首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Different passive sampler housings were evaluated for their wind dampening ability and how this might translate to variability in sampler uptake rates. Polyurethane foam (PUF) disk samplers were used as the sampling medium and were exposed to a PCB-contaminated atmosphere in a wind tunnel. The effect of outside wind speed on PUF disk sampling rates was evaluated by exposing polyurethane foam (PUF) disks to a PCB-contaminated air stream in a wind tunnel over air velocities in the range 0 to 1.75 m s-1. PUF disk sampling rates increased gradually over the range 0-0.9 m s-1 at approximately 4.5-14.6 m3 d-1 and then increased sharply to approximately 42 m3 d-1 at approximately 1.75 m s-1 (sum of PCBs). The results indicate that for most field deployments the conventional 'flying saucer' housing adequately dampens the wind effect and will yield approximately time-weighted air concentrations.  相似文献   

2.
Semipermeable membrane devices (SPMDs) were deployed in water using four different methods: a typical SPMD cage with and without a mesh cover, a bowl chamber and without any protection. In addition to routinely used performance reference compounds (PRCs), perdeuterated dibenz[a,h]anthracene was added. Due to its high sampler to water partition coefficient no measurable clearance due to diffusion was expected during the deployment period, hence any observed loss could be attributed to photodegradation. The loss of PRCs was measured and SPMD-based water concentrations determined. Results showed that a typical SPMD deployment cage covered with mesh provided the best protection from photodegradation. Samplers which had undergone the highest photodegradation underestimated PAH water concentrations by up to a factor of 5 compared to the most protected SPMDs. This study demonstrates that the potential for photodegradation needs to be addressed when samplers are deployed in water of low turbidity.  相似文献   

3.
In this study the performance of two newly developed personal bioaerosol samplers was evaluated. The two test samplers are cyclone-based personal samplers that incorporate a recirculating liquid film. The performance evaluations focused on the physical efficiencies that a personal bioaerosol sampler could provide, including aspiration, collection, and capture efficiencies. The evaluation tests were carried out in a wind tunnel, and the test personal samplers were mounted on the chest of a full-size manikin placed in the test chamber of the wind tunnel. Monodisperse fluorescent aerosols ranging from 0.5 to 20 microm were used to challenge the samplers. Two wind speeds of 0.5 and 2.0 m/sec were employed as the test wind speeds in this study. The test results indicated that the aspiration efficiency of the two test samplers closely agreed with the ACGIH inhalable convention within the size range of the test aerosols. The aspiration efficiency was found to be independent of the sampling orientation. The collection efficiency acquired from these two samplers showed that the 50% cutoff diameters were both around 0.6 microm. However the wall loss of these two test samplers increased as the aerosol size increased, and the wall loss of PAS-4 was considerably higher than that of PAS-5, especially in the aerosol size larger than 5 microm, which resulted in PAS-4 having a relatively lower capture efficiency than PAS-5. Overall, the PAS-5 is considered a better personal bioaerosol sampler than the PAS-4.  相似文献   

4.
Semi-permeable membrane devices (SPMDs) were loaded with deuterated anthracene and pyrene as performance reference compounds (PRCs) and deployed at a test site in four different chambers (open and closed box chamber, bowl chamber and cage chamber) for 29 days. The losses of PRCs and the uptake of polyaromatic hydrocarbons (PAHs) from the ambient air were quantified. UV-B levels measured in each deployment chamber indicated that SPMDs would be exposed to the most UV-B in the cage chamber and open box chamber. Significantly less PAHs were quantified in SPMDs deployed in the cage chamber and open box chamber compared to samplers from the other two chambers, suggesting that photodegradation of PAHs had occurred. The loss of PRCs confirmed these results but also showed that photodegradation was occurring in the closed box chamber. The bowl chamber appears to provide the best protection from the influence of direct photodegradation.  相似文献   

