首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 406 毫秒
1.
微气泡曝气生物膜反应器同步硝化反硝化研究   总被引:6,自引:5,他引:1  
刘春  年永嘉  张静  张明  张磊  龚鹏飞  肖太民  李星 《环境科学》2014,35(6):2230-2235
同步硝化反硝化(SND)是废水处理中的新型生物脱氮工艺,和传统生物脱氮工艺相比具有显著的应用优势.本研究采用微气泡曝气固定床生物膜反应器,研究了SND过程中污染物去除效果并检测了生物膜功能菌群的变化情况.结果表明,在微气泡曝气固定床生物膜反应器内可以实现同步硝化反硝化,通过提高进水COD负荷和C∶N比,降低溶解氧(DO)浓度,同时增加填料床层孔隙率,可以改善SND效果.当进水COD负荷和总氮(TN)负荷为0.86 kg·(m3·d)-1和0.10 kg·(m3·d)-1,且填料床层孔隙率为81%时,COD和TN的去除率分别为97.6%和70.2%,实现了COD和TN的同步高效去除;同时,微气泡曝气对氧传质的强化作用使得氧利用率高达91.8%.此外,生物膜活性和硝化及反硝化功能菌群的变化,与反应器COD、氨氮和TN去除能力的变化基本一致.  相似文献   

2.
移动床膜生物反应器同步硝化反硝化特性   总被引:11,自引:3,他引:8  
杨帅  杨凤林  付志敏 《环境科学》2009,30(3):803-808
采用挂膜填料代替传统膜生物反应器(MBR)的活性污泥,构建一种新型的移动床膜生物反应器 (MBMBR),考察其处理模拟生活污水的效果及同步硝化反硝化(SND)特性.结果表明,移动床膜生物反应器运行67 d,对模拟生活污水表现出良好的去除有机物及同步硝化反硝化能力.进水COD浓度为573.5~997.7 mg/L时,膜出水COD去除率为88.3%~99.2%.进水氨氮浓度为45.5~99.2 mg/L时,膜出水氨氮去除率为72.1%~99.8%,总氮去除率为62.0%~96.3%.批式实验结果表明,生物膜去除总氮的最佳溶解氧浓度为1 mg/L,其中氨氮和总氮去除率分别为100%和60%.生物膜系统内可能存在好氧反硝化现象.DO为3 mg/L且有机碳源充足时,生物膜总氮去除率为99.0%,SND率达到99.8%.扫描电镜对生物膜的观察发现生物膜内部存在着明显的孔隙,有利于溶解氧和有机基质从外界向生物膜内部传递.  相似文献   

3.
崔延瑞  邱鑫  张庆荣  王琦  吴青  孙剑辉 《环境科学》2016,37(11):4296-4301
以连续运行的生物活性炭(biological actived carbon,BAC)填料反应器为研究对象,与序批式活性污泥反应器(sequencing batch reactor,SBR)对比,考察了BAC的加入对不同C/N比废水同步硝化反硝化(simultaneous nitrification and denitrification,SND)脱氮效果的影响.在室温(15~27℃),初始溶解氧(dissolved oxygen,DO)质量浓度2~3 mg·L-1条件下,以甲醇做外加碳源,分别设置进水C/N比为3、5、8和10运行120个周期,比较两反应器的脱氮效果及稳定性.结果表明,C/N比由3依次升至5和8时BAC填料反应器脱氮效果优于SBR,TN平均去除率分别达44.88%、58.07%和66.64%.继续增大进水C/N至10,SBR发生污泥膨胀,而BAC反应器仍能保持63.65%的TN去除率.实验证明BAC在单一反应器内创造了多样的溶解氧环境,为SND创造了适宜的条件.BAC的加入减小了过量有机碳对硝化系统带来的影响,扩大了反应器的C/N比适用范围,增加了运行的稳定性,提高了有机物的脱氮容量,为高效脱氮提供了可能.  相似文献   

4.
短程同步硝化反硝化过程的脱氮与N2 O释放特性   总被引:3,自引:2,他引:1  
梁小玲  李平  吴锦华  王向德 《环境科学》2013,34(5):1845-1850
采用气升环流生物反应器建立全程同步硝化反硝化(SND)体系,在此基础上,通过提高进水pH值从而增加反应器中的游离氨(FA)浓度,可以实现全程SND向短程SND的转变.以全程SND过程为参照,分析了短程SND过程的脱氮及N2O释放特性.结果表明,短程SND过程的总氮平均去除率及SND平均效率分别为71.9%和80.9%,比全程SND过程分别提高了18.0和16.8个百分点,短程SND过程的平均总氮去除速率为0.11 mg.(L.min)-1,是全程SND过程的1.4倍.虽然短程SND较全程SND具有更高的脱氮效率,但该过程的N2O平均转化率为57.1%,N2O平均累积释放量约为全程SND过程的5倍.研究还发现,N2O的释放量急剧上升与体系中NO2--N的积累浓度升高密切相关.  相似文献   

