于国家标准限值(1.0 mg/kg)。根据氟元素的分布特点分析,当地深层地下水与土壤的氟元素来源一致,而不同于浅层地下水中的氟;小麦的氟元素分布受浅层土壤氟影响较大。  相似文献   

18.
A survey conducted in water wells located in the rhyolithic volcanic area of Mandamados, Lesvos Island, Greece, indicated that significant seasonal variation of arsenic concentration in groundwater exists mainly in wells near the coastal zone. However, there were differences among those coastal wells with regard to the processes and factors responsible for the observed seasonal variability of the element, although they are all located in a small homogeneous area. These processes and factors include (a) a higher rate of silicate weathering and ion exchange during the dry period followed by the dilution by the recharge water during the wet period, (b) enhanced desorption promoted by higher pH in summer and subsequent dilution of As by rainwater infiltration during the wet period, and (c) reductive dissolution of Mn during the wet period and by desorption under high pH values during the dry period. On the other hand, in wells located in higher-relief regions, the concentration of As in groundwater followed a fairly constant pattern throughout the year, which is probably related to the faster flow of groundwater in this part of the area due to a higher hydraulic gradient. In general, seasonal variation of As in groundwater in the study area was found to be related to geology, recharge rate, topography—distance from coast, and well depth.  相似文献   

19.
An understanding of the behavior of the groundwater body and its long-term trends are essential for making any management decision in a given watershed. Geostatistical methods can effectively be used to derive the long-term trends of the groundwater body. Here an attempt has been made to find out the long-term trends of the water table fluctuations of a river basin through a time series approach. The method was found to be useful for demarcating the zones of discharge and of recharge of an aquifer. The recharge of the aquifer is attributed to the return flow from applied irrigation. In the study area, farmers mainly depend on borewells for water and water is pumped from the deep aquifer indiscriminately. The recharge of the shallow aquifer implies excessive pumping of the deep aquifer. Necessary steps have to be taken immediately at appropriate levels to control the irrational pumping of deep aquifer groundwater, which is needed as a future water source. The study emphasizes the use of geostatistics for the better management of water resources and sustainable development of the area.  相似文献   

20.
A study was carried out in a part of Palar and Cheyyar river basin to evaluate the current status of iron, manganese, zinc and atrazine concentrations, their origin and distribution in groundwater. Groundwater samples were collected during post-monsoon (March 1998 and February 1999) and pre-monsoon (June 1999) periods from 41 sampling wells distributed throughout the study area. The groundwater samples were analyzed for trace metals using AAS and atrazine using HPLC. The concentration of the trace elements in groundwater is predominant during pre-monsoon period. Distribution pattern indicates that the concentration of these elements increases from west to northeast and towards Palar river. Lower concentrations in the central part may be due to recharge of fresh water from the lakes located here. During most of the months, as there is no flow in Palar river, the concentrations of trace elements in groundwater are high. Drinking water standards indicate that Mn and Zn cross the permissible limit recommended by EPA during the pre-monsoon period. A comparison of groundwater data with trace element chemistry of rock samples shows the abundance of trace elements both in the rock and water in the order of Fe > Mn > Zn and Fe > Zn > Mn. This indicates that iron in groundwater is derived from lithogenic origin. Further, Fe, Mn and Zn have good correlation in rock samples, while it is reverse in the case of water samples, indicating the non-lithogenic origin of Mn and Zn. Atrazine (a herbicide) was not detected in any of the groundwater samples in the study area, perhaps due to low-application rate and adsorption in the soil materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号