首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
随着城市规模的快速扩张,区域内城市连片开发和建设,受大气环流及大气化学的双重作用,城市之间大气污染物交叉流动、相互传输,使相邻几个城市的大气污染相互影响,区域性大气污染问题越来越严重.该文以南京、镇江、扬州三市为例,通过分析区域性大气污染问题及其成因,认为建立宁、镇、扬大气污染联防联控机制十分必要,对于改善区域大气环境质量,促进区域经济社会可持续发展有重要意义.  相似文献   

2.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the urban atmosphere and the atmospheric pollutants to be identified as the most suspected carcinogens. In early measurements of urban PAH concentrations in Tehran area, the correlation between concentrations of different species indicated that automobiles were the predominant source of emission of PAHs in this city. From the diagnostic ratios, the results indicated that PAHs in the ambient air in Tehran originate primarily from diesel and gasoline engines, but contribution of the related diesel emission is apparently higher, or dominant, at the sampling sites and therefore considered as the major emission of PAHs in the ambient air.  相似文献   

3.
广州市区大气污染特征与影响因子分析   总被引:9,自引:0,他引:9  
以2000—2004年广州市国控测点的空气环境质量自动监测结果为基础数据,以我国《大气环境质量标准》的日平均质量浓度二级标准为依据计算广州市2000—2004年的各大气污染物的指数及污染负荷率,阐明广州市区主要大气污染物SO2、NO2、PM10、CO的地域分布特征、季节变化特征、年际变化特征以及由于大气中的酸性物质而形成的酸雨的变化特征并提出研究对策。结果表明:各污染物质量浓度存在明显的季节变化规律,除SO2春夏秋季污染最严重,其余几项污染程度由高到低的顺序均为冬季,春季,秋季,夏季。近5年来空气中的一氧化碳呈显著下降趋势,但二氧化硫、二氧化氮和可吸入颗粒物则呈显著上升趋势,综合污染指数也呈明显上升趋势;酸雨频率呈不显著上升且夏秋季污染大于春冬两季。广州市大气污染分布规律与风向频率以北和东北偏北方向较大,东和东南方向次之的分布基本一致。  相似文献   

4.
Stadtklima     
This two-part review paper is attended to the urban climate. After referring to the spatial and temporal scales as well as to the historical developments in urban climate, Part 1 introduces the methods of measuring urban climate parameters and the characteristics of the urban climate in relation to its rural surroundings. Examples are given for some central-European cities. The premises and causes of the urban climate are discussed: the conversion of natural ground cover into sealed surfaces, anthropogenic heat release and emissions of air pollutants. The importance of factors like the behaviour of thermal and hydrological properties of urban surfaces which influence urban climate in the micro-and mesoscale are described by means of some examples. Implications for the resulting energy balance of urban surfaces are quantified in terms of the sub-surface heat flux, the sensible and latent heat flux densites. Part 2 (Main features and effects) describes the features and human-biometeorological effects of the urban climate, takes up planning aspects and discusses the impact of global warming to urban climate.  相似文献   

5.
The question to what extent primary and secondary air pollutants are relevant to atmospheric pollution and their effects on human health and the quality of the environment can be answered in a straight-forward manner: atmospheric processes, including oxidation procedures, particle formation and equilibria, determine the fate of primary emissions and, in most cases, the secondary products of these processes are the more important ones concerning their effects on human health and the quality of the environment. The formation of secondary products represents the critical property determining the establishment of certain air standards, rather than the actually emitted substance, although there are notable exceptions. In this paper, a review concerning transformation of primary pollutants as studied in the atmosphere of Athens is used to enlighten matters that may need further attention by the responsible authorities and stakeholders for the control and reduction of atmospheric pollution.  相似文献   

6.
A typical driving restriction prohibits drivers from using their vehicles on given weekdays, based on the last digits of their vehicles’ license plates. A number of cities in developing countries have used license plate-based driving restrictions as a policy for reducing urban air pollution and traffic congestion. This paper develops a theoretical model of the effects of license plate-based driving restrictions on air quality that combines an economic model with information about the sources and atmospheric chemistry of different air pollutants. We then draw upon suggestive empirical evidence from license plate-based driving restrictions implemented in Bogotá, Colombia. Consistent with our theory model, we find suggestive empirical evidence that under certain circumstances, due to substitution, the purchase of a second car, the use of alternative modes of transportation, and/or atmospheric chemistry, it is possible for license plate-based driving restrictions to increase air pollution. Also consistent with our theory, we find that license plate-based driving restrictions may have different effects on different air pollutants, reflecting heterogeneity in the sources and atmospheric chemistry of the pollutants. In particular, owing to atmospheric chemistry, it is possible for a license plate-based driving restriction to cause a significant decrease in NO and a significant increase in NO2, NOx, and O3.  相似文献   