5.
This study investigates the use of a small passive sampler for aerosol particles to determine particulate matter (PM)10-2.5 concentrations in outdoor air. The passive sampler collects particles by gravity, diffusion, and convective diffusion onto a glass coverslip that is then examined with an optical microscope; digital images are processed with free software and the resultant PM10-2.5 concentrations determined. Both the samplers and the analyses are relatively inexpensive. Passive samplers were collocated with Federal Reference Method (FRM) samplers in Chapel Hill, NC; Phoenix, AZ; and Birmingham, AL; for periods from 5 to 15 days. Particles consisted primarily of inorganic dusts at some sites and a mix of industrial and inorganic materials at other sites. Measured concentrations ranged from < 10 microg/m3 to approximately 40 microg/m3. Overall, PM10-2.5 concentrations measured with the passive samplers were within approximately 1 standard deviation of concentrations measured with the FRM samplers. Concentrations determined with passive samplers depend on assumptions about particle density and shape factors and may also depend somewhat on local wind speed and turbulence; accurate values for these parameters may not be known. The degree of agreement between passive and FRM concentrations measured here suggests that passive measurements may not be overly dependent on accurate knowledge of these parameters.  相似文献   

6.
The size range of airborne particles that is closely related to specific deposition regions in the human respiratory tract and excess lung burden of these deposited particles is associated with disease. Size-selective sampling, therefore, needs to be performed to assess the related health risks. Performance criteria applied to these samplers must be well characterized in order to provide accurate and reliable results. The PM10 samplers that have been used in place of the total suspended particulate samplers for the collection of ambient air particles are more relevant to potential inhalation hazards. In order to be certified, a PM10 sampler must meet reliable performance specifications, primarily the aerosol penetration test with liquid and solid particles in a wind tunnel (wind speeds of 2, 8, and 24 km/hr). This testing is intended to assure reasonable accuracy in aerosol measurements. However, the sampler performance under calm air conditions has not been well studied. In the present study, the sampling heads of three devices--the Harvard impactor, the Personal Environmental Monitor (PEM), and the Sierra Andersen model 241 dichotomous sampler PM10 inlet head--were tested for aerosol separation efficiency. With the consideration of bias and imprecision of the measurements, five specimens of each type of sampler were chosen for performance testing, repeating the tests 5 times for each specimen. An ultrasonic atomizing nozzle was used to nebulize potassium sodium tartrate tetrahydrate and dioctyl phthalate particles as the solid and liquid challenge aerosols, respectively. The aerosol number concentrations and size distributions upstream and downstream of the samplers were measured by using an aerosizer calibrated against a settling velocity chamber. The results showed that among the samplers tested, the dichotomous sampler PM10 inlet head had the best fit to the PM10 convention, while the other two samplers not only appeared to have a steeper separation-curve slope but also had significant particle bounce when challenged with solid particles. Analysis of variance also confirmed the superiority of the dichotomous samplers. Surface-coating with oil or grease greatly reduced the problem of particle bounce.  相似文献   

7.
At locations without access to the electrical grid, a flow-through sampler (FTS) collects large volumes of air for the analysis of semi-volatile organic compounds (SVOCs). To test its performance under field conditions, an FTS and a traditional pumped high volume air sampler, both using polyurethane foam (PUF) as sampling medium, were co-deployed at the campus of the University of Toronto Scarborough from August 2006 to June 2007. Polybrominated diphenyl ethers (PBDEs) and various pesticides were quantified in the samples taken by both samplers to test the FTS's applicability to relatively non-volatile and slightly polar SVOCs. Air concentrations in samples taken with the FTS over five 2-week periods compare favourably with the average of the concentrations in several 24-h active high volume samples taken during the same period. In particular, time trends, temperature dependence relationships, and isomer ratios show a reasonable agreement between the two sampling techniques. An empirical linear solvation energy relationship for predicting the apparent theoretical plate number of the PUF assembly used in the FTS illustrates the effect of chemical properties, as well as temperature and wind speed, on sampling efficiency. In the absence of electrical power, the FTS can collect SVOCs from large air volumes as reliably and quantitatively as traditional HiVol samplers, although without separating gas and particle phase.  相似文献   

