首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以温室气体排放源和吸收汇为基础,构建了大学校园温室气体排放量化研究框架,并以辽宁工业大学为例,通过走访调研、IPCC排放清单等方法综合,核算了该高校温室气体排放情况.结果显示2014年辽宁工业大学校园温室气体净排放量为3.89×107kg CO2 eq.,人均排放量为2.02 ×103 kg CO2 eq.,主要排放源为外购热力、电力消耗及垃圾处理.并与国内外其他大学的研究结果进行了对比分析,寻求校园温室气体减排的潜力,可为低碳校园的创建提供理论依据与实践经验.  相似文献   

2.
基于投入产出法的北京能源消耗温室气体排放清单分析   总被引:2,自引:0,他引:2  
城市是一个巨大能源物资消耗体和温室气体排放体,相关研究受到广泛关注.本文以2007年为例基于投入产出法研究北京市能源消耗的温室气体排放量,计算得出CH4和N2O这两种常规温室气体排放量.结果表明,北京市2007年能源消耗温室气体排放量为3531.72万tCO2当量,其中CO2排放量为3514.40万t,CH4排放量为1734.32t,N2O排放量为435.83t.北京市工业部门仍然是主要的温室气体排放部门,其排放的温室气体占CO2总量的98.96%,CH4总量的88.48%和N2O总量的98.99%.不同最终使用部门中,政府部门消费产生的温室气体排放量超过总量的15%,高于城镇消费和农村消费之和;调出和出口部门的碳排放量超过总量的40%,所占比例最大.贸易中,隐含在调出和出口部门中温室气体排放量是隐含在调入和进口部门的十几倍.北京市不同行业的温室气体排放强度略优于全国水平.降低北京市温室气体排放量可从进一步优化产业结构,发挥科技减排的作用,提高不同产业的能源利用率等方面采取措施.  相似文献   

3.
深圳市温室气体排放清单研究   总被引:10,自引:5,他引:5       下载免费PDF全文
根据深圳市相关统计资料收集到的活动水平数据,参照《2006年IPCC国家温室气体清单指南》温室气体核算方法,建立了深圳市温室气体排放清单,并且与其他城市的温室气体排放水平进行了对比. 结果表明:2008年深圳市温室气体总排放量(以CO2排放当量计)为6 569.4×104 t,能源部门的温室气体排放量占总排放量的比例最大,达80.8%;工业过程、废物处理处置部门和农林和其他土地利用(AFOLU)部门排放所占比例分别为16.5%、5.1%和-2.4%. 深圳市温室气体人均排放量为7.49 t/人,单位GDP的温室气体排放量为0.84 t/104元,二者均低于北京、上海、天津和无锡的平均排放水平,但高于重庆市.   相似文献   

4.
针对城镇污水处理厂的污染物与温室气体如何实现协同减排核算问题,该研究提出了城镇污水处理厂污染物去除协同控制温室气体的核算边界、协同机制和核算方法,并通过实例进行验证分析,给出了如何核算污染物去除的协同控制效应和协同程度.结果表明:①污水处理厂污染物去除与温室气体排放之间存在关联机制,厌氧环境去除CODCr会产生CH4,污泥厌氧消化过程也可产生大量CH4,硝化和反硝化过程中去除TN会产生N2O.②城镇污水处理厂污染物去除协同控制温室气体核算可分为确定核算边界、选择核算方法、收集活动水平数据与确定排放因子、质量控制、形成核算报告等步骤.一方面构建了污染物去除量计算公式,去除量涵盖CH4回收量、CODCr和TN去除量、污泥处理量;另一方面构建了温室气体排放量计算公式,排放量涵盖回收CH4产生的温室气体减排量、去除CODCr产生的温室气体排放量、处理污泥产生的温室气体排放量、去除TN产生的温室气体排放量.③案例分析结果表明,该污水处理厂污染物去除并没有协同减排温室气体排放量,从温室气体排放强度来看,单位CODCr去除量、单位TN去除量和单位污泥处理量产生的温室气体排放量分别为0.051 3、2.435 6和0.546 0 t,单位TN去除量产生的温室气体量(2.435 6 t)最大,其次为污泥处理(0.546 0 t);从温室气体排放总量来看,该污水处理厂使用电力间接排放的温室气体量(1 362.68 t)最大.研究提出的城镇污水处理厂污染物去除协同控制温室气体核算方法可行,能够根据污水处理厂相关数据判定污水处理不同环节污染物去除和温室气体减排二者间的关系.针对核算过程中存在的数据不确定性问题、质量控制问题以及如何实现减污降碳协同增效等方面提出了相应的完善方法,如在质量控制中可通过制定核算方案、监测方案与计划,开展核算人员业务培训,进行数据核验,测量仪器校准和调整等提高核算质量.研究显示,在碳达峰碳中和的“双碳”目标约束下,城镇污水处理厂在进行污水处理时需要全面考虑各种因素,建立协同控制的治理体系,实现减污降碳协同增效的最大化.   相似文献   

