首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
In this research, the influence of thermo-mechanical degradation of polypropylene (PP) on water absorption and thickness swelling of beech wood flour–PP composites were studied. For this purpose, a virgin PP was thermo-mechanically degraded by two times extrusion under controlled conditions. The results showed that the melt flow index, water absorption and thickness swelling of PP significantly increase by extrusion and re-extrusion. The virgin PP and degraded polypropylene were compounded with wood flour (at 60% by weight wood flour loading) in a counter-rotating twin-screw extruder in presence or absence of MAPP to produce wood flour–PP composites. From the results, the composites containing recycled PP exhibited higher water absorption and thickness swelling. The use of MAPP decreased water absorption and thickness swelling in composites made of virgin or recycled PP.  相似文献   

2.
This work focused on the durability of short jute fiber reinforced poly(lactic acid) (PLA) composites in distilled water at different temperatures (23, 37.8 and 60 °C). Morphological, thermal and mechanical properties (tensile, flexural, and impact) of jute/PLA composites were investigated before and after aging. Different from traditional synthetic fiber reinforced polymer composites, the stability of jute/PLA composites in water was significantly influenced by hydrothermal temperature. The mechanical properties of the composites and molecular weight of PLA matrix declined quickly at 60 °C, however, this process was quite slower at temperatures of 23 and 37.8 °C. Impact properties of the composites were hardly decreased, but the tensile and flexural properties suffered a drop though to various degrees with three degradation stages at 23 and 37.8 °C. The poor interface of composites and the degradation of PLA matrix were the main damage mechanism induced by hydrothermal aging. Furthermore, considering the hydrolysis of PLA matrix, the cleavage of PLA molecular chain in different aging time was quantitatively investigated for the first time to illustrate hydrolysis degree of PLA matrix at different aging time.  相似文献   

3.
Composites consisting of 30 vol% PLA and 70 vol% cellulose fibres were prepared with compression moulding. In the first part of the study, the recyclability of this composite material was investigated by grinding the material and using the recyclate obtained as a filler for PLA. Thus, the recyclate was compounded with PLA in loadings ranging from 20 to 50 wt%. The composites obtained were characterised by tensile tests, Charpy impact tests, DMTA, and SEM. Tests showed that the recyclate had a relatively good reinforcing effect. Stress at break increased from about 50 to 77 MPa and the modulus increased from 3.6 to 8.5 GPa. In the second part of the study, the ability to mechanically recycle the composites obtained was evaluated by repeated processing. Composite with two loadings of the recyclate (20 wt% and 50 %) was injection moulded repeatedly, six times. Tests showed that the composite material with 20 wt% recyclate could withstand six cycles relatively well, while the composite with the higher load degraded much more quickly. For the composites with 50 wt% recyclate, signs of polymer degradation could be seen already after reprocessing the composite once.  相似文献   

4.
Renewable resource-based composites were prepared with acorn powder and Thermoplastic resin poly(lactic acid) (PLA) by twin-screw extrusion followed by injection molding processing or hot-compression molding processing. The study of the composites microstructure showed poor adhesion between acorn powder and PLA matrix. The hygroscopicity, mechanical properties and melt flow property of composites were promising even though the composites had a 70 wt% content of acorn powder. Silane coupling agent, 4,4′-Methylenebis (phenyl isocyanate) and PLA grafted with maleic anhydride did not show obvious effect on mechanical properties of composites. The impact resistance strength of reinforced composites with steel fiber webs were improved greatly in comparison with those having no steel fiber webs. Thermal properties results of DSC and DMA showed that the presence of acorn powder significantly affected the crystallinity, crystallization temperature (Tc), glass transition temperature (Tg) and melting temperature (Tm) of PLA matrix. The study results proved that composites had superior mechanical properties, enough to partially replace the conventional thermoplastic plastics.  相似文献   

5.
Compositions of wood-polypropylene composites (WPCs) are prepared through melt compounding followed by injection moulding. WPCs are formulated for eight compositions with a different weight ratio of wood, virgin or recycled polypropylene and coupling agent. WPCs compositions are compared in terms of Melt Flow Index, Tensile, FESEM images, Flexural and crystallinity index for same operating variable conditions. From the results, recycled polypropylene based WPCs are superior in comparison to virgin polypropylene based WPCs. With the addition of 5 % coupling agent in recycled polypropylene-based composites for 45:50 composition, tensile and flexural values of WPCs are higher in comparison to all composition and neat virgin or recycled polypropylene. This work stands for the utilization of waste wood with recycled plastic for replacement of wood and virgin plastic.  相似文献   

