首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 300 毫秒
1.
BACKGROUND: Triggered by the requirement of Water Framework Directive for a good ecological status for European river systems till 2015 and by still existing lacks in tools for cause identification of insufficient ecological status MODELKEY (http:// www.modelkey.org), an Integrated Project with 26 partners from 14 European countries, was started in 2005. MODELKEY is the acronym for 'Models for assessing and forecasting the impact of environmental key pollutants on freshwater and marine ecosystems and biodiversity'. The project is funded by the European Commission within the Sixth Framework Programme. OBJECTIVES: MODELKEY comprises a multidisciplinary approach aiming at developing interlinked tools for an enhanced understanding of cause-effect-relationships between insufficient ecological status and environmental pollution as causative factor and for the assessment and forecasting of the risks of key pollutants on fresh water and marine ecosystems at a river basin and adjacent marine environment scale. New modelling tools for risk assessment including generic exposure assessment models, mechanistic models of toxic effects in simplified food chains, integrated diagnostic effect models based on community patterns, predictive component effect models applying artificial neural networks and GIS-based analysis of integrated risk indexes will be developed and linked to a user-friendly decision support system for the prioritisation of risks, contamination sources and contaminated sites. APPROACH: Modelling will be closely interlinked with extensive laboratory and field investigations. Early warning strategies on the basis of sub-lethal effects in vitro and in vivo are provided and combined with fractionation and analytical tools for effect-directed analysis of key toxicants. Integrated assessment of exposure and effects on biofilms, invertebrate and fish communities linking chemical analysis in water, sediment and biota with in vitro, in vivo and community level effect analysis is designed to provide data and conceptual understanding for risk arising from key toxicants in aquatic ecosystems and will be used for verification of various modelling approaches. CONCLUSION AND PERSPECTIVE: The developed tools will be verified in case studies representing European key areas including Mediterranean, Western and Central European river basins. An end-user-directed decision support system will be provided for cost-effective tool selection and appropriate risk and site prioritisation.  相似文献   

2.
Adverse biological effects of ultraviolet-B (UV-B) radiation have been well documented for phytoplankton and zooplankton in both marine and freshwater ecosystems. However, investigations of interactions between UV-B and anthropogenic toxicants have focused primarily on the chemical interactions between UV-B and the toxicant. Here we investigate the potential for UV-B to increase the sensitivity of the rotifer Brachionus calyciflorus to either acute pentachlorophenol (PCP) or mercury toxicity, independent of UV-B effects on these toxicants. UV-B increased the toxicity of PCP and mercury to B. calyciflorus as much as five-fold, depending on duration of UV-B exposure and toxicant concentration. Reductions in the LC(50) of up to 60% were also seen for both toxicants. UV-B alone effectively eliminated B. calyciflorus reproduction and reduced ingestion by up to 90%. These results demonstrate the potential for UV-B to increase rotifer sensitivity to anthropogenic stressors independent of photochemical reactions with toxicants.  相似文献   

3.
水体沉积物毒性鉴别与评价研究进展   总被引:1,自引:0,他引:1  
综述了水体沉积物毒性鉴别与评价的主流方法以及研究进展,指出毒性测试和致毒因子鉴别方法是限制水体沉积物污染生态风险评价的关键因素,认为发展和应用以生物标记物和生物效应为导向,尤其是各种具有污染专一性指示作用的生物效应标志测试方法的建立和应用,并结合具有选择性的样品分级技术和先进的仪器进行定性定量分析,将是以生物效应为导向、以化学分析为基础的复杂水体沉积物毒性鉴别与评价的重要发展方向.  相似文献   

4.
Distinguishing between effects of natural and anthropogenic environmental factors on ecosystems is a fundamental problem in environmental science. In river systems the longitudinal gradient of environmental factors is one of the most relevant sources of dissimilarity between communities that could be confounded with anthropogenic disturbances. To test the hypothesis that in macroinvertebrate communities the distribution of species' sensitivity to organic toxicants is independent of natural longitudinal factors, but depends on contamination with organic toxicants, we analysed the relationship between community sensitivity SPEARorganic (average community sensitivity to organic toxicants) and natural and anthropogenic environmental factors in a large-scale river system, from alpine streams to a lowland river. The results show that SPEARorganic is largely independent of natural longitudinal factors, but strongly dependent on contamination with organic toxicants (petrochemicals and synthetic surfactants). Usage of SPEARorganic as a stressor-specific longitude-independent measure will facilitate detection of community disturbance by organic toxicants.  相似文献   

