首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Oysters contaminated with norovirus present a significant public health risk when consumed raw. In this study, norovirus genome copy concentrations were determined in Pacific oysters (Magallana gigas) harvested from a sewage-impacted production site and then subjected to site-specific management procedures. These procedures consisted of relocation of oysters to an alternative production area during the norovirus high-risk winter periods (November to March) followed by an extended depuration (self-purification) under controlled temperature conditions. Significant differences in norovirus RNA concentrations were demonstrated at each point in the management process. Thirty-one percent of oyster samples from the main harvest area (Site 1) contained norovirus concentrations >?500 genome copies/g and 29% contained norovirus concentrations <?100 genome copies/g. By contrast, no oyster sample from the alternative harvest area (Site 2) or following depuration contained norovirus concentrations >?500 genome copies/g. In addition, 60 and 88% of oysters samples contained norovirus concentrations <?100 genome copies/g in oysters sampled from Site 2 and following depuration, respectively. These data demonstrate that site-specific management processes, supported by norovirus monitoring, can be an effective strategy to reduce, but not eliminate, consumer exposure to norovirus genome copies.  相似文献   

2.
Globally, norovirus is the most common gastroenteritis causing pathogen. Annually, norovirus causes 685 million cases of acute gastroenteritis and 200,000  相似文献   

3.
Lowther  J. A.  Cross  L.  Stapleton  T.  Gustar  N. E.  Walker  D. I.  Sills  M.  Treagus  S.  Pollington  V.  Lees  D. N. 《Food and environmental virology》2019,11(3):247-258
Food and Environmental Virology - Contamination of bivalve shellfish, particularly oysters, with norovirus is recognised as a significant food safety risk. Methods for quantification of norovirus...  相似文献   

4.
Noroviruses are one of important agents that cause acute viral gastroenteritis worldwide. These viruses are belonging to Caliciviridae family and are genetically diverse. To date, there is no valuable data about prevalence of norovirus infection and the dominant genogroup/genotype among Iranian population. The objective of this study was to determine the frequency of norovirus infection in Iranian patients with gastroenteritis referred to three hospitals of Tehran and to specify the dominant genogroup/genotype of this virus among our study population. A total of 293 patients with acute gastroenteritis were included in the study. Detection of norovirus was performed using RT-PCR method and confirmed by direct sequencing with specific designed primers for capsid region of norovirus genome. Phylogenetic analysis was performed using the neighbor-joining method. Norovirus strains identified in our study were subsequently categorized according to previously defined genogroup/genotypes. Of these, norovirus GII was dominant genogroup. Sixty-five percent (17 of 26) of positive samples were determined as GII and 35% (9 of 26) were determined as GI, respectively, in 2008–2009. And among 8 sequenced strains of genogroup II the most frequent genotype was GII.3. The results of this study indicated that norovirus must be considered as one of the infectious causes of acute gastroenteritis among Iranian population. We also found that GII.3 is more prevalent in our study population. To the best of our knowledge there is limited data about the role of noroviruses in children and adults’ acute gastroenteritis among Iranian patients and this prevalence and genotyping report of norovirus infection could be remarkable for further studies.  相似文献   

5.
Norovirus outbreaks are associated with the consumption of contaminated shellfish, and so efficient methods to recover and detect infectious norovirus in shellfish are important. The Proteinase K digestion method used to recover norovirus from shellfish, as described in the ISO 15216, would be a good candidate but its impact on the virus capsid integrity and thus infectivity was never examined. The aim of this study was to assess the impact of the Proteinase K digestion method, and of the heat treatment component of the method alone, on norovirus (genogroups I and II) and MS2 bacteriophage capsid integrity. A slightly modified version of the ISO method was used. RT-qPCR was used for virus detection following digestion of accessible viral RNA using RNases. MS2 phage infectivity was measured using a plaque assay. The effect of shellfish digestive glands (DG) on recovery was evaluated. In the presence of shellfish DG, a reduction in MS2 phage infectivity of about 1 log10 was observed after the Proteinase K digestion method and after heat treatment component alone. For norovirus GII and MS2 phage, there was no significant loss of genome following the Proteinase K digestion method but there was a significant 0.24 log10 loss of norovirus GI. In the absence of shellfish DG, the reduction in MS2 phage infectivity was about 2 log10, with the addition of RNases resulting in a significant loss of genome for all tested viruses following complete Proteinase K digestion method and the heat treatment alone. While some protective effect from the shellfish DG on viruses was observed, the impact on capsid integrity and infectivity suggests that this method, while suitable for norovirus genome detection, may not completely preserve virus infectivity.  相似文献   