5.
采用IPCC推荐的温室气体清单计算方法,从温室气体排放总量、排放强度等方面分析了华中地区畜牧业温室气体排放现状;根据不同牲畜饲养数量,采用Logisticgrowth model、Gompertzcurve model等非线性时间序列模型模拟2030年华中地区牲畜数量,并计算畜牧业温室气体排放量.结果显示,2015年华中地区温室气体排放为6289.09万t CO2-eq,单位GDP温室气体排放量为1.13万t CO2-eq/亿元,单位肉类产量排放强度为3.73t CO2-eq/t;2030年华中地区畜牧业温室气体排放总量约为4990.06(温室气体排放预测1)~5932.74万tCO2-eq(温室气体排放预测2).应当进一步优化畜牧业饲养技术及条件来提高产业温室气体排放效率,科学合理的规划不同牲畜的饲养规模,优化牲畜饲养结构来降低畜牧业温室气体排放量.  相似文献   

6.
温室气体产生是"碳中和"背景下污水处理行业亟待解决的问题之一,准确掌握我国主要城市区域污水处理厂温室气体的产生特征和变化规律是制定减排政策的前提。基于污水处理量的排放因子法,建立了2015-2019年中国五大城市群城镇污水处理厂温室气体二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)的排放清单,分析了温室气体排放的时空分布和影响因素。结果表明:五大城市群城镇污水处理厂温室气体排放量逐年升高,长江三角洲城市群排放量始终最高,2019年达到2042.78 Gg CO2-eq,汾渭平原城市群排放量最低;珠江三角洲城市群人均温室气体排放量最高,2019年达到20.36 kg/人;相关性分析显示,污水厂温室气体排放量与人口、GDP、污水处理能力和污水处理率呈显著正相关。  相似文献   

7.
据一些英国研究人员发表论文称[Nature,397,688(1999)],自然界波动的有些影响,如几十年间对气候的影响可以等于甚至大于人类活动向大气排放温室气体对气候的估计影响英国Norwich的东英吉利大学气候研究单位的气候学讲师MtheHulme和他的合作者指出,通常的研究在评...  相似文献   

8.
城市废弃物处理温室气体排放研究:以厦门市为例   总被引:8,自引:3,他引:5  
于洋  崔胜辉  林剑艺  李飞 《环境科学》2012,33(9):3288-3294
城市废弃物处理是城市人为活动产生温室气体的来源之一.参考IPCC国家温室气体清单指南2006推荐的方法建立了厦门市废弃物处理的温室气体排放计算模型,对厦门市2005~2010年废弃物处理的温室气体排放情况进行了估算,包括固体废弃物填埋、焚烧以及污水处理等过程.结果表明,2005年温室气体总排放量折合二氧化碳当量(CO2e)为406.3 kt,2010年温室气体总排放量(以CO2e计)达到704.6 kt,随着废水处理工艺的提高和城市生活垃圾量的迅速增长,主要排放源由废水处理转变为固体废弃物填埋.2005年填埋产生的温室气体排放占固体废弃物处理排放量的90%左右,2010年所占比例下降到75%.厦门市废水处理温室气体排放量2007年最高,以CO2e计达到325.5 kt,化学原料及化学品制造业从2005~2010年一直是厦门市CH4排放量最高的产业,占工业废水处理CH4排放总量的55%以上.  相似文献   

