首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Marine ecosystems worldwide are threatened by aquatic pollution; however, there is a paucity in data from the Caribbean region. As such, five heavy metals (arsenic, cadmium, copper, zinc, mercury) were measured in tissues of the scleractinian corals Porites furcata and Agaricia tenuifolia and in adjacent sediments in the Bocas del Toro Archipelago, Panama. Samples were collected from five reef sites along a gradient of distance from an international shipping port and were analysed using inductively coupled plasma optical emission spectrometry and atomic absorption spectrophotometry for mercury. Copper and zinc were the most abundant metals and ranged from 11 to 63 mg kg?1 and from 31 to 185 mg kg?1 in coral tissues, respectively. The highest concentration of each metal was measured in P. furcata tissues, with copper and mercury concentrations significantly higher in P. furcata than in A. tenuifolia at every site. These results suggest that P. furcata has a higher affinity for metal accumulation and storage than A. tenuifolia. With the exception of cadmium, metal concentrations in coral tissues were generally elevated at coral reefs in closer proximity to the port; however, this pattern was not observed in sediments. Hard coral cover was lowest at reefs in closest proximity to the port, suggesting that metal pollution from port-related activities is influencing hard coral abundance at nearby coral reefs.  相似文献   

2.
We compared the capacity to accumulate airborne heavy metals of two lichens (Flavoparmelia caperata and Parmotrema chinense) and one higher plant (Nerium oleander) at a very densely populated urban site near Naples. After 15, 45, 75, and 120 days of exposure at four sites with different levels of air pollution, equal portions of thalli and 20 leaves were collected, and four environmentally significant elements, Fe, Cu, Zn, and Pb, were measured by inductively coupled plasma analysis. To compare the accumulation rates of lichens and the vascular plant, we determined an index of relative accumulation rate of pollutants during time and the ratio between the concentrations of each element in exposed samples to that of control samples (exposed-to-control ratio). Our data indicate F. caperata as being the most suitable bioaccumulator, followed by P. chinense. N. oleander was also found to be a useful heavy metal biomonitor though not suitable as a bioaccumulator.  相似文献   

3.
Trace metal concentrations in the muscle of the bivalve Villorita cyprinoides from the Cochin backwaters (southwest coast of India) were investigated during the monsoon, post-monsoon and pre-monsoon periods. The seasonal average ranges of metals (μg g?1, dry weight) in the bivalve were as follows: Fe (18,532.44–28,267.05), Co (23.25–37.58), Ni (10.56–19.28), Cu (3.58–11.35), Zn (48.45–139.15), Cd (1.06–1.50) and Pb (3.05–4.35). The marginally elevated metal concentrations in bivalve muscles are probably related to high influx of metals as a result of pollution from the industries and agricultural fields with consequent increased bioavailability of metals to the bivalve. Evaluation of the risks to human health associated with consumption of the bivalves suggested that there is no health risk for moderate shellfish consumers. A regular and continuous biomonitoring program is recommended to establish V. cyprinoides as a bioindicator for assessing the effects of trace metal pollution and to identify future changes to conserve the “health” of this fragile ecosystem.  相似文献   

4.
The distribution and accumulation of heavy metals in the sediments, especially those nearest of wastewater discharges of south of Spain, were investigated. Sediment samples from 14 locations were collected and characterised for metal content (e.g. Ni, Cu, Zn, Cr, Pb, Mn, Cd and Hg), organic carbon, total nitrogen, total phosphorous, n-hexane-extractable material, carbonates and grain size. Concentration data were processed using correlation analysis and factor analysis. The correlation analysis of concentrations data showed important positive correlations among organic carbon, total phosphorus, Cu, Zn, Cd and Hg, otherwise weak correlations among Mn, Cr, Ni and CO3 2???, indicating that these metals have complicated geochemical behaviours. The use of statistical factor analysis also confirmed these results. Sediments pollution assessment was carried out using geoaccumulation and metal pollution indexes (MPI8). The results revealed that sediments of Cádiz bay and Sancti Petri channel were uncontaminated with the studied metals.  相似文献   