6.
Contamination of bivalve shellfish, particularly oysters, with norovirus is recognised as a food safety risk and a potential contributor to the overall burden of gastroenteritis in the community. The United Kingdom (UK) has comprehensive national baseline data on the prevalence, levels, and seasonality of norovirus in oysters in production areas resulting from a previous two-year study (2009–2011). However, previously, data on final product as sold to the consumer have been lacking. As part of a wider project to establish the overall burden of foodborne norovirus in the UK, this study aimed to address this data gap. A one-year survey of oysters collected from the point-of-sale to the consumer was carried out from March 2015 to March 2016. A total of 630 samples, originating in five different European Union Member States, were collected from 21 regions across the UK using a randomised sampling plan, and tested for norovirus using a method compliant with ISO 15216-1, in addition to Escherichia coli as the statutory indicator of hygiene status. As in the previous production area study, norovirus RNA was detected in a high proportion of samples (68.7%), with a strong winter seasonality noted. Some statistically significant differences in prevalences and levels in oysters from different countries were noted, with samples originating in the Netherlands showing lower prevalences and levels than those from either the UK or Ireland. Overall, levels detected in positive samples were considerably lower than seen previously. Investigation of potential contributing factors to this pattern of results was carried out. Application of normalisation factors to the data from the two studies based on both the numbers of norovirus illness reports received by national surveillance systems, and the national average environmental temperatures during the two study periods resulted in a much closer agreement between the two data sets, with the notably different numbers of illness reports making the major contribution to the differences observed in norovirus levels in oysters. The large majority of samples (76.5%) contained no detectable E. coli; however, in a small number of samples (2.4%) levels above the statutory end product standard (230 MPN/100 g) were detected. This study both revealed the high prevalence of norovirus RNA in oysters directly available to the UK consumer, despite the high level of compliance with the existing E. coli-based health standards, while also highlighting the difficulty in comparing the results of surveys carried out in different time periods, due to variability in risk factors.  相似文献   

7.
In January 2016, a large-scale outbreak of acute gastroenteritis was reported among French armed forces deployed in the Central African Republic. Challenging investigations, conducted from France, made it possible to identify a norovirus genogroup II in both stool and food samples, confirming a norovirus foodborne disease outbreak. Infected food handler management is discussed.  相似文献   

8.
This study characterizes the persistence of human norovirus in Eastern oysters (Crassostrea virginica) held at different seawater temperatures. Oysters were contaminated with human norovirus GI.1 (Norwalk strain 8FIIa) by exposing them to virus-contaminated water at 15 °C, and subsequently holding them at 7, 15, and 25 °C for up to 6 weeks. Viral RNA was extracted from oyster tissue and hemocytes and quantitated by RT-qPCR. Norovirus was detected in hemocytes and oysters held at 7 and 15 °C for 6 weeks and in hemocytes and oysters held at 25 °C for up to 2 and 4 weeks, respectively. Results confirm that NoV is quite persistent within oysters and demonstrate that cooler water temperatures extend norovirus clearance times. This study suggests a need for substantial relay times to remove norovirus from contaminated shellfish and suggests that regulatory authorities should consider the effects of water temperature after a suspected episodic norovirus-contamination event.  相似文献   