9.
为模拟废弃物焚烧处理过程中产生的温室气体排放,积极推动温室气体减排工作,早日实现碳达峰碳中和目标.基于系统动力学和IPCC温室气体排放计算方法,构建了以基准情景(BAU)为基础,从单一和综合技术类型减排情景出发的焚烧处理温室气体排放模型,并模拟预测了2010~2050年温室气体排放量(以CO2e计,CO2e为CO2当量)的趋势变化、减排潜力以及空间分布.结果表明:①2010~2019年我国废弃物焚烧处理温室气体排放量呈增长趋势,于2016年后显著提升,年增速为18.61%.②2020~2050年,单一技术减排情景的中端改进情景(S2)和终端减排情景(S3)温室气体排放量分别于2043年和2036年达到峰值8410万t和6966万t.综合技术减排情景相较于单一技术减排情景较早达到排放峰值,综合技术减排情景中全过程减排情景(S7)采用多种减排技术协同控制温室气体排放,2050年累积排放量为205927万t,相对BAU情景减排了78.27%,排放达峰时间最早且减排潜力最大.③焚烧处理温室气体排放空间差异显著,排放量较多的省份主要分布在人口密集且经济发达的区域,江苏和广东省排放量最多,甘肃、吉林和宁夏等6个省份为排放低值区.  相似文献   

10.
2007年火电行业温室气体排放量估算   总被引:2,自引:1,他引:1       下载免费PDF全文
为了解我国火电行业温室气体排放情况,参考《IPCC国家温室气体排放清单指南》中固定源燃烧温室气体排放量计算方法学部门方法的相关内容,利用实测的温室气体排放因子以及2007年火电行业活动水平数据,计算火电行业温室气体排放量. 排放因子测算及排放量计算过程均遵循IPCC关于温室气体排放计算的质量保证和质量控制内容. 结果表明,2007年我国火电行业CO2与N2O排放量分别为2.81×109和1.56×105 t.同时使用参考方法,利用国家级能源统计数据直接计算火电行业CO2排放量.将部门方法与参考方法计算结果进行比对发现,原煤、原油和天然气燃烧温室气体排放量2种方法的相对偏差分别为7.5%,98.8%和1.6%,除原油外,原煤和天然气燃烧CO2排放量与参考方法相差并不大.   相似文献   

11.
<正>对于任何国家而言,交通行业都是其主要温室气体排放来源之一,亦是各国控制温室气体排放的关键。本文主要介绍美国交通部门的减排政策法规及配套措施,以供我国借鉴。一、"双赢"的温室气体减排政策美国被誉为"车轮上的民族",其交通运输业的发达可想而知,因而其排放的温室气体亦影响较大。据测算,当前美国交通部门能耗占能源消费总量的28.1%,其温室气体排放量占总温室气体排放量的27%。  相似文献   

12.
水库温室气体排放及其影响因素   总被引:18,自引:14,他引:4  
水库是温室气体的一个重要排放源.探讨水库温室气体排放及其影响因素有利于精确估算水库温室气体排放量、减少水利工程与水电开发过程中水库温室气体排放.本文阐述r水库中温室气体的产生机制.总结了水库温室气体的3个排放途径:水库自然排放、水轮机和溢洪道、大坝下游河流,从水库特征、气候、水体pH值、水库中植被状况等角度深入探讨了水库温室气体排放的影响因素.最后,重点分析了水库温室气体排放的空间异质性以及研究结果不确定性的产生根源,并对今后的研究重点进行了展望.  相似文献   