7.
Urban Fluid Mechanics: Air Circulation and Contaminant Dispersion in Cities   总被引:6,自引:1,他引:5  
Recently, many urban areas of the world have experienced rapid growth of population and industrial activity raising concerns of environmental deterioration. To meet challenges associated with such rapid urbanization, it has become necessary to implement wise strategies for environmental management and planning, addressing the exclusive demands of urban zones for maintaining environmental sustainability and functioning with minimum disruption. These strategies and related public policy must be based on state-of-the-science tools for environmental forecasting, in particular, on mathematical models that accurately incorporate physical, biological, chemical and geological processes at work on urban scales. Central to such models are the mechanics of environmental fluids (air and water) and their transport and transformation characteristics. Although much progress has been made on understanding environmental flow phenomena, a myriad of issues akin to urban flow, the transport phenomena, air and water quality and health issues (epidemiology) remain to be understood and quantified. We propose to initiate a new focus area – Urban Fluid Mechanics (UFM) – tailored to research on such issues. For optimal societal impact, UFM must delve into fundamental and applied fluid flow problems of immediate utility for the development of urban public policy and environmental regulations. Such efforts often entail the use of `whole' systems approach to environmental studies, requiring careful synthesis between crosscutting areas.In this paper, a few topics in the realm of UFM are presented, the theme being the flow and air quality in urban areas. Topics such as the scales of flow, the atmospheric boundary layer, pollutants and their transport and modeling of flow and air quality are briefly reviewed, discussed and exemplified using case studies. Identification of important flow-related issues, rigorous multidisciplinary approaches to address them and articulation of results in the context of socio-political cause calebre will be the challenges faced by UFM.  相似文献   

8.
以大气散射理论为基础,结合颜色学、大气环境监测及城市空气质量日报等相关原理,从理论分析与实证研究2个方面证实了天空蓝色饱和程度与城市空气质量等级之间存在着显著的负相关性,即:天空蓝色饱和程度越低,空气污染等级越高,空气质量状况越差;天空蓝色饱和程度越高,空气污染等级较低,空气质量状况越好;通过相关及回归分析与检验,制得“城市空气质量等级目测色卡”,适用于晴朗天气肉眼观察天空颜色,进而目测估计空气质量等级状况,以采取必要防护措施。  相似文献   

9.
The atmospheric chemical composition is affected by the interaction mechanisms among gases and particulate matter through a wide range of chemical reactions that can occur with the aid of particulate matter (e.g. particles act as reacting or absorbing surfaces) or be influenced by the presence of particulate matter in the atmosphere (photochemical reactions). Physical and chemical processes are also bonded in an interactive way that often leads to the influence of the radiation budget, cloud physics and the warming or cooling of the lower atmospheric levels. The Euro-Mediterranean region is a key-sensitive area due to the unique climatic and air quality characteristics associated with the regional climatic patterns, geomorphology (land and water contrast) and coexistence of pollutants from different origin. Focusing on this region, the gas-aerosol interactions are studied using state-of-the-art atmospheric and chemical transport modeling tools following the necessary development in the chemical transport model CAMx. Sensitivity and large-scale simulations have shown significant responses of the modeling system to the inclusion of natural species emissions, the direct shading effect of dust particles on photochemical processes and the formation of new types of aerosols through heterogeneous uptake of gases on dust particles. Including such interactions in the chemical transport model often led to the improvement of the model performance compared with available measurements in the region.  相似文献   

10.
我国大气环境毒理学研究新进展   总被引:2,自引:0,他引:2  
对大气环境中重要污染物的毒理学作用及其机制方面的文献进行综述。首先,总结了细颗粒物(PM2.5)和纳米颗粒物对呼吸系统和心血管系统毒理学作用及其机理方面的研究;然后,评述了二氧化硫(SO2)对基因表达的影响及内源性SO2生理作用方面的研究,提出SO2既是一种全身性毒物,又是一种新型信号分子的新观点;对大气环境致癌物,特别是有关苯并芘致癌作用分子机制的研究进行讨论;对大气中臭氧和光化学烟雾对健康影响的研究作了评述;最后,对室内空气污染物尤其是甲醛的毒性作用及其机理方面的最新研究进行了评论。  相似文献   