6.
Neat poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) films and PLLA/PDLA blend films were prepared by solution casting, and their photodegradation by UV-irradiation was investigated using wide-angle X-ray scattering (WAXS), gel permeation chromatography, differential scanning calorimetry, tensile testing, and polarized optical microscopy. The PLLA/PDLA blend film was more photodegradation-resistant than the neat PLLA and PDLA films when photodegradation was monitored by molecular weight, melting temperature, and WAXS crystalline peak positions. This indicates that the chains in both amorphous and crystalline regions of the PLLA/PDLA blend film were photo-cleavage-resistant compared to those of the neat PLLA and PDLA films. The changes in melting temperature and WAXS crystalline peak positions before and after photodegradation respectively indicated the increased crystalline lattice disorder and the decreased crystalline lattice sizes of the neat PLLA and PDLA films, whereas these changes were insignificant for the blend films. Photodegradation caused no significant change in tensile properties, with the exception of significant decreases in the tensile strength and elongation at break of PLLA/PDLA blend film. However, the tensile strength and elongation at break of the PLLA/PDLA blend film retained higher values compared to those of the neat PLLA and PDLA films during photodegradation. In spite of the slower photodegradation of the PLLA/PDLA blend film traced by M n, T m, and WAXS crystalline peak positions than that of neat PLLA and PDLA films, the rapid decrease in tensile strength and elongation at break of the former than that of the latter should be due to the highly-ordered structural difference between them, i.e., the three dimensional dry gel of the former and the spherulites of the latter.  相似文献   

7.
Biodegradable composites can be produced by the combination of biodegradable polymers (BP) as matrix and vegetal fibers as reinforcement. Composites of a commercial biodegradable polymer blend and curauá fibers (loaded at 5, 15 and 20 wt%) were prepared by melt mixing in a twin-screw extruder. Chemical treatments such as alkali treatment of the fiber and addition of maleic anhydride grafted polypropylene (MA-g-PP) as coupling agent were performed to promote polymer/fiber interfacial adhesion so that mechanical performance can be improved. The resulting composites were evaluated through hardness, melt flow index and tensile, flexural and impact strengths as well as water absorption. Thermal analysis and Fourier transform infrared spectroscopy were also employed to characterize the composites. The polymer/fiber interface was investigated through scanning electron microscopy analysis. The biodegradability of composites was evaluated by compost-soil burial test. The addition of curauá fiber promoted an increase in the mechanical strengths and composites treated with 2 wt% MA-g-PP with 20 wt% curauá fiber showed an increase of nearly 75% in tensile and 56% in flexural strengths besides an improvement in impact strength with respect to neat polymer blend. Nevertheless, treated composites showed an increase in water absorption and biodegradation tests showed that the addition of fiber retards degradation time. The retained mass of BP/20 wt% fiber composite with MA-g-PP and neat BP was 68 and 26%, respectively, after 210 days of degradation test.  相似文献   

8.
Biodegradability under composting conditions is assessed by test methods, such as ASTM D 5338-92, based on the measurement of CO2 released by test materials when mixed with mature compost and maintained in a controlled composting environment. However, in real composting, biodegradation occurs in fresh waste. To clarify this point, the biodegradation of paper and of a starch-based biodegradable thermoplastic material, Mater-Bi ZI01U, was followed by measuring the weight loss of samples introduced either into a mature compost or into a synthetic waste. The weight loss in mature compost was higher at the beginning but tended to decrease; in synthetic waste a first lag phase was followed by an exponential phase. Complete degradation of paper was noticed simultaneously in the two substrates (after 25 days). The bulkier Mater-Bi samples were fully degraded after 20 days in fresh waste, but after 45 days in mature compost. Therefore, the test methods using mature compost as a substrate can possibly underestimate the biodegradation rate occurring in fresh waste, i.e., in real composting plants, and have to be considered as conservative test methods. The test procedure described in this paper seems very suitable as a screening method to verify the compostability of plastic materials in a composting environment.  相似文献   