5.
常温下SBBR反应器中亚硝酸型同步硝化反硝化的实现   总被引:3,自引:1,他引:2  
采用自主设计的序批式生物膜反应器(SBBR)处理南方地区城市污水,在常温(25~27℃)条件下,pH值7.2~7.6,通过恒定低曝气量实现了稳定的亚硝酸型同步硝化反硝化(SND)。试验还考察了ρ(C)/ρ(N)对SBBR系统SND的影响。结果表明:在SBBR反应器中处理城市污水实现SND的较为适合的ρ(C)/ρ(N)在5~8,亚硝酸氮积累率在85%以上,TN去除率可以达到80%以上。  相似文献   

6.
采用缺氧-好氧SBR反应器,研究了同步硝化反硝化(SND)工艺污水生物脱氮过程中污染物去除效果和温室气体(N2O,CH4和CO2)的释放情况.结果表明,与顺序式硝化反硝化工艺(SQND)的总氮去除率63.78%相比,SND大大地提高了总氮的去除,去除率达90.39%.同时,SND过程刺激了温室气体的释放,其温室气体释放总量为SQND的4.5倍.SND反应器N2O每周期释放量为34.28 mg,且主要集中于曝气阶段.而SQND过程N2O释放量仅为6.89mg,为SND过程的1/5.SND过程和SQND过程,每周期CO2的释放量分别为493.52,320.28mg.两反应器中CH4的释放量都很低,接近于零.  相似文献   

7.
以模拟低C/N比污水为研究对象,采用集成模块式污水处理装置与技术,在反应器主反应区实现了同步硝化反硝化(SND),研究了在不同DO、HRT、C/N比、pH值下污水氨氮、总氮的去除,研究结果表明,DO=1.2~1.4mg/L,总HRT=20h(主反应区HRT=8h),原水C/N=5:1,pH=7.5时,NH3--N可以从15mg/L降至2.5mg/L,总氮可以从20mg/L降至4mg/L,去除率可以达到83%和80%;主反应区SND动力学模型求解得出集成模块式污水处理SND动力学方程及反硝化过程中硝酸盐氮饱和常数 =1.55mg/L,远高于普通活性污泥反硝化过程中的饱和常数0.06~0.2mg/L.集成模块式污水处理技术能高效去除低C/N比污水中的总氮,且具有运行稳定和抗冲击等优点.为中小城镇生活污水深度脱氮提供了技术支持和理论基础.  相似文献   

8.
循环流生物膜反应器同时硝化反硝化实验研究   总被引:3,自引:0,他引:3  
研究了循环流软性填料生物膜反应器的同时硝化反硝化。实验结果表明,反应器中确实存在着同时硝化反硝化现象。考察了碳氮比(C/N)和溶解氧(DO)对同时硝化反硝化的影响。在进水COD和NH4+—N浓度为500mg/L、15mg/L时,出水COD、NH4+—N和TN浓度<50mg/L、3.0mg/L、4.5mg/L,COD去除率、硝化率和反硝化率分别达到90%、80%和70%。  相似文献   

9.
同步硝化反硝化(SND)过程污泥聚集状态对N2O释放的影响   总被引:2,自引:1,他引:1  
尹倩婷  李平  吴锦华  王向德 《环境科学》2011,32(7):2056-2061
为实现SND高效生物脱氮及N2O减量化释放的双重目标,采用气升环流生物反应器,在实现SND高效脱氮的基础上研究了污泥的聚集状态与N2O释放特征之间的关系.采用关键酶酶促反应速率法评估了不同聚集状态污泥的硝化/反硝化活性,在相关理论分析的基础上,进行了污泥聚集状态的优化选择.结果表明,SND体系内活性污泥的聚集状态不同会...  相似文献   

10.
为了进一步合理利用碳源,降低曝气能耗,有效解决低C/N生活污水的脱氮问题,采用2个串联的SBR在无外加碳源的条件下处理低C/N实际生活污水,分别启动内碳源反硝化反应器(ED-SBR)和低DO硝化反应器(LDON-SBR),并按照厌氧(ED-SBR)-好氧(LDON-SBR)-缺氧(ED-SBR)的方式运行,综合考察各反应器处理性能,并探讨低DO硝化耦合内碳源反硝化工艺脱氮的可行性.结果表明:LDON-SBR反应器在DO浓度为0.3~0.5mg/L的条件下能够成功实现90%以上的硝化并稳定维持,同时反应器存在明显的同步硝化反硝化(SND)现象,SND率可达29.6%;ED-SBR反应器在厌氧阶段能够将进水中的有机物转化为内碳源并储存,在缺氧阶段能够进行内源反硝化,使NO3--N平均浓度从27.3mg/L降低至3.9mg/L,NO3--N平均去除率为86.5%;系统整体COD去除率为80%左右.  相似文献   