11.
Terrain in natural areas is never homogeneous: there may be a variety of vegetation types and patches of vegetated and unvegetated areas which can modify the mesoscale atmospheric flow. Moreover, horizontal thermal inhomogeneities in the planetary boundary layer are a well known source of mesoscale circulation systems such as land and sea breezes, mountain-valley winds, and urban heat island circulations. Since those phenomena are not resolved in regional scale numerical models, therefore an analytic procedure able to evaluate the relative importance of mesoscale and turbulent heat fluxes associated with surface thermal heterogeneities is of crucial importance in the optic of developing a parameterization of mesoscale effects generated by these heterogeneities for use in larger scale models. In the present paper we analyze how small a horizontal variation in surface heating can be and still produce a significant mesoscale circulation, how the heat and momentum fluxes associated to mesoscale flows can penetrate deeply into the mid-troposphere, and how they modify tropospheric relevant climate parameters, such as the atmospheric static stability. In addition, we evaluate the terms of the pressure gradient force, nonlinear and linear, non-hydrostatic and hydrostatic, as function of time and space scales of the mesoscale flow. The present paper is mainly a review of analytical results, the numerical comparison and verification using RAMS is in progress.  相似文献   

12.
改善城市空气质量的研究   总被引:13,自引:0,他引:13  
本文分析了风、干湿沉降在城市内大气污染物清除过程中的作用,指出平均风速对大气质量起主导作用,但在清除污染物方面干湿沉降为主要过程。要改善城市大气环境,除限制排放及高烟囱集中排放外,还可在低源群四周设置防护林带及人工雨装置来清除低源烟云,并给出了林带及人工雨带宽度的计算公式。由计算可知分割设防护带方法优于区域隔离带法。  相似文献   

13.
Urban forests provide important ecosystem services, such as urban air quality improvement by removing pollutants. While robust evidence exists that plant physiology, abundance, and distribution within cities are basic parameters affecting the magnitude and efficiency of air pollution removal, little is known about effects of plant diversity on the stability of this ecosystem service. Here, by means of a spatial analysis integrating system dynamic modeling and geostatistics, we assessed the effects of tree diversity on the removal of tropospheric ozone (O3) in Rome, Italy, in two years (2003 and 2004) that were very different for climatic conditions and ozone levels. Different tree functional groups showed complementary uptake patterns, related to tree physiology and phenology, maintaining a stable community function across different climatic conditions. Our results, although depending on the city-specific conditions of the studied area, suggest a higher function stability at increasing diversity levels in urban ecosystems. In Rome, such ecosystem services, based on published unitary costs of externalities and of mortality associated with O3, can be prudently valued to roughly US$2 and $3 million/year, respectively.  相似文献   

14.
In many cities, ambient air quality is deteriorating leading to concerns about the health of city inhabitants. In urban areas with narrow streets surrounded by clusters of tall buildings, called street canyons, air pollution from traffic emissions and other sources may accumulate resulting in high pollutant concentrations. For various situations, including the evacuation of populated areas in the event of an accidental or deliberate release of chemical, biological and radiological agents, it is important that models should be developed that produce urban flow fields quickly. Various computational techniques have been used to calculate these flow fields, but these techniques are often computationally intensive. Most fast response models currently in use are at a disadvantage in these cases as they are unable to correlate highly heterogeneous urban structures with the diagnostic parameterizations on which they are based. In this paper, a novel variant of the popular projection method for solving the Navier–Stokes equations has been developed and applied to produce fast and reasonably accurate parallel computational fluid dynamics (CFD) solutions for flow in complex urban areas. This model, called QUIC-CFD represents an intermediate balance between fast (on the order of minutes for a several block problem) and reasonably accurate solutions. This paper details the solution procedure and validates this model for various simple and complex urban geometries.  相似文献   