8.
Passive air sampling theory for semivolatile organic compounds   总被引:2,自引:0,他引:2  
The mathematical modelling underlying passive air sampling theory can be based on mass transfer coefficients or rate constants. Generally, these models have not been inter-related. Starting with basic models, the exchange of chemicals between the gaseous phase and the sampler is developed using mass transfer coefficients and rate constants. Importantly, the inter-relationships between the approaches are demonstrated by relating uptake rate constants and loss rate constants to mass transfer coefficients when either sampler-side or air-side resistance is dominating chemical exchange. The influence of sampler area and sampler volume on chemical exchange is discussed in general terms and as they relate to frequently used parameters such as sampling rates and time to equilibrium. Where air-side or sampler-side resistance dominates, an increase in the surface area of the sampler will increase sampling rates. Sampling rates are not related to the sampler/air partition coefficient (K(SV)) when air-side resistance dominates and increase with K(SV) when sampler-side resistance dominates.  相似文献   

9.
Performance reference compound (PRC) derived sampling rates were determined for polyurethane foam (PUF) passive air samplers in both sub-tropical and temperate locations across Australia. These estimates were on average a factor of 2.7 times higher in summer than winter. The known effects of wind speed and temperature on mass transfer coefficients could not account for this observation. Sampling rates are often derived using ambient temperatures, not the actual temperatures within deployment chambers. If deployment chamber temperatures are in fact higher than ambient temperatures, estimated sampler-air partition coefficients would be greater than actual partition coefficients resulting in an overestimation of PRC derived sampling rates. Sampling rates determined under measured ambient temperatures and estimated deployment chamber temperatures in summer ranged from 7.1 to 10 m3 day−1 and 2.2-6.8 m3 day−1 respectively. These results suggest that potential differences between ambient and deployment chamber temperatures should be considered when deriving PRC-based sampling rates.  相似文献   

10.
ABSTRACT

The size range of airborne particles that is closely related to specific deposition regions in the human respiratory tract and excess lung burden of these deposited particles is associated with disease. Size-selective sampling, therefore, needs to be performed to assess the related health risks. Performance criteria applied to these samplers must be well characterized in order to provide accurate and reliable results. The PM10 samplers that have been used in place of the total suspended particulate samplers for the collection of ambient air particles are more relevant to potential inhalation hazards. In order to be certified, a PM10 sampler must meet reliable performance specifications, primarily the aerosol penetration test with liquid and solid particles in a wind tunnel (wind speeds of 2, 8, and 24 km/hr). This testing is intended to assure reasonable accuracy in aerosol measurements. However, the sampler performance under calm air conditions has not been well studied.

In the present study, the sampling heads of three devices—the Harvard impactor, the Personal Environmental Monitor (PEM), and the Sierra Andersen model 241 dichotomous sampler PM10 inlet head—were tested for aerosol separation efficiency. With the consideration of bias and imprecision of the measurements, five specimens of each type of sampler were chosen for performance testing, repeating the tests 5 times for each specimen. An ultrasonic atomizing nozzle was used to nebulize potassium sodium tartrate tetrahydrate and dioctyl phthalate particles as the solid and liquid challenge aerosols, respectively. The aerosol number concentrations and size distributions upstream and downstream of the samplers were measured by using an aerosizer calibrated against a settling velocity chamber. The results showed that among the samplers tested, the dichotomous sampler PM10 inlet head had the best fit to the PM10 convention, while the other two samplers not only appeared to have a steeper separation-curve slope but also had significant particle bounce when challenged with solid particles. Analysis of variance also confirmed the superiority of the dichotomous samplers. Surface-coating with oil or grease greatly reduced the problem of particle bounce.  相似文献   