9.
为研究江苏省某市农村河道水体和污水处理厂主要工艺环节病毒的污染状况,分析常见理化因素与病毒污染之间的相关性,对江苏省某市部分农村河道水体和污水处理厂主要工艺环节7个水样、1个污泥和2个沉积物样点进行为期9个月的病毒(包括诺如病毒G Ⅰ、诺如病毒G Ⅱ、轮状病毒、札如病毒、腺病毒、星状病毒、肠道病毒)污染状况监测采样(共90份样本),通过阴离子膜吸附-洗脱法进行富集,荧光定量RT-PCR检测法对病毒进行检测,分析病毒污染状况;同时,监测水温、pH、COD(化学耗氧量)、TP(总磷)、TN(总氮)、EC(电导率)和DO(溶解氧)等7个理化指标的变化情况,探讨这些常见理化因素与病毒污染之间的相关性. 结果表明:90份样本中,诺如病毒G Ⅱ检出率为36.67%,肠道病毒检出率为30%,其他病毒检出率均低于诺如病毒G Ⅱ和肠道病毒. 污水处理后出水中有诺如病毒G Ⅱ、肠道病毒和轮状病毒检出,相关性分析显示,水温与诺如病毒G Ⅱ检出率呈显著负相关(P < 0.05). 研究显示,江苏省某市农村河道水体和污水处理厂主要工艺环节存在病毒污染,诺如病毒G Ⅱ为优势毒株;目前的污水消毒处理工艺并不能完全去除病毒,人群在接触外环境水体时,有潜在病毒暴露风险.   相似文献   

10.
Synthetic multiple-target RNA and DNA oligonucleotides were constructed for use as quantification standards for nucleic acid amplification assays for human norovirus genogroup I and II, hepatitis E virus, murine norovirus, human adenovirus, porcine adenovirus and bovine polyomavirus. This approach overcomes the problems related to the difficulty of obtaining practical quantities of viral RNA and DNA from these viruses. The quantification capacity of assays using the standards was excellent in each case (R 2 > 0.998 and PCR efficiency > 0.89). The copy numbers of the standards were equivalent to the genome equivalents of representative viruses (murine norovirus and human adenovirus), ensuring an accurate determination of virus presence. The availability of these standards should facilitate the implementation of nucleic acid amplification-based methods for quantitative virus detection.  相似文献   

11.
12.
Noroviruses and rotaviruses are the leading causes of non-bacterial gastroenteritis in humans worldwide. Virus-contaminated food and surfaces represent an important risk to public health. However, established detection methods for the viruses in food products are laborious and time-consuming. Here, we describe a detailed swabbing protocol combined with real-time RT-PCR for norovirus and rotavirus detection on artificially contaminated food and environmental surfaces. Recovery rates between 2 and 78% for norovirus and between 8 and 42% for rotavirus were determined for contaminated food surfaces of apple, pepper, cooked ham and salami. From contaminated environmental surfaces (stainless steel, ceramic plate, polyethylene, wood), recovery rates between 26 and 52% (norovirus) and between 10 and 58% (rotavirus) were determined. The results demonstrate the suitability of the swab sample method for virus detection on food and environmental surfaces. Compared to other methods, it is easy to perform and significantly time-saving, predestining it for routine testing.  相似文献   

13.
Noroviruses are the major cause of non-bacterial acute gastroenteritis outbreaks in humans, with few reports about the occurrence of the norovirus GIV strain. We investigated the presence of norovirus GIV in surface water (river, bay, and stream) and untreated sewage, and we determined a positivity rate of 9.4 % (9/96). The strains genotyped were GIV.1. To our knowledge, this is the first report of GIV in Brazil.  相似文献   