5.
An in-depth study on various locations along the Kuwait Coastdifferentiated by the nature of coastal topography, humanhabitation and industrialization was made during the year1995–1997 in relation to the gills of the gastropod, Cerithium scabridum, a bio-indicator of heavy metal pollution.The maximum concentration of heavy metals in the gills of C. scabridum, seawater and particulate matter was observed inStations III when compared to the metal concentrations in theother seven stations. Co-efficient Variance (CV) revealed anincrease in the accumulation of Cu and Pb in gills, seawater andparticulate matter in winter than in summer. However, the CV wasnoted to be lower in winter than in summer in the case of Cr andV, in gills of C. scabridum and Ni in the case of seawatersamples. Further, by ANOVA, except V, significant relationshipswere noted between the heavy metals (Cu, Cr, Pb and Ni) andvarious locations in the gills of C. scabridum.  相似文献   

6.
The accumulation of heavy metals in the environment may have a wide range of health effects on animals and humans. Thus, in this study, the concentrations of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) in the blood and tissues (liver and kidney) of Portuguese common buzzards (Buteo buteo) were determined by inductively coupled plasma-mass spectrometer (ICP-MS) in order to monitor environmental pollution to these elements. In general, Hg and As were the elements which appeared in the highest and lowest concentrations, respectively. A highest percentage of non-detected concentration was found for blood Cd (94.6 %) but, in turn, it was the only metal that was detected in all kidney samples. The kidney was the analyzed sample which showed the highest concentrations of each element evaluated. Statistically, significant differences among blood, liver, and kidney samples were observed for As and Cd (P?相似文献   

7.
The aim of this study was to monitor the heavy metal contents and fecal pollution in Tapes decussatus (carpet shell clam) from Izmir Bay (Eastern Aegean). Bivalve mollusks were sampled on January, March, July, and October 2007 in the Izmir Bay. Izmir Bay is one of the great natural bays of the Mediterranean. Concentrations of heavy metals were determined in the clams from the different seasons. Fecal coliform densities were determined to evaluate the degree of water pollution and clams’ microbiological accumulation of the classical microbial pollution indicators. The concentration of heavy metals in T. decussatus from Izmir Bay were Hg 0.044–0.13; Cd 0.026–0.24; Pb 0.38–1.2; Cr 2.3–3.7; Cu 6.4–8.4; Zn 56.0–81.8, and Ni 8.1–9.6 μg/g (dry weight). The maximum values were generally obtained in July and March except Ni. This study found that the levels of heavy metals except Cr in T. decussatus were below Spanish and European Communities legislations for shellfish as food. Microbial pollution indicators (heterotrophic bacteria and fecal coliform) were measured in T. decussatus. Maximum heterotrophic bacteria and fecal coliforms were recorded in the winter while the lowest were detected in summer.  相似文献   

8.
An active biomonitoring of the heavy metals pollution experiment was undertaken by means of the bryophyte species Scleropodium purum transplanted at three different sites exposed to rural, traffic, or industrial influences. Concentrations of about 40 elements in S. purum were determined by instrumental neutron activation analysis and inductively coupled plasma mass spectrometry. Accumulation rates of heavy metals were determined in the three sites. These accumulation rates in polluted sites were matched together and also to those recorded at the rural site. The changes of the accumulation rate of heavy metals in S. purum versus their concentrations in PM10 particles simultaneously collected above show some different accumulation properties of S. purum according to elements and sites. S. purum has a weak efficiency in the three sites to accumulate elements like V, Cr, Cu, Zn, As, Se, Sb, and Pb originating from atmospheric hot sources generally enriched in particulates matter (PM10), whereas it is particularly high for Br, Th, and Rb. For other elements, Co, La, Ce, and Hf, and rare earth elements, Fe, Sr, Nb, Ti, Al, and Sc, the collection efficiency by S. purum is intermediate. In the industrial site Dunkerque, a magnification of the collection efficiency by S. purum for elements originating from steel and aluminum productions and petroleum refinement suggests that these metals could be enriched in coarse particles with a better accumulation by the bryophyte with respect to PM10.  相似文献   