9.
Polylactide (PLA) is a major biodegradable polymer, which has received extensive interests over the past decades and holds great potential to replace several petroleum-based polymeric materials. Nevertheless, the inherent brittleness and low impact strength have restricted its invasion to niche markets. In this paper, the authors demonstrate that the entirely bio-sourced blends, namely PLA and castor oil-based polyurethane prepolymer (COPUP), were first melt-compounded in an effort to prepare novel biodegradable materials with an excellent balance of properties. NCO-terminated COPUP was successfully synthesized and subsequently mixed with variable concentration of PLA matrix using melt-compounded by twin-screw extrusion technique. The miscibility, phase morphology, mechanical properties, and thermal resistance of the blends were investigated. During FTIR analysis, it suggests that the interfacial compatibilization between COPUP and PLA phase occurred by the reaction of –NCO group of MDI with terminal hydroxyl group of PLA. DMA analysis showed that COPUP and PLA showed some limited miscibility with shifted glass transition temperature. The morphologies of fracture surface showed a brittle-to-ductile transition owing by the addition of COPUP. The crystallization behavior was studied by differential scanning calorimeter (DSC). The strain at break and notched impact strength of PLA/COPUP blends were increased more than 112–15.4 times elegant of neat PLA; the increase is superior to previous toughening effect by using petroleum-based tougheners. Furthermore, the thermal resistances and melt flow properties of the materials were also examined by analysis of the melt flow index and heat deflection temperature use in the work. With enhanced toughness, the PLA/COPUP blends could be used as replacements for some traditional petroleum-based polymeric materials.  相似文献   

10.
From an environmental point of view, mechanical recycling is, in general, a good end-of-life option for poly(lactic acid) (PLA), one of the most important biobased polymers. However, the degradation of PLA during the service life and, especially, during the mechanical recycling process, leads to a decrease in the properties of PLA, thus reducing the applications of the recycled plastic. The main aim of this work was to study the addition of small amounts of halloysite nanotubes, during the recycling step, as the basis of a cost-effective method for improving the properties of the recycled PLA. Raw halloysite was modified with an aminosilane, and 2% by weight of both raw and modified halloysite were melt compounded with PLA previously subjected to accelerated ageing. The addition of the nanotubes led to recycled materials with improved properties because halloysite reduces the degradation of PLA by blocking the carboxyl groups, generated during the ageing and washing steps, which catalyze the degradation during the recycling process. This effect was more intense in the silanized nanotubes, because the carboxyl groups were effectively blocked by acid–base interactions with the amino groups of the chemical modification. The properties of the recycled plastic with only 2 wt% of silanized halloysite were very close to those of the virgin plastic.  相似文献   

11.
Polylactic acid (PLA) composites comprising up to 25 wt% cotton linter (CL) or up to 50 % maple wood fibre (WF) were prepared by compounding and injection moulding. A reduction of crystallinity in the PLA matrix was observed as a result of the thermal processing method. These PLACL and PLAWF composites provided excellent improvements in both stiffness (with increases in tensile and flexural modulus) and toughness (increases in notched impact strength) properties over the neat PLA resin, while the tensile and flexural strengths of the composites were generally unchanged, while the strain at break values were reduced in comparison to the neat PLA. DMA results indicated incorporating these fibres caused the mechanical loss factor (tan δ) to decrease, suggesting better damping capabilities were achieved with the composites. SEM analysis of the impact fractured surfaces of the PLACL composites showed debonding-cavitation at the matrix-fibre interface while the PLAWF composites showed good wetting along its matrix-fibre interface. The composting of these composites up to 90 days showed that the degradation onset time was increased when increasing the fibre loadings, but the maximum degree of degradation and the maximum daily rates of degradation were decreased compared to neat PLA. On a weight basis of fibre loading, the PLACL composites had a quicker onset of biodegradation, a higher maximum daily rate of biodegradation and, overall, a higher degree of biodegradation at 90 days than the PLAWF composites, possibly due to the quicker thermal hydrolysis observed in the PLA matrix of the PLACL composites during processing and composting.  相似文献   