14.
During September/October 2012, a norovirus gastroenteritis outbreak affecting about 11,000 people occurred in Germany. Epidemiological studies suggested that frozen strawberries represented the vehicle of infection. We describe here the analysis of frozen strawberries for the presence of norovirus. Samples were taken by applying a stratified subsampling scheme. Two different methods for virus extraction from strawberries were compared. First, viruses were eluted from strawberries under alkaline conditions and concentrated using a polyethylene glycol precipitation. Second, ultrafiltration was applied for concentration of viruses rinsed off of the berries. In both cases, RNA was extracted and analyzed by real-time RT-PCR. Application of the ultrafiltration method generally resulted in a lower detection rate. Noroviruses were detected in 7/11 samples derived from the lot of strawberries implicated in the outbreak using the precipitation method. Typing of norovirus revealed three different genotypes including a combination of norovirus genotype II.16 (viral polymerase) and II.13 (viral capsid). This genotype combination was also found in some of the patients that were involved in the outbreak, but that had not been reported in Germany so far. In conclusion, heterogeneously distributed noroviruses in frozen strawberries can be detected by applying an optimized combination of sampling procedures, virus extraction methods, and real-time RT-PCR protocols. The detection of several different genotypes in the strawberries may suggest contamination from sewage rather than from a single infected food handler.  相似文献   

15.
16.
17.
Enteric viruses transmitted via the faecal-oral route occur in high concentrations in wastewater and may contaminate drinking water sources and cause disease. In order to quantify enteric adenovirus and norovirus genotypes I and II (GI and GII) impacting a drinking source in Norway, samples of surface water (52), wastewater inlet (64) and outlet (59) were collected between January 2011 and April 2012. Samples were concentrated in two steps, using an electropositive disc filter and polyethylene glycol precipitation, followed by nucleic acid extraction and analysis by quantitative polymerase chain reaction. Virus was detected in 47/52 (90.4 %) of surface water, 59/64 (92 %) of wastewater inlet and 55/59 (93 %) of wastewater outlet samples. Norovirus GI occurred in the highest concentrations in surface water (2.51e + 04) and adenovirus in wastewater (2.15e + 07). While adenovirus was the most frequently detected in all matrices, norovirus GI was more frequently detected in surface water and norovirus GII in wastewater. This study is the first in Norway to monitor both sewage and a drinking water source in parallel, and confirms the year-round presence of norovirus and adenovirus in a Norwegian drinking water source.  相似文献   

18.
Noroviruses are a common cause of both endemic and epidemic gastroenteritis. These highly infectious viruses usually cause self-limited disease, but chronic infections occur in highly immunocompromised patients and unusual manifestations are also being described in some populations. Histoblood-group antigen expression is now recognized as an important susceptibility factor for many norovirus strains, but a correlate of acquired immunity to infection or illness has not yet been identified. Currently, treatment and prevention strategies rely on non-specific measures. However, virus-like particles containing capsid antigens are undergoing evaluation as a vaccine candidate for illness prevention. This article reviews the biologic properties, epidemiology, clinical features, host susceptibility, diagnosis, and treatment and prevention of norovirus infection.  相似文献   

19.
Food and Environmental Virology - Human noroviruses are among the main causes of acute gastroenteritis worldwide. Frozen raspberries have been linked to several norovirus food-related outbreaks....  相似文献   

20.
This study investigated the level of norovirus contamination in oysters collected at a lagoon receiving urban drainage from Hue City for 17 months (August 2015–December 2016). We also investigated the genetic diversity of norovirus GI and GII in oyster and wastewater samples by using pyrosequencing to evaluate the effect of urban drainage on norovirus contamination of oysters. A total of 34 oyster samples were collected at two sampling sites (stations A and B) in a lagoon. Norovirus GI was more frequently detected than GII (positive rate 79 vs. 41%). Maximum concentrations of GI and GII were 2.4 × 105 and 2.3 × 104 copies/g, respectively. Co-contamination with GI and GII was observed in 35% of samples. Norovirus GII concentration was higher at station A in the flood season than in the dry season (P = 0.04, Wilcoxon signed-rank test). Six genotypes (GI.2, GI.3, GI.5, GII.2, GII.3, and GII.4) were identified in both wastewater and oyster samples, and genetically similar or identical sequences were obtained from the two types of samples. These observations suggest that urban drainage and seasonal flooding contribute to norovirus contamination of oysters in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号