9.
Cadmium (Cd) and lead (Pb) were determined in three species of mollusks and associated sediment. Samples were collected from two locations along the intertidal zone of the Persian Gulf near Bandar Abbas. The study was conducted during the spring of 2011, 10 sediment samples and 15 mollusks from each of the following species: Saccostrea cucullata, Solen brevis, and Callista umbonella, were simultaneously collected. Soft tissue, shell, and sediment were tested for metals using an atomic absorption spectrophotometer. Geochemical fractions of the sediment were examined for metals using a sequential extraction technique. Our results indicate that over half of Cd and Pb in the sediment had natural origins. Independent sample t test showed statistically significant (p?<?0.05) inter-tissue differences in accumulation of Cd and Pb. Soft tissue of C. umbonella contained highest levels of Cd. Pb accumulation was highest in S. brevis shell. Significant correlations (p?<?0.05) were found between Cd in the soft tissue of C. umbonella and its levels in the geochemical fractions of the sediment. Lead levels in the resistant geochemical fractions of the sediment and S. brevis shell were significantly correlated. Our results suggest that soft tissue of C. umbonella and shell of S. brevis are reliable biomonitoring tools for Cd and Pb, respectively.  相似文献   

10.
In order to assess the condition of heavy metal pollution in the Yellow River, Lanzhou section, China, and to quantify heavy metal (copper, lead, zinc, and cadmium) contents in tissues (liver, kidney, gills, and muscles) of two fish species (Triplophysa pappenheimi and Gobio hwanghensis), levels of these four metals in the water body, sediment, and tissues of the two fish were measured using inductively coupled plasma-atomic emission spectrometry. The metal levels from this study were compared with the threshold values in the guidelines of water, sediment, and food given by the National Environmental Protection Agency of China, the National Oceanic and Atmospheric Administration of America, and the National Standards Management Department of China. We found the mean concentrations of Cu, Pb, Zn, and Cd in THE water body, sediment, and muscles of two fish species were far below the values in guidelines. We also found that the type of metals present and their concentrations varied in different tissues and species. The results suggested that (1) Cu, Pb, Zn, and Cd did not contaminate the aquatic ecosystem severely and did not threaten the safety of human consumption in the Yellow River, Lanzhou section, and (2) organs that are sensitive to accumulating heavy metals may be useful to develop bioindicators for monitoring metal contamination. Considering environmental variables, further study is necessary before deciding which fish species or tissue could be the ideal bioindicators for aquatic pollution.  相似文献   

11.
Acid volatile sulfide (AVS) has been regarded as an important factor controlling metal bioavailability in anoxic sediments, but its effect on metal accumulation under natural conditions is poorly understood. Here, a field study of the influence of AVS on metal accumulation by Limnodrilus sp. in a heavily polluted river is provided. Most of the study area was subject to anaerobic and strongly reducing conditions, and the concentration of trace metals in surface sediments was high, as were the concentration of AVS and simultaneously extracted metals (SEM; average AVS?=?20.3 μmol g?1, average ∑SEM5?=?9.42 μmol g?1; ∑SEM5 refers to the sum of SEMCd, SEMCu, SEMPb, SEMNi, and SEMZn). Only a few species and small quantities of benthic invertebrates were found, and Limnodrilus sp. was dominant. There was no correlation between trace metal accumulation and (SEM-AVS), and in stations where (SEM-AVS) <0, the absolute value of bioaccumulation was high (average ∑BIO5?=?4.07 μmol g?1; ∑BIO5 refers to the sum of BIOCd, BIOCu, BIOPb, BIONi, and BIOZn), indicating that there was no relationship between (SEM–AVS) and metal accumulation in Limnodrilus sp. This was likely because Limnodrilus sp. ingest sediment particles as their main food source, so pore water metals play a minor role in their bioaccumulation (BIO) of materials. However, ∑BIO5 was significantly correlated with ∑SEM5 (r?=?0.795, p?<?0.01), revealing that the large number of sulfide-bound metals (SEM) in sediments may play an important role in metal accumulation in Limnodrilus sp., which can assimilate sulfide-associated metals by the help of the digestive fluids in the digestive systems.  相似文献   

12.
The present study focuses on the abundance, heavy metal content, and the impact of ecosystem engineering activities of two coal mine site-inhabiting ant species, Cataglyphis longipedem and Camponotus compressus. The abundance of Ct. longipedem increased while that of C. compressus decreased, with increasing soil pollution. Correspondence analysis reveals a close association between soil heavy metal concentrations and Ct. longipedem abundance, but this association is lacking in the case of C. compressus. Cataglyphis ants which occupy stress-characterized niches appear to be pre-adapted to tolerate heavy metal pollution. Higher concentrations of Zn and Mn in Ct. longipedem may contribute to the strengthening of the cuticular structures, necessary for nest excavation in the hard, arid soil and for single load carrying. C. compressus ants appear to be pollution sensitive. Their higher Fe content may be related to metal uptake via plant-derived liquids and species-specific regulatory mechanisms. The metal pollution index and biota-to-soil accumulation factors, calculated by using the ant body metal content of the two species, indicate an overall decrease of soil heavy metal concentrations with increase of the site age, which reflects the degree of pollution related to the mine site age. The concentrations of total and available heavy metals (Fe, Zn, Mn, Pb, and Cu) were significantly lower in the ant nest debris soil as compared to the reference soil. The results of the present study highlight the role of ants as bioindicators and in bioremediation of contaminated soil.  相似文献   