13.
碳中和是全球控制增温效应的主要手段,而准确估算碳排放是预测气候变化与实现碳中和的重要环节.水库是温室气体的重要排放源,由于受人为活动及水库运行方式的影响,水库温室气体排放量估算存在许多不确定性.本研究总结了水库主要温室气体(CH4、CO2和N2O)的产生与排放过程,重点分析了水库温室气体产生与排放的主要影响因素,包括水库库龄、位置和大小及有机物、温度、溶解氧、流速、水深和风速等;并通过分析水库建成前后水文情势的改变,探讨了水库建成对温室气体排放的可能影响.在此基础上,进一步提出未来水库温室气体排放有待研究的4个方面:水库系统扩散及冒泡通量的时空异质性、水库不同区域温室气体排放的差异性、多沙河流水库温室气体排放规律、水库建成前后温室气体排放情况对比,从而为更全面地评估水库温室气体排放提供依据.  相似文献   

14.
文章利用GHG Protocol、IPCC 2006等国际通用温室气体排放核算方法,全面分析上海市集成电路制造业的温室气体排放特征,并通过与台湾同类行业的排放水平及控制路径进行对比,针对上海实际情况提出一系列减排建议。研究表明:上海市集成电路制造业由工艺过程中全氟化物使用所引起的直接排放与晶圆产量呈正相关,并呈现递增趋势,至2010年,工艺过程排放量占行业温室气体排放总量的50%以上;由电力消费所引起的间接排放则较为稳定,受产品产量影响较小,且近年来开展的行业节能减排工作已产生明显的温室气体协同减排效应,2010年电力碳排放在2008年的基础上下降8%,总体来看,2008-2010年,每年产生的温室气体排放量在300400万tCO2之间,排放强度保持稳定,至2015年排放量可能翻倍,而行业减排步伐落后于台湾等发达地区,应尽早制定宏观减排目标,加强温室气体排放控制管理。  相似文献   

15.
为了解城市生活垃圾处理过程中主要温室气体及VOCs排放的变化特征,基于《2006年IPCC国家温室气体清单指南》《浙江省市县温室气体清单编制指南》和《大气挥发性有机物源排放清单编制技术指南》推荐的方法,估算了2005-2016年杭州市生活垃圾处理主要温室气体及VOCs排放量.结果表明:2005-2016年杭州市生活垃圾处理过程中温室气体排放占绝对主导地位,VOCs排放只占极少一部分.杭州市生活垃圾处理主要温室气体和VOCs排放量总体上呈上升趋势,与2005年相比,2016年杭州市生活垃圾处理主要温室气体排放量增长了68.8%,VOCs排放量增长了134.0%.从生活垃圾处理方式来看,杭州市生活垃圾填埋处理的温室气体排放量远高于焚烧处理方式,但填埋处理的VOCs排放量却低于焚烧处理方式(2007年和2008年除外).杭州市生活垃圾填埋处理和焚烧处理的温室气体排放强度分别为0.72~0.86、0.18~0.23.从排放贡献和排放强度来看,采用填埋处理方式有利于减少垃圾处理过程中VOCs的排放,而采用焚烧处理方式更有利于温室气体的减排.随着人均生活垃圾产生量的上升,无论是温室气体还是VOCs,杭州市人均垃圾处理排放量总体呈现稳步上升的态势.研究显示,深入垃圾分类回收、控制人均生活垃圾产生量、优化垃圾焚烧处理方式,可以实现生活垃圾处理主要温室气体和VOCs的协同减排.   相似文献   

16.
人为活动产生温室气体的来源之一是城市废弃物处理。参考《省级温室气体清单编制指南(试行)》,结合城市废弃物处置状况,研究新疆2010年废弃物处理的温室气体排放。结果表明:2010年新疆城市废弃物处置过程温室气体总排放量为3 570 230.74 t(eq.CO2),其中固体废物填埋处置是重点排放源,排放量约为2 744 006.79 t,废弃物焚烧处置过程排放量最少,仅为179.67 t,废水处置过程排放量为826 044.28 t。研究结果为新疆碳减排工作提供依据,并为其他城市的碳排放清单核算提供借鉴和参考。  相似文献   