5.
Nilsson S  Langaas S 《Ambio》2006,35(6):304-311
We address issues connected with international river basin management and the EU Water Framework Directive (WFD). By creating a register of River Basin Districts established under the WFD, we show that the number and area of international River Basin Districts are significant. Further, we present an assessment of international cooperation and water quality in 14 international river basins in the Baltic Sea Drainage Basin. Our results indicate that the WFD is a push forward for international river basin management in the region. However the WFD in general, and the principle of river basin management in particular, may be hard to implement in river basins shared between EU Member States and countries outside the EU. According to the study, Vistula, Pregola, and Nemunas appear to be the international basins within the Baltic Sea Drainage Basin in greatest need of intensified cooperation with regard to the state of the water quality.  相似文献   

6.
- DOI: http://dx.doi.org/10.1065/espr2006.01.003 Background Water Quality Criteria were firstly defined in the 1970s by the EPA in the USA and the EIFAC in Europe, recognizing the need for protecting water quality in order to allow the use of water resources by man. In the 1990s, the European Commission emphasized the importance of safeguarding structure and function of biologic communities. These approaches were chemically-based. The European Water Framework Directive (WFD) substantially changes the concept of Water Quality, by assuming that a water body needs to be protected as an environmental good and not as a resource to be exploited. In this frame, the biological-ecological quality assumes a prevailing role. Main Features The Water Quality concept introduced by the WFD is a challenge for environmental sciences. Reference conditions should be defined for different typologies of water bodies and for different European ecoregions. Suitable indicators should be developed in order to quantify ecological status and to define what a 'good' ecological status is. Procedures should be developed for correlating the deviation from a good ecological to the effects of multiple stressors on function and structure of the ecosystem. The protection of biodiversity becomes a key objective. In this frame, the traditional procedures for ecotoxicological risk assessment, mainly based on laboratory testing, should be overcome by more site-specific approaches, taking into account the characteristics and the homeostatic capabilities of natural communities. In the paper an overview of the present knowledge and of the new trends in ecotoxicology to get these objectives will be given. A procedure is suggested based on the concept of Species Sensitivity Distribution (SSD). Recommendations and Perspective . The need for more site-specific and ecologically-oriented approaches in ecotoxicology is strongly recommended. The development of new tools for implementing the concept of 'Stress Ecology' has been recently proposed by van Straalen (2003). In the same time, more 'cological realism'is needed in practically applicable procedures for regulatory purposes.  相似文献   

7.
8.

Estuaries in the world are affected by different contamination sources related to urbanisation and port/industrial activities. Identifying the substances responsible for the environmental toxicity in estuaries is challenging due to the multitude of stressors, both natural and anthropogenic. The Toxicity Identification and Evaluation (TIE) is a suitable way of determining causes of toxicity of sediments, but it poses difficulties since its application is labour intensive and time consuming. The aim of this study is to evaluate the diagnosis provided by a TIE based on microscale embryotoxicity tests with interstitial water (IW) to identify toxicants in estuarine sediments affected by multiple stressors. TIE showed toxicity due to different combinations of metals, apolar organic compounds, ammonia and sulphides, depending on the contamination source closest to the sampling station. The microscale TIE was able to discern different toxicants on sites subject to different contamination sources. There is good agreement between the results indicated in the TIE and the chemical analyses in whole sediment, although there are some disagreements, either due to the sensitivity of the test used, or due to the particularities of the use of interstitial water to assess the sediment toxicity. The improvement of TIE methods focused on identifying toxicants in multiple-stressed estuarine areas are crucial to discern contamination sources and subsidise management strategies.

  相似文献   

9.
A method for the detection and confirmation of heavy metal toxicants in sediment elutriates based on a urease inhibition assay, ICP-AES analysis and EDTA chelation in the frame of toxicity identification evaluation (TIE) is presented. Zinc was identified as the major toxicant in pHstat elutriates of sediments of the river Saale (Germany). Implications of natural and anthropogenic chelating agents, which are frequently present in environmental samples, on toxicity confirmation of heavy metals based on the toxic unit approach are discussed.  相似文献   

10.