12.
Detailed analysis of the effects of recycling process on long-term water absorption, thickness swelling and water desorption behavior of natural fiber polypropylene composites is reported. Composite materials containing polypropylene and wood flour, rice hulls or bagasse fibers were produced at constant fiber loading and were exposed to a simulated recycling process consisting of up to five times grinding and reprocessing under controlled conditions. A wide range of analytical methods including water absorption/desorption tests, thickness swelling tests, density measurement, scanning electron microscopy, image analysis, contact angle, fiber length analysis and Fourier transform infrared spectroscopy was employed to understand the hygroscopic behavior of the recycled composites. Water absorption and thickness swelling behaviors were modeled using existing predictive models. Results indicated that generally the recycled composites had considerably lower water absorption and thickness swellings as compared with the original composites which were attributed to changes in physical and chemical properties of the composites induced by the recycling process.  相似文献   

13.
Sisal fibers bleached with sodium-hydroxide followed by hydrogen peroxide treatment were incorporated in a thermoplastic starch/ε-polycaprolactone (TPS/PCL) blend via extrusion processing. These samples with smooth and homogenous surfaces were examined for their property, biodegradability and water absorption. Scanning electron microscopy revealed that the fibers were well dispersed in the matrix. In addition, it was found that the fibers and matrices interacted strongly. Blends with 20 % (dry weight-basis) fiber content showed some fiber agglomeration. Whereas blends with 10 % fibers showed increased crystallinity and lower water absorption capacity. The CO2 evolution study showed that the thermoplastic starch samples without any additives had the highest rate and extent of degradation whereas the neat PCL samples had the lowest degradation rate. Addition of fiber to the TPS/PCL blend exhibited the degradation rates and extents that were somewhere in between the pure TPS and neat PCL. This work demonstrates that TPS/PCL composites reinforced with bleached sisal has superior structural characteristics and water resistance and thus, can be used as polymeric engineering composites for different applications.  相似文献   

14.
The objective of the study was to investigate the suitability of using sorghum bran in recycled low density polyethylene (R-LDPE) composites manufacturing. In response to the disposal of environmental problematic agricultural and polymer waste, composite sheets using recycled low density polyethylene and sorghum bran of different loadings (5, 10, 15 and 20 wt%) were prepared by melt compounding and compression molding. The effects of sorghum bran loadings on the mechanical, thermal, water absorption, swelling and crystalline properties of the composites were determined. Characterization of composites was carried out using X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermo gravimetric (TGA/DTG) and mechanical analyses. It was found that increasing fiber loadings resulted to increased moduli and tensile strength while hardness was decreased. XRD indicated that fiber addition to R-LDPE did not change characteristic peak position. DSC results showed that the R-LDPE had significantly larger peak heat flow during cooling run than the blank R-LDPE, showing higher crystallization rates for R-LDPE. The results obtained confirmed that sorghum bran particles showed some potential as a good reinforcement in polymer matrix composites and indicate its thermal stability for possibly future composite applications.  相似文献   

15.
Blends of HDPE wastes: study of the properties   总被引:1,自引:0,他引:1  
In this work we have analysed the properties of blends of recycled high-density polyethylene (HDPE) filled with talc. We have used two kinds of polymer matrices. The first one came entirely from ground injection moulded parts whereas the second was bimodal, incorporating 80% of the previous HDPE and 20% of recycled HDPE coming from bottles. We have also used two kinds of commercial talc characterized by a medium particle size of 2 microm and 10 microm, respectively. The amount of talc added to both matrices weighed of 10% and 20%. With regards to the mechanical properties of the analysed composites, greater values of Young's modulus and break stresses were found using a smaller particle size and higher talc content. On the other hand, the combination of the two HDPEs with very different viscosities produced a notable increase in the strain at break and in the absorbed energy; both measured at high and low strain rates. Despite the differences in viscosities between the two HDPEs, we did not observe separation of phases during either the processing or testing. Under impact loading, the higher energy absorption in the composites was observed when the finest talc grade with a 10% content weight was added to the bimodal matrix.  相似文献   

16.
The shape memory behavior of PLLA (poly(l-lactide)) and chitosan/PLLA composites was studied. PLLA and chitosan were compounded to fabricate novel materials which may have biodegradability and biocompatibility. Chitosan does not significantly affect the glass and melting transition temperature of the PLLA. Both the pure PLLA and chitosan/PLLA composites showed shape memory effect arising from the viscoelastic properties of PLLA comprised of semi crystalline structures. The shape recovery ratio of the chitosan/PLLA composites decreased significantly with increasing chitosan contents due to the incompatibility between PLLA and chitosan. Phase separation structures of the composites were observed by using atomic force microscopy. To obtain good shape memory effect, the chitosan content should be below 15 wt%.  相似文献   