17.
以上海某城市生活垃圾焚烧发电厂为例,采用上游-操作-下游(UOD)表格法,分析了生活垃圾焚烧发电过程中不同环节的温室气体排放贡献,及影响其排放的主要因素.结果表明,目前我国生活垃圾焚烧发电过程是温室气体排放源,以吨垃圾净CO2排放量计,达166~212kg.生活垃圾中自含化石碳对温室气体排放的贡献最大,CO2排放量为257kg/t;因焚烧发电上网而获得的净减排量为120kg/t;垃圾收运、辅助物料消耗及焚烧灰渣处理等引起的排放量总计为27~45kg/t.生活垃圾沥出渗滤液后续处理过程的温室气体排放量为7.7kg/t.节省焚烧过程辅助物料使用和改变焚烧灰渣处置方式能够减少温室气体排放量,但是减排效果有限.我国各地区电能基准线排放因子存在差异,对焚烧过程温室气体排放的影响为0~13%.降低生活垃圾含水率、提高垃圾可发电量是我国生活垃圾焚烧发电过程温室气体排放源汇转换的关键途径.  相似文献   

18.
<正>澳大利亚是世界上最大的煤炭出口国,也是人均碳排放量最高的国家之一,全国80%的电力来自烧煤。澳大利亚温室气体排放量虽然只占全球总排放量的1.5%左右,但人均温室气体排放量已超过美国。从1998年9月至2009年3月,澳大利亚的温室气体排放量平均每年增加1.6%。  相似文献   

19.
由温室气体的过量排放而引起全球气候异常越来越得到国际社会的认可。甲烷和氧化亚氮是仅次于二氧化碳的重要温室气体,牲畜尤其是反刍动物的肠道发酵和粪便是甲烷和氧化亚氮的重要排放源。我国是畜牧业大国,牲畜的温室气体排放是我国农村地区的主要排放源之一。我国现已提倡发展低碳经济,走节能减排的发展道路。针对我国现状和区域特点编制牲畜温室气体排放清单对于我国实施低碳经济、调整畜牧业产业结构具有重要的参考价值。文章基于IPCC方法针对我国区域现状特点,以选取特征值的方法估算了2005-2009年沈阳市农村地区牲畜因肠道发酵和粪便管理而产生的温室气体并对5年间的温室气体排放情况作了比较分析,结果发现5年间由牲畜产生的温室气体是先升后降总体上升的趋势,2007年的排放量达到最高,为187.14万t;对于牲畜种类排放源的分析中,牛类、羊类、猪是温室气体排放的主要牲畜种类,而马、驴、骡、家禽及兔占据了较少的排放量;对于畜牧业产值的分析中发现,5年间沈阳市的畜牧业增长了79.5%,2007-2009年沈阳市的畜牧业逐渐走上了产业发展与温室气体排放脱钩的发展道路。  相似文献   

20.
对武汉市2005、2010和2012年废弃物处理温室气体排放量进行了核算,结果表明2005、2010和2012年废弃物处理中生活垃圾填埋和废弃物焚烧产生的温室气体量最大,占折算为碳含量后的71.46%以上,是武汉市废弃物处理温室气体排放的重要来源。填埋产生的温室气体在2010年达到峰值,因填埋量减少、焚烧量增加导致焚烧产生的温室气体量增加。废水处理中温室气体的量相对较小,产生甲烷(CH_4)约0.44至0.67万t。废水处理中温室气体排放量随着污水收集率逐步提高而降低,而又随污水总量增加而增加。总体来说,废弃物处理中二氧化碳(CO_2)排放量逐年增加,CH_4先增加后降低,氧化亚氮(N_2O)逐年增加。此外,武汉市固体废弃物处理温室气体排放主要控制填埋量和焚烧量,而加强废弃物的收集和管理,以及技术提升、生态修复、增加植被碳汇将是武汉市废弃物处理温室气体控制和减排的重要措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号