Background, aim and scope

Water is a renewable resource and acceptable quality is important for human health, ecological and economic reasons, but human activity can cause great damage to the natural aquatic environment. Managing the water cycle in a sustainable way is the key to protect natural resources and human health. On a global level, the microbiological contamination of water sources is a major problem in connection with poverty and the United Nations Millennium Development Declaration is an important initiative to handle this problem. In terms of environmental health, persistent organic pollutants (POPs) circulate globally; as they travel long distances, they are found in remote areas far from their original source of application and can cause damage wherever they move to. On a global scale, United Nations Environmental Programme (UNEP) issued the Stockholm Convention to reduce POPs; in the European Union (EU), one intention of the Water Framework Directive (WFD) is to reach the good chemical status of waters; beside these regulations, there are other directives in support of these goals. The aim of this paper is to discuss whether the Stockholm Convention and the WFD allows meeting the targets of protection of human and environmental health, which are established in the different directives and how could we approach the targets.

Materials and methods

The aims and scopes of different directives are compiled and compared with the actual quality of water, different approaches of standard settings are compared and potential treatment options are discussed.

Results

Under the Stockholm Convention on POPs, which came into force in May 2004, governments are required to develop a National Implementation Plan (NIP) setting out how they will address their obligations under the convention and how they will take measures to eliminate or reduce the release of POPs into the environment by the use of best available techniques (BAT) and application of best environmental practices (BEP). On a European level, the WFD has been in place as the main European legislation to protect our water resources and the water environment of Europe since 2000. It requires managing river basins so that the quality and quantity of water does not affect the ecological services of any specific water body. Nevertheless, the goals of other directives as for drinking water, bathing water and urban wastewater treatment are not yet harmonised mainly concerning microbiological, priority substances and priority hazardous substances (PS/PHS) contamination. Following the detection of substances, a risk assessment with sound effect data needs to be performed also for regulatory decisions and priorisation of measures to remove emerging contaminants. Beside personal care products and industrial contaminants, faecal pollution of recreational waters is one of the major hazards facing users, although microbial contamination from other sources as well as chemical and physical aspects also affects the suitability of water for recreation. As in arid and semiarid areas, wastewater is considered for irrigation with regulatory needs of hygienic and chemical parameters—health-based targets—to avoid the contamination of crops and food. In surface waters, currently, the relationships between physical and chemical properties and the biological state of surface waters were quite well-understood to enable the management of catchments and rivers to achieve ecological quality.

Discussion

Nevertheless, more work is needed to find out the actual impact of the regulations for single chemicals and complex mixtures, in terms of environmental quality standards to achieve a ‘good chemical status’, on the good biological status. In a next step after the adoption of the list of PS/PHS substances, which also includes the POPs, the Urban Wastewater Treatment Directive (UWWTD) needs to be adjusted and existing or new treatment options (BATs) should comply with the new requirements of the different directives.

Conclusions

Relevant substances threaten human health and the environment by new effects such as CMR, endocrine-disrupting effects or neurotoxicity which are not yet considered in an adequate way by assessment methods and regulatory standards and the application of abatement technologies. The Registration, Evaluation, Authorisation and Restriction of Chemicals helps to control the sources, but WFD, the Stockholm Convention and UWWTD need to be harmonised and a rolling revision process should react on new developments. Finally, to answer the question if the Stockholm Convention and the WFD (2000/60/EC) could reach the target—I would state that they provide a very valuable frame to approach the targets, but there is still way to go to reach them on an EU level and on a global scale, also under the aspects of the Stockholm Convention and the Millennium Development Goals.

Perspectives

The compilation of the goals of different regulations and combined actions will save a lot of administrative efforts and money.
  相似文献   

11.
Five rapid direct toxicity assessment methods were used in three European partner countries to determine the toxicity of single toxicants, mixed toxicants and real industrial wastes. The final aim was to protect microbial degradation of organic wastes in biological treatment processes and hence enhance the quality of treated effluents to be discharged to the environment. Nitrification inhibition, Respirometry, Adenosine triphosphate luminescence and Enzyme inhibition were tested utilising activated sludge as the testing matrix. The Vibrio fischeri toxicity test was used as a surrogate to compare the various microbial bioassays. The IC50 (toxicant concentration eliciting a 50% inhibitory effect) was determined for a number of pollutants including single toxicants Cd, Cr, Cu, Zn, 3,5-dichlorophenol, toluene and linear alkylbenzenesulphonate (LAS); a standard mixture of metals and LAS; a standard mixture of organics and LAS, and 16 industrial effluents. The V. fischeri bioassay was also chosen in order to assess quality control of toxicant preparation during testing in the different laboratories of the partner countries. Comparisons of sensitivity, cost of implementation, cost per test, relevance, and ease of use were made. The most sensitive bioassays were V. fischeri and Nitrification inhibition, however, this depended in the main on the pollutant and mixtures tested. It is recommended that during assessment of wastewater toxicity a suite of tests be used rather than reliance on one particular test.  相似文献   

12.