11.
采用生物膜反应器耦合包埋型单宁酸铁处理低C/N比废水,考察其脱氮性能,分析了生物脱氮过程功能菌群的变化,以及单宁酸铁强化脱氮的作用机制.结果表明,生物膜反应器耦合包埋型单宁酸铁,具有低C/N比废水高效脱氮性能.进水C/N比为1:2.7时,TN平均去除率可达80.0%,TN平均去除负荷为1.38kg/(m3·d).生物膜反应器内随着进水C/N比降低,优势脱氮过程从同步硝化-反硝化过程向同步短程硝化-厌氧氨氧化-反硝化(SNAD)过程转变,厌氧氨氧化过程对TN去除的贡献率逐渐升高至76.2%,亚硝化菌群和厌氧氨氧化菌群成为优势生物脱氮功能菌群.包埋型单宁酸铁在生化处理后,通过吸附-催化氨氧化作用同步去除氨氮和亚硝酸盐氮,进一步提高TN去除性能.因此,耦合单宁酸铁强化生物膜反应器SNAD脱氮过程,是实现低C/N比废水高效脱氮新的有效途径.  相似文献   

12.
移动床生物膜系统SND影响因素研究   总被引:4,自引:1,他引:4  
魏海娟  张永祥  张粲 《环境科学》2009,30(8):2342-2346
采用移动床生物膜反应器实现了稳定同步硝化反硝化脱氮.实验研究了C/N对同步硝化反硝化脱氮的影响,结果表明,随着C/N的增加,同步硝化反硝化脱氮效率提高,在好氧条件下总氮去除率最高达到92.9%,但当C/N=12时,TN去除率提高并不明显;实验研究了pH对氨氮和TN去除效果的影响,结果表明,氨氮去除pH适宜区域为8.03~9.01,TN去除pH适宜区域为8.03~8.55;实验分析了实际生活污水中碱度和pH值对脱氮效果的影响,并对比研究了理论碱度和实际碱的关系,结果表明碱度和pH在同步硝化反硝化脱氮中对氮素去除的影响不大,不需要额外调节系统pH,也不需要在反硝化过程中补充碱度.单个周期内同步硝化反硝化过程中pH值和碱度变化规律的研究表明,pH可以指示SND中氮素转化过程.  相似文献   

13.
对比考察了不同曝气强度下序批式活性污泥反应器(SBR)和序批式移动床生物膜反应器(SBMBBR)的脱氮除磷效果,并分析了反应器单个周期内有机物、氮和磷的转化过程.实验结果表明,SBMBBR和SBR脱氮主要是基于好氧段发生的同步硝化反硝化(SND)及进水、搅拌阶段发生的缺氧反硝化途径实现的,而除磷是基于常规生物除磷和反硝化除磷过程而完成.曝气强度会影响SBR和SBMBBR好氧阶段SND发生的程度,最佳曝气强度下两者通过SND作用去除的TN量分别达到去除总量的47.7%和79.0%.在采用先行厌氧的运行方式,保持系统内高浓度微生物,使反应器在进水C/N比只有2.2~3.5的条件下均取得了良好的脱氮除磷效果.两者相比,SBMBBR和SBR在COD和NH4-N去+除方面没有差异,而SBMBBR的反硝化、除磷效果更优,TN、TP去除率分别达到95.4%和93.5%,较SBR分别高出10.9%和4.1%.  相似文献   

14.
微气泡曝气生物膜反应器是微气泡曝气技术与好氧生物处理相结合的新型处理工艺.本研究采用微气泡曝气生物膜反应器在低气水比下处理低C/N比废水,考察了生物脱氮过程和性能,并分析了脱氮功能菌群变化.结果表明,通过低气水比(小于1∶2)控制DO浓度并降低进水C/N比,可以实现生物脱氮过程从同步硝化-反硝化向同步短程硝化-厌氧氨氧化-反硝化(SNAD)过程转变,并可获得较高的低C/N比废水生物脱氮性能. DO浓度低于1. 0 mg·L-1、进水C/N比为1∶2. 8时,SNAD过程成为生物脱氮的主要途径,TN平均去除率可达到76. 3%,TN平均去除负荷为1. 42 kg·(m3·d)-1,厌氧氨氧化过程对TN去除的贡献率为86. 0%.随着进水C/N比降低,生物膜中亚硝化菌群和厌氧氨氧化菌群的相对丰度逐渐增加,而硝化菌群和反硝化菌群的相对丰度逐渐降低.生物脱氮功能菌群变化与脱氮过程转变为SNAD过程相一致.  相似文献   