13.
In the present study, some heavy metals (Cu, Fe, Zn and Mn) were seasonally determined in water, sediment and some tissues of fish Tinca tinca from Bey?ehir Lake, which is an important bird nesting and visiting area, a water source for irrigation and drinking. In the water, Fe has the highest concentrations among the studied metals. Generally, the metal concentrations increased in the hottest period decreased in warm seasons. Results for levels in water were compared with national and international water quality guidelines, as well as literature data reported for the lakes. Fe was the highest in sediment samples, also Cu and Zn were the highest in spring, while Fe and Mn were in autumn. Among the heavy metals studied, Cu and Mn were below the detection limits in some tissues. Generally, higher concentrations of the tested metals were found in the summer and winter, compared with those during the autumn and spring seasons. High levels of heavy metals were found in liver of T. tinca, while low levels in muscle samples. Metal concentrations in the muscle of examined fish were within the safety permissible levels for human consumption. The present study shows that precautions need to be taken in order to prevent further heavy metal pollution.  相似文献   

14.
The objective of this study was to investigate the impact of anthropogenic activities on soil quality using the land snail Helix aspersa as a bioindicator. Soil samples and snails were collected from several sites in Northeast Algeria during the summer and winter of 2010. All of the sites were chosen due to their proximity to industrial factories—a potential source of soil pollution via heavy metal contamination. The concentration of heavy metals (Pb, Cd, Mn, and Fe) in soil samples was analyzed using atomic absorption spectrophotometry. Activity levels of glutathione S-transferase (GST) and acetylcholinesterase (AChE), indicators of oxidative stress and neurotoxicity, respectively, were measured in snails collected from each site. GST and AChE activity were found to vary between sites and by season. The highest levels of GST activity were registered during the summer at sites closest to potential sources of pollution. AChE activity levels also peaked during the summer with the highest values recorded at the site in El Hadjar. These increased levels of bioindicative stress response correlated with increasing metal concentration in soil samples collected at each site.  相似文献   

15.
Heavy metal accumulation (Cu, Zn, Ni, and Pb) in common marine macroalga, Acrosorium uncinatum under nutrient (phosphate and nitrate) enriched (experiment 1) and starved (experiment 2) conditions over a short exposure period (12 h) were examined in this study. Control was maintained in seawater contained nutrient solution without addition of metals and in seawater alone for experiment 1 and 2, respectively. Among the four metals studied, the accumulation of Zn, Ni, and Pb was considerably lower than Cu. The accumulation factor for all metals varies greatly in different nutrient concentrations, but it increases as the exposure of metal concentration decreases in both the experiments. The results of the present findings established that this macroalga is an accumulator of metals Cu, Zn, Ni, and Pb and have the potential to accumulate these metals even in a short time exposure period (12 h). Even though metal accumulation by A. uncinatum largely depends on the available concentration in the medium, nutrients like phosphate and nitrate can affect the accumulation significantly.  相似文献   