11.
The Palmes' tube, the first diffusive sampler incorporating a fixed path length, has received wide usage for the sampling of a large number of gaseous pollutants. But despite numerous previous studies, questions remain regarding the accuracy of these inexpensive, simple-to-construct, open-ended samplers. Here the mass transfer resistance in a Palmes' diffusive sampler was measured using the loss of cyclohexane from a Palmes' tube containing liquid cyclohexane at its base. The average loss rates, at factorial combinations of five air incidence angles evenly spaced from 270 degrees to 90 degrees, and five air speeds from 0.5 m/sec to 2.5 m/sec ranged from 46% to 121% higher than rates calculated from the physical dimensions of the sampler, proving the need to calibrate these samplers rather than relying on a theoretical calculation. The mass transfer resistance was nearly constant when the airflow was perpendicular to the sampler and sufficiently high to avoid stagnation, a finding that may explain the widespread acceptance of the results obtained using this sampler.  相似文献   

12.
Harman C  Tollefsen KE  Bøyum O  Thomas K  Grung M 《Chemosphere》2008,72(10):1510-1516
Passive sampling devices provide a useful contribution to the monitoring of contaminants in the aquatic environment. However, calibration data needed for the calculation of water concentrations from sampler accumulations are restricted to a limited number of compound classes. Thus uptake of a range of alkylated phenols (AP), polycyclic aromatic hydrocarbons (PAH) and carbazoles was determined for semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS) using a flow through exposure system. Sampling rates ranged from 0.02 to 0.26 l d(-1) for POCIS and 0.02 to 13.83 l d(-1) for SPMDs. Observed SPMD uptake was also compared to that predicted by an empirical model including the use of performance reference compounds (PRCs). Predicted sampling rates did not differ by more than a factor of 1.3 from experimental values for PAH, providing further evidence that the PRC approach can be successfully used to determine in situ sampling rates for these compounds. Experimental sampling rates for AP in SPMDs were, however, much lower than predicted. This discrepancy was too large to be explained by small uncertainties in the calibration system or in the calculations. Based on these data we conclude that while hydrophobic AP are accumulated by SPMDs their partitioning cannot be predicted from their logK(ow) using current methods. Due to this lower than expected uptake, sampling rates were only higher in SPMDs than POCIS in the range of logK(ow)>5.0. Simultaneous deployment of both sampler types allows the study of compounds with a broad range of physicochemical properties.  相似文献   

13.
The particle size distributions (PSDs) of particulate matter (PM) in the downwind plume from simulated sources of a cotton gin were analyzed to determine the impact of PM settling on PM monitoring. The PSD of PM in a plume varies as a function of gravitational settling. Gravitational settling has a greater impact on the downwind PSD from sources with PSDs having larger mass median diameters (MMDs). The change in PSD is a function of the source PSD of emitted PM, wind speed, and downwind distance. Both MMD and geometric standard deviation (GSD) in the downwind plume decrease with an increase in downwind distance and source MMD. The larger the source MMD, the greater the change in the downwind MMD and GSD. Also, the greater the distance from the source to the sampler, the greater the change in the downwind MMD and GSD. Variations of the PSD in the downwind plume significantly impact PM10 sampling errors associated with the U.S. Environmental Protection Agency (EPA) PM10 samplers. For the emission sources with MMD > 10 microm, the PM10 oversampling rate increases with an increase in downwind distance caused by the decrease of GSD of the PSD in the downwind plume. Gravitational settling of particles does not help reduce the oversampling problems associated with the EPA PM10 sampler. Furthermore, oversampling rates decrease with an increase of the wind speed.  相似文献   

14.