Background, aim and scope  

Water is a renewable resource and acceptable quality is important for human health, ecological and economic reasons, but human activity can cause great damage to the natural aquatic environment. Managing the water cycle in a sustainable way is the key to protect natural resources and human health. On a global level, the microbiological contamination of water sources is a major problem in connection with poverty and the United Nations Millennium Development Declaration is an important initiative to handle this problem. In terms of environmental health, persistent organic pollutants (POPs) circulate globally; as they travel long distances, they are found in remote areas far from their original source of application and can cause damage wherever they move to. On a global scale, United Nations Environmental Programme (UNEP) issued the Stockholm Convention to reduce POPs; in the European Union (EU), one intention of the Water Framework Directive (WFD) is to reach the good chemical status of waters; beside these regulations, there are other directives in support of these goals. The aim of this paper is to discuss whether the Stockholm Convention and the WFD allows meeting the targets of protection of human and environmental health, which are established in the different directives and how could we approach the targets.  相似文献   

13.
One of the key aspects introduced by the European Water Framework Directive 2000/60/EC (WFD) and developed by Groundwater Directive 2006/118/EC was the need to analyse pollution trends in groundwater bodies in order to meet the environmental objectives set in Article 4 WFD. According to this Directive, the main goal of “good status” should be achieved by the year 2015, and having reached this horizon, now is a suitable time to assess the changes that have taken place with the progressive implementation of the WFD. An extensive database is available for the Guadalhorce River basin, and this was used not only to identify in groundwater but also to draw real conclusions with respect to the degree of success in meeting the targets established for this main deadline (2015) The geographic and climate context of the Guadalhorce basin has facilitated the development of a variety of economic activities, but the one affecting the largest surface area is agriculture (which is practised on over 50 % of the river basin). The main environmental impacts identified in the basin aquifers arise from the widespread use of fertilisers and manures, together with the input of sewage from population centres. In consequence, some of the groundwater bodies located in the basin have historically had very high nitrate concentrations, often exceeding 200 mg/L. In addition, return flows, the use of fertilisers and other pressures promote the entry of other pollutants into the groundwater, as well as the salinisation of the main aquifers in the basin. In order to assess the hydrochemical changes that have taken place since the entry into force of the WFD, we performed a detailed trends analysis, based on data from the official sampling networks. In some cases, over 35 years of water quality data are available, but these statistics also present significant limitations, due to some deficiencies in the design or management; thus, data are missing for many years, the results are subject to seasonality effects, there are gaps in the historical records obtained by the monitoring networks and other shortcomings. The results obtained were analysed with the non-parametric Mann-Kendall test and revealed a general upward trend of pollutants in the areas affected by major pressures. In this analysis, we evaluated not only the increase or decrease in pollutants but also the different processes detected and the sources of pollution within the basin area. Our evaluation shows that robust measures should be taken in order to prevent further major degradation of groundwater quality and to enable “good quality” status to be achieved in future extensions of the WFD.  相似文献   

14.
15.
Region-specific contaminant prioritisation is an important prerequisite for sustainable and cost-effective monitoring due to the high number of different contaminants that may be present. Surface water and sediment samples from the Sava River, Croatia, were collected at four locations covering a 150-km-long river section characterised by well-defined pollution gradients. Analysis of contaminant profiles along the pollution gradients was performed by combining toxicity screening using a battery of small-scale or in vitro bioassays, which covered different modes of action, with detailed chemical characterisation based on gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). A large number of contaminants, belonging to different toxicant classes, were identified in both analysed matrices. Analyses of water samples showed that contaminants having polar character occurred in the highest concentrations, while in sediments, contributions from both non-polar and amphiphilic contaminants should be taken into account. Estimated contributions of individual contaminant classes to the overall toxicity indicated that, besides the classical pollutants, a number of emerging contaminants, including surfactants, pharmaceuticals, personal care products and plasticizers, should be taken into consideration in future monitoring activities. This work demonstrates the importance of the integrated chemical and bioanalytical approach for a systematic region-specific pollutant prioritisation. Finally, the results presented in this study confirm that hazard assessment in complex environmental matrices should be directed towards identification of key pollutants, rather than focusing on a priori selected contaminants alone.  相似文献   