17.
This study investigates the feasibility of using recycled high density polyethylene (rHDPE), polypropylene (rPP) and old newspaper (rONP) fiber to manufacture experimental composite panels. The panels were made through air-forming and hot press. The effects of the fiber and coupling agent concentration on tensile, flexural, internal bond properties and water absorption and thickness swelling of wood–fiber plastic composites were studied. The use of maleated polypropylene as coupling agent improved the compatibility between the fiber and both plastic matrices and mechanical properties of the resultant composites compared well with those of non-coupled ones. Based on the findings in this work, it appears that recycled materials can be used to manufacture value-added panels without having any significant adverse influence on board properties. It was also found that composites with rHDPE provided moderately superior properties, compared with rPP samples.  相似文献   

18.
Acrylonitrile–Butadiene–Styrene (ABS), Polycarbonate (PC) and their alloys are widely used in automotive industry, computer and equipment housings. With increasing disposal of end-of-life electronic equipment, there is also an increased demand for recycling of these materials so that they do not pose environmental challenge as solid waste. One of the recycling approaches is mechanical recycling of these thermoplastics where recycled plastic is melt blended with virgin materials to obtain a high quality product. Besides obtaining desirable mechanical properties, such blends should also conform to fire safety standards. In this work, a series of blends were prepared using PC and ABS recovered from discarded computers and virgin materials using a twin-screw extruder. Their flammability properties were evaluated using burner flammability tests and Ohio State University (OSU) release rate tests. It was found that the extinguishing time, burning extent and weight loss appears to progressively decrease with the addition of both virgin or recycled PC to virgin or recycled ABS. It was also seen that the addition of the 70% of PC, virgin or recycled, to ABS virgin or recycled, appears to significantly decrease heat release and smoke evolution. The results of this study indicate that recycled polycarbonate can be used as an additive for virgin or recycled ABS, as a means of giving flame resistance to ABS in high-value applications. This result is significant when related to the result obtained by a separate study indicating that up to 25% of recycled material can be used without degradation of mechanical properties in the presence of 15% short glass fiber reinforcement.  相似文献   

19.
We herein report the effects of the component ratio and method of blending on the synthesis of stereocomplex poly(lactic acid) (SC-PLA) based on poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) prepolymers. PLLA and PDLA were prepared by direct melt polycondensation of lactic acid (DMP). Combined with the dual catalyst system, PLA prepolymers with Mw more than 20,000 were prepared by DMP. PLLA was mixed by powder blending or melt blended with PDLA. It is revealed that melt-point and spherulite growth rate of SC-PLA is strongly dependent on the perfection of SC structure. The melt point of PLA can be increased by nearly 50 °C because of the particular strong intermolecular interaction between PLLA and PDLA chains. Solid-state polycondensation (SSP) is an efficient method to increase the molecular weight of SC-PLA, but it can have a negative effect on the regularity of linear chains of SC-PLA. Thermogravimetry analyzer (TGA) results show that SC structure cannot cause the delay reaction on the thermal degradation of PLA.  相似文献   

20.
Increasing demand in the use of poly(lactic acid) (PLA) leads to a debate about using potential foodstuffs for plastic production and a moral issue when starvation problem is taken into account. One of the solutions is recycling of PLA; however, recycling results in property losses during melt processing due to low thermal stability of PLA. This study focuses on using chain extenders to offset thermal degradation of recycled PLA. The effects of a diisocyanate and a polymeric epoxidized chain extender on the properties of the recycled poly(lactic acid) were investigated. In order to mimic the recycling process, PLA was subjected to thermo-mechanical degradation using a laboratory scale compounder. Chain extender type, loading and mixing time were investigated. On-line rheology and intrinsic viscosity measurements of PLA before and after chain extension confirmed that the molecular weight increased. Dynamic mechanical analysis, rheology and tensile tests revealed that the chain extenders led to a significant increase in modulus, strength and melt-viscosity. It was found that diisocyanate had slightly higher and faster chain extension reactivity than polymeric extender. Differential scanning calorimetry results showed an increase in the crystallization temperature due to the branched and extended chain structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号