Background

The state of the art of passive water sampling of (nonpolar) organic contaminants is presented. Its suitability for regulatory monitoring is discussed, with an emphasis on the information yielded by passive sampling devices (PSDs), their relevance and associated uncertainties. Almost all persistent organic pollutants (POPs) targeted by the Stockholm Convention are nonpolar or weakly polar, hydrophobic substances, making them ideal targets for sampling in water using PSDs. Widely used nonpolar PSDs include semi-permeable membrane devices, low-density polyethylene and silicone rubber.

Results and discussion

The inter-laboratory variation of equilibrium partition constants between PSD and water is mostly 0.2?C0.5 log units, depending on the exact matrix used. The sampling rate of PSDs is best determined by using performance reference compounds during field deployment. The major advantage of PSDs over alternative matrices applicable in trend monitoring (e.g. sediments or biota) is that the various sources of variance including analytical variance and natural environmental variance can be much better controlled, which in turn results in a reduction of the number of analysed samples required to obtain results with comparable statistical power.

Conclusion

Compliance checking with regulatory limits and analysis of temporal and spatial contaminant trends are two possible fields of application. In contrast to the established use of nonpolar PSDs, polar samplers are insufficiently understood, but research is in progress to develop PSDs for the quantitative assessment of polar waterborne contaminants. In summary, PSD-based monitoring is a mature technique for the measurement of aqueous concentrations of apolar POPs, with a well-defined accuracy and precision.  相似文献   

15.
16.
During some past two decades there has been a growing interest among air pollution-vegetation effects-scientists to use passive sampling systems for quantifying ambient, gaseous air pollutant concentrations, particularly in remote and wilderness areas. On the positive side, excluding the laboratory analysis costs, passive samplers are inexpensive, easy to use and do not require electricity to operate. Therefore, they are very attractive for use in regional-scale air quality assessments. Passive samplers allow the quantification of cumulative air pollutant exposures, as total or average pollutant concentrations over a sampling duration. Such systems function either by chemical absorption or by physical adsorption of the gaseous pollutant of interest onto the sampling medium. Selection of a passive sampler must be based on its known or tested characteristics of specificity and linearity of response to the chemical constituent being collected. In addition, the effects of wind velocity, radiation, temperature and relative humidity must be addressed in the context of absorbent/adsorbent performance and sampling rate. Because of all these considerations, passive samplers may provide under- or overestimations of the cumulative exposures, compared to the corresponding data from co-located continuous monitors or active samplers, although such statistical variance can be minimized by taking necessary precautions. On the negative side, cumulative exposures cannot identify short-term (相似文献   

17.
A field study was conducted to determine the effectiveness of watering in controlling PM10 emissions under high wind conditions. The focus of the study was the pickup of soil by a belly scraper at a landfill. Four low-volume PM10 samplers were positioned downwind of the storage pile (at two distances, 80 and 110 m, and two elevations, 1 and 3 m) and one was located upwind at 3 m elevation. Integrating nephelometers, which measure the particulate light scattering coefficient, bsp, were also set up at locations 80 and 110 m downwind of the storage pile. Wind speed and direction were measured on-site. Samples were collected for two periods, one with and one without water being applied. Watering was effective at reducing PM10 emissions at wind speeds up to the maximum 18 m sec-1 observed at the landfill soil pickup operation. Measurement of bsp provided an indication of PM10 concentrations with better time resolution than samplers, but not with sufficient resolution, under the instrumental conditions used, to correlate with wind gusts.  相似文献   