16.
The analysis of spatial relationships among the distribution of environmental stressors and observed or predicted adverse effects may be a useful method of prioritizing hazards in regional ecological risk assessment (ERA). Geographic information systems were used to compare the spatial distribution of toxicant concentrations in sediments of Chesapeake Bay with the distribution of areas in the basin where ecological impacts have historically been observed. Toxicants were then prioritized based upon the strength of their spatial association with the high impact areas. This method of hazard identification/prioritization was validated against the Chesapeake Bay Program's lists of toxics of concern and toxics of potential concern (TOC and TOPC, respectively). Of the 18 toxicants on the TOC/TOPC lists that were considered in the current study, 15 (83%) were identified as priority contaminants in the current study, 11 (73%) of which were either of primary or secondary concern. The use of spatial analysis tools in ERA may lead to more rapid and rigorous methods for prioritizing environmental risks.  相似文献   

17.
Understanding the ecological status of aquatic ecosystems and the impact of anthropogenic contamination requires correlating exposure to toxicants with impact on biological communities. Several tools exist for assessing the ecotoxicity of substances, but there is still a need for new tools that are ecologically relevant and easy to use. We have developed a protocol based on the substrate-induced respiration of a river biofilm community, using the MicroResp™ technique, in a pollution-induced community tolerance approach. The results show that MicroResp™ can be used in bioassays to assess the toxicity toward biofilm communities of a wide range of metals (Cu, Zn, Cd, Ag, Ni, Fe, Co, Al and As). Moreover, a community-level physiological profile based on the mineralization of different carbon substrates was established. Finally, the utility of MicroResp™ was confirmed in an in-situ study showing gradient of tolerance to copper correlated to a contamination gradient of this metal in a small river.  相似文献   

18.
Using canonical correspondence analysis (CCA), relationships were investigated between plant species composition and flooding characteristics, heavy metal contamination and soil properties in a lowland floodplain of the Rhine River. Floodplain elevation and yearly average flooding duration turned out to be more important for explaining variation in plant species composition than soil heavy metal contamination. Nevertheless, plant species richness and diversity showed a significant decrease with the level of contamination. As single heavy metal concentrations seemed mostly too low for causing phytotoxic effects in plants, this trend is possibly explained by additive effects of multiple contaminants or by the concomitant influences of contamination and non-chemical stressors like flooding. These results suggest that impacts of soil contamination on plants in floodplains could be larger than expected from mere soil concentrations. In general, these findings emphasize the relevance of analyzing effects of toxic substances in concert with the effects of other relevant stressors.  相似文献   

19.
This study provides the first EU-wide reconnaissance of the occurrence of polar organic persistent pollutants in European river waters. More than 100 individual water samples from over 100 European rivers from 27 European Countries were analysed for 35 selected compounds, comprising pharmaceuticals, pesticides, PFOS, PFOA, benzotriazoles, hormones, and endocrine disrupters. Around 40 laboratories participated in this sampling exercise. The most frequently and at the highest concentration levels detected compounds were benzotriazole, caffeine, carbamazepine, tolyltriazole, and nonylphenoxy acetic acid (NPE1C). Only about 10% of the river water samples analysed could be classified as “very clean” in terms of chemical pollution. The rivers responsible for the major aqueous emissions of PFOS and PFOA from the European Continent could be identified. For the target compounds chosen, we are proposing “indicative warning levels” in surface waters, which are (for most compounds) close to the 90th percentile of all water samples analysed.  相似文献   

20.

Introduction  

Mediterranean rivers are characterized by a high flow variability, which is strongly influenced by the seasonal rainfall. When water scarcity periods occur, water flow, and dilution capacity of the river is reduced, increasing the potential environmental risk of pollutants. On the other hand, floods contribute to remobilization of pollutants from sediments. Contamination levels in Mediterranean rivers are frequently higher than in other European river basins, including pollution by pharmaceutical residues. Little attention has been paid to the transport behavior of emerging contaminants in surface waters once they are discharged from WWTP into a river. In this context, this work aimed to relate presence and fate of emerging contaminants with hydrological conditions of a typical Mediterranean River (Llobregat, NE Spain).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号