16.
Urbanization can considerably affect water reservoirs by, inter alia, input, and accumulation of contaminants including metals. Located in the course of River Cybina, Maltański Reservoir (Western Poland) is an artificial shallow water body built for recreation and sport purposes which undergoes restoration treatment (drainage) every 4 years. In the present study, we demonstrate an accumulation of nine metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in water, sediment, three bivalve species (Anodonta anatina, Anodonta cygnea, Unio tumidus), and macrophyte Phragmites australis collected before complete drainage in November 2012. The mean concentrations of metals in the sediment, bivalves, and P. australis (roots and leaves) decreased in the following order: Fe > Mn > Zn > Cu > Cr > Ni > Pb > Co > Cd. A considerably higher bioconcentration of metals was observed in samples collected from the western and southern sites which undergo a higher degree of human impact. Sediments were found to be a better indicator of metal contamination than water samples. Interspecific differences in levels of metal accumulation were found between investigated unionids. U. tumidus accumulated higher levels of Cr, positively correlated with ambient concentrations, predisposing this species as a potential bioindicator of this metal in aquatic environments. On the other hand, species of Anodonta genus demonstrated higher accumulation of Cu and Cd. Positive correlations were found between Pb content in the sediments and tissues of all three bivalve species. In P. australis, metals were largely retained in roots except for Cd and Pb for which higher concentrations were found in leaves suggesting additional absorption of these metals from aerial sources. P. australis and bivalve from the Maltański Reservoir may be a potential source of toxic metals for animals feeding upon them and contribute to further contamination in the food chain.  相似文献   

17.
Leaves of the deciduous tree species, horse chestnut (Aesculus hippocastanum L.) and Turkish hazel (Corylus colurna L.) were used as accumulative biomonitors of trace metal pollution in the urban area of Belgrade. Using differential pulse anodic stripping voltametry, trace metal concentrations (Pb, Cu, Zn, Cd) were determined at the single leaf level (ten leaves per species, per month), during two successive years with markedly different atmospheric level of trace metals. Increased trace metal concentrations in the leaves of A. hippocastanum reflected elevated atmospheric trace metal pollution, whereas C. colurna L. did not respond accordingly. The contents of Pb and Zn in soil over the same period also followed this trend. Anatomical analyses, in young as well as in old leaves of both species, indicated typical foliar injuries of plants exposed to stressful air conditions. Water relations that correspond to leaf age may have contributed to the considerable trace metal accumulation in leaves.  相似文献   

18.
The distribution and potential bioaccumulation of dietary and waterborne cadmium and lead in tissues of sea bream (Sparus aurata), a major aquaculture species, was studied in relation to three different fish farming systems. Metallothionein levels in fish tissues were also evaluated. Results demonstrate that metal concentrations in various tissues significantly vary among fish culture systems. Different tissues show different capacity for accumulating heavy metals. The content of both cadmium and lead is not strictly correlated with that of metallothionein. Indeed, the marked accumulation of both metals in liver, as well as the high lead content found in gills and kidney, are not accompanied by a concomitant accumulation of metallothioneins in these tissues. No correlation is present between heavy metals and metallothionein content in muscle tissue. The results also demonstrate that cadmium accumulates mainly via dietary food, whereas lead accumulation is not of food origin. Noteworthy is that the concentration of the two metals found in muscle in all instances is lower than the limits established by European Union legislation for fish destined for human consumption.  相似文献   

19.
In this study, changes in heavy metal accumulation in U. rigida J. Agardh taxon and seawater have been investigated with respect to different stations and seasons. For this purpose, the severity of heavy metal pollution in the Dardanelles has been presented through the determination of Cu, Pb, Zn, and Cd concentrations in U. rigida macroalgae and seawater taken seasonally from the stations located on six different regions on the strait. While the metal concentrations in alga specimens were found to be high in spring and winter in all stations; the metal concentrations in the seawater, particularly the Pb concentration, were found to be high in all seasons.  相似文献   

20.
The detection and quantification of four phthalate esters??dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), and diethylhexyl phthalate (DEHP)??in water, sediment, and some fish species were carried out using flame ionization gas chromatography. The samples were collected from the Ogun river catchments, Ketu, Lagos. The DMP was not detected in the water and fish samples but was detected in sediments collected from four of the six sampling sites. The concentration of DEP, DBP, and DEHP in the fish species ranged from 320.0?C810.0, 380.0?C1,080.0, and 40.0?C150.0 ??g/kg in Tilapia sp.; 310.0?C860.0, 400.0?C1,170.0, and 40.0?C110.0 ??g/kg in Chrysichthys sp.; and 320.0?C810.0, 400.0?C3,970.0, and 30.0?C300.0 ??g/kg (DEHP) in Synodontis sp., respectively. The differences in fish phthalate levels are not statistically significant at p?<?0.05, an indication that phthalate esters accumulation is not fish species dependent. The DEP, DBP, and DEHP values recorded are considerably higher than the maximum allowed concentrations for drinking water prescribed by the US Environmental Protection Agency. The phthalate pollution index and biosediment accumulation factor values were also calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号