15.
在生物活性碳(BAC)反应器中探究了C/N对实际生活污水同步硝化反硝化的影响。结果表明C/N对化学需氧量(COD)的去除影响不明显,然而对NH+4-N和总氮(TN)的去除影响较显著。随C/N由3.2升高至7.2,NH+4-N的去除效率由81%升高至91%,TN的去除效率也由35%升高至68%。然而继续升高C/N至9.1,NH+4-N和TN的去除效率却分别下降至87%和51%。生物活性碳反应器处置实际污水的最佳C/N为7.2。较传统SBR活性污泥反应器,BAC反应器能够依赖活性碳实现溶解氧区域化,从而有助于反硝化过程。  相似文献   

16.
To develop a cost-effective combined phytoremediation and biological process,a combined perennial ryegrass/artificial aquatic mat biofilm reactor was used to treat synthetic wastewater.Influent ammonium loading,reflux ratio,hydraulic retention time(HRT) and temperature all had significant effects on the treatment efficiency.The results indicated that the effluent concentration of ammonium increased with increasing influent ammonium loading.The reactor temperature played an important role in the nitrification process.The ammonium removal efficiency significantly decreased from 80% to 30%-50% when the reactor temperature dropped to below 10°C.In addition,the optimal nitrogen removal condition was a reflux ratio of 2.The nitrate and ammonium concentration of the effluent were consistent with the HRT of the combined system.The chemical oxygen demand(COD) removal efficiency was at a high level during the whole experiment,being almost 80% after the start-up,and then mostly above 90%.The direct uptake of N by the perennial ryegrass accounted for 18.17% of the total N removal by the whole system.The perennial ryegrass absorption was a significant contributor to nitrogen removal in the combined system.The result illustrated that the combined perennial ryegrass/artificial aquatic mat biofilm reactor demonstrated good performance in ammonium,total N and COD removal.  相似文献   

17.
进水C/N对富集聚磷菌的SNDPR系统脱氮除磷的影响   总被引:1,自引:0,他引:1  
为了解富集聚磷菌(PAOs)的同步硝化反硝化除磷(SNDPR)系统的脱氮除磷特性,采用延时厌氧(180min)/低氧(溶解氧0.5~1.0mg/L)运行的SBR反应器,以实际生活污水为处理对象, 通过投加固态乙酸钠调节进水C/N值(约为11,8,4,3),考察其对系统脱氮除磷特性及同步硝化反硝化(SND)脱氮率的影响.结果表明:C/N对系统的除磷性能没有影响,出水PO43--P浓度均稳定在0.3mg/L左右,这是由于系统内聚磷菌(PAOs)含量高,且在低氧段可同时发生好氧吸磷与反硝化吸磷.随着C/N的增大,出水NH4+-N浓度升高,C/N下降时,出水NO3--N浓度升高.此外,随着C/N的减小,厌氧段反硝化所消耗的COD占进水COD的比例增大,SND可利用的内碳源-PHAs储存量减少,但PHV的利用率增加;当C/N为4~8时,SND现象最明显,SND脱氮率达50.8%,而其它C/N条件下,SND脱氮率都有相应程度的减弱.C/N为8时,系统出水综合指标最好,TN去除率高达80.8%.  相似文献   

18.
碳氮比对聚氨酯生物膜反应器短程硝化反硝化的影响   总被引:4,自引:3,他引:1  
谭冲  刘颖杰  王薇  邱珊  马放 《环境科学》2014,35(10):3807-3813
研究了聚氨酯生物膜反应器在短程硝化反硝化工艺中的应用,考察碳氮比(15∶1、10∶1、5∶1和1.8∶1)对聚氨酯脱氮系统脱氮性能和微生物群落结构的影响,以及微生物群落结构与其处理效果的对应关系.结果表明,经过100 d的运行,当进水碳氮比从15依次下降到10、5和1.8,亚硝酸氮累积率由56.1%逐次上升到62.3%、72.3%和83.2%.在进水碳氮比为10时,系统取得最佳处理效果,氨氮和总氮去除率分别为99.1%和91.0%.进水碳氮比在15、10、5和1.8时,硝化反应和反硝化反应均同时发生在聚氨酯生物膜系统内,随着进水碳氮比的降低,同时硝化反硝化效率逐渐降低.生物膜的功能微生物分析表明,在碳氮比15时,生物膜的微生物多样性要显著高于其他工况.生物膜上的优势亚硝酸菌和硝酸菌分别以亚硝化单胞菌(Nitrosospira sp.)和硝化螺旋菌(Nitrospira sp.)为主,而反硝化细菌则以假单胞菌(Pseudomonas sp.)占据优势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号