18.
Hazrati S  Harrad S 《Chemosphere》2007,67(3):448-455
PUF disk passive air samplers are increasingly employed for monitoring of POPs in ambient air. In order to utilize them as quantitative sampling devices, a calibration experiment was conducted. Time integrated indoor air concentrations of PCBs and PBDEs were obtained from a low volume air sampler operated over a 50 d period alongside the PUF disk samplers in the same office microenvironment. Passive sampling rates for the fully-sheltered sampler design employed in our research were determined for the 51 PCB and 7 PBDE congeners detected in all calibration samples. These values varied from 0.57 to 1.55 m3 d(-1) for individual PCBs and from 1.1 to 1.9 m3 d(-1) for PBDEs. These values are appreciably lower than those reported elsewhere for different PUF disk sampler designs (e.g. partially sheltered) employed under different conditions (e.g. in outdoor air), and derived using different calibration experiment configurations. This suggests that sampling rates derived for a specific sampler configuration deployed under specific environmental conditions, should not be extrapolated to different sampler configurations. Furthermore, our observation of variable congener-specific sampling rates (consistent with other studies), implies that more research is required in order to understand fully the factors that influence sampling rates. Analysis of wipe samples taken from the inside of the sampler housing, revealed evidence that the housing surface scavenges particle bound PBDEs.  相似文献   

19.
Paschke H  Popp P 《Chemosphere》2005,58(7):855-863
Two new types of passive samplers were designed and tested on semivolatile organic compounds. The first type (a spiral-rod sampler) consists of a low-density polyethylene membrane acting as a permeation film and a silicone elastomer as the receiving material; the second (a stir-bar sampler) has the same membrane material but a polydimethylsiloxane-coated stir bar acting as the collector phase and installed radially symmetrically in the sampler. The advantages of the new samplers are their simple design, low costs, and their easy processing via thermodesorption coupled with capillary gas chromatography and mass selective detection. In both samplers, the uptake of selected analytes was integrative over exposure periods of up to 384 h. The sampling rates calculated from a laboratory calibration study using the chlorinated semivolatiles hexachlorobenzene, hexachlorocyclohexane isomers and polychlorinated biphenyls ranged from 88.1 ml h-1 for delta-hexachlorocyclohexane to 3443 ml h-1 for 2,2',5,5'-tetrachlorobiphenyl. A field trial at a hazardous waste dump near Bitterfeld, Germany, for up to 21 days combined with periodical determinations of air concentrations using low-volume sampling indicated that the new samplers can in principle be used in the field, although the sampling rates derived from the field results differed considerably from the laboratory findings. Nevertheless the preliminary results suggest that the new sampler types are promising for the long-term air monitoring of semivolatiles.  相似文献   

20.
No personal aerosol sampler has been evaluated for monitoring aeroallergens in outdoor field conditions and compared to conventional stationary aerobiological samplers. Recently developed Button Personal Inhalable Aerosol Sampler has demonstrated high sampling efficiency for non-biological particles and low sensitivity to the wind direction and velocity. The aim of the present study was to evaluate the Button Sampler for the measurement of outdoor pollen grains and fungal spores side-by-side with the widely used Rotorod Sampler. The sampling was performed for 8 months (spring, summer and fall) at a monitoring station on the roof of a two-storied office building located in the center of the city of Cincinnati. Two identical Button Samplers, one oriented towards the most prevalent wind and the other towards the opposite wind and a Rotorod Sampler were placed side-by-side. The total fungal spore concentration ranged from 129 to 12,980 spores m(-3) (number per cubic meter of air) and the total pollen concentration from 4 to 4536 pollen m(-3). The fungal spore concentrations obtained with the two Button Samplers correlated well (r = 0.95; p<0.0001). The pollen data also showed positive correlation. These findings strongly support the results of earlier studies conducted with non-biological aerosol particles, which demonstrated a low wind dependence of the performance of the Button Sampler compared to other samplers. The Button Sampler's inlet efficiency was found to be more dependent on wind direction when sampling larger sized Pinaceae pollen grains (aerodynamic diameter approximately 65 mum). Compared to Rotorod, both Button Samplers measured significantly higher total fungal spore concentrations. For total pollen count, the Button Sampler facing the prevalent wind showed concentrations levels comparable to that of the Rotorod, but the Button Sampler oriented opposite to the prevalent wind demonstrated lower concentration levels. Overall, it was concluded that the Button Sampler is efficient for the personal sampling of outdoor aeroallergens, and is especially beneficial for aeroallergens of small particle size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号