15.
气象条件作为影响生态系统最活跃、最直接的驱动因子,影响着生态系统的质量和人类生存的环境,关系着生态保护和建设的成果,而城市生态系统具有与其他系统不一样的气候特征,目前还未形成一套有关城市的生态气象监测评估方法。基于生态气象学理论,分别从城市气候环境、与气候相关的陆表环境、大气环境、人居环境以及城市高影响天气气候事件等5个方面选择不同的要素和指标开展了城市生态气象监测评估初步研究,并以北京为例,利用2018年国家和区域自动气象站资料、大气成分观测资料、2002—2018年MODIS卫星资料、Landsat及环境一号卫星资料,开展了2018年北京城市生态气象监测评估。监测评估显示,(1)2018年北京城市“热岛”和“干岛”气候特征明显,并在北京二环与五环之间存在一个“冂”形风速低值区。(2)2018年北京陆表生态环境、大气环境、人居环境进一步好转:其中植被覆盖度达61.6%,创2002年以来新高,气象条件贡献率达50%,生态涵养区植被生态质量处于正常偏好的面积比例达93.2%;中心城区陆表温度为2011年以来最低值;重要水源地密云水库、官厅水库水体面积均为2000年以来最大值;气溶胶光学厚度、霾日数、大气静稳指数分别较过去4年平均值下降14%、31%和8%,大气扩散条件偏好,对霾日减少贡献率达21%,外地污染传输对PM2.5贡献达到53%;城市生态冷源较2013年明显增加,城市“热岛”得到缓解。(3)历史罕见的夏季高温闷热、冬季阶段低温、极端强降水以及持续无降水等高影响天气气候事件给城市安全运行和生态环境带来不利影响。综合评估表明2018年北京气象条件总体利于陆表生态环境改善,有利的气候条件提高了生态环境的质量,但城市生态质量仍面临着极端天气气候事件、城市热岛、低风速以及外来大气污染输送等风险。  相似文献   

16.
氮肥对土壤氧化大气甲烷影响的机制   总被引:2,自引:0,他引:2  
综合评述了氮素对土壤氧化甲烷的抑制机制。包括 :( 1)竞争甲烷单氧化酶的竞争抑制机制 ,( 2 )代谢产物的毒害抑制机制 ,( 3)外源盐引起的微生物生理缺水抑制机制和 ( 4)氮素周转作用引起的抑制机制。提出了氧化菌竞争利用土壤空气有限O2 的竞争抑制机制 ,即氨氧化菌利用更多的土壤有限氧气→产生优势氨氧化菌→形成优势菌群→限制甲烷氧化菌繁殖和功能发挥的氨长期抑制土壤氧化大气甲烷的机制 ,并认为这种抑制作用是不可逆的  相似文献   

17.

Alluvial soils of valleys of the Danube and Mlave rivers represent priority development areas with favorable conditions for life, agriculture and tourism in eastern Serbia. Operation of the thermal power plant Kostolac results in the emission of potentially toxic pollutants into the air, water and land. The goals were to determine the soil pollution with inorganic pollutants using different pollution indices, to identify of the sources of pollutants by means of principal component analysis and the loading of each factor for individual element assessed by multi-linear regression analyses. Chemical characteristics of the studied area resulted in division of the area into four impact zones upon the distance from main pollutants (power plant blocks and ash disposal dumps). There was no established soil pollution with potentially toxic elements in bulk of the agricultural territory. Two principal components (PC1 and PC2) explained about 73% of variance. Three studied elements (As, Cu and Pb) showed anthropogenic origin of their most concentrations in soil, while other elements (Cd, Co, Cr, Ni and Zn) were of a natural (geological) origin. Single pollution index showed moderate pollution level by Ni. Integrated Nemerow pollution index showed low to no pollution levels, indicating slight ecological risk. There were no established limitations for agricultural production in the studied area, except for the only spot polluted by As due to the great flooding event in the studied year.

  相似文献   

18.
Urban ecosystems are subjected to high temperatures--extreme heat events, chronically hot weather, or both-through interactions between local and global climate processes. Urban vegetation may provide a cooling ecosystem service, although many knowledge gaps exist in the biophysical and social dynamics of using this service to reduce climate extremes. To better understand patterns of urban vegetated cooling, the potential water requirements to supply these services, and differential access to these services between residential neighborhoods, we evaluated three decades (1970-2000) of land surface characteristics and residential segregation by income in the Phoenix, Arizona, USA metropolitan region. We developed an ecosystem service trade-offs approach to assess the urban heat riskscape, defined as the spatial variation in risk exposure and potential human vulnerability to extreme heat. In this region, vegetation provided nearly a 25 degrees C surface cooling compared to bare soil on low-humidity summer days; the magnitude of this service was strongly coupled to air temperature and vapor pressure deficits. To estimate the water loss associated with land-surface cooling, we applied a surface energy balance model. Our initial estimates suggest 2.7 mm/d of water may be used in supplying cooling ecosystem services in the Phoenix region on a summer day. The availability and corresponding resource use requirements of these ecosystem services had a strongly positive relationship with neighborhood income in the year 2000. However, economic stratification in access to services is a recent development: no vegetation-income relationship was observed in 1970, and a clear trend of increasing correlation was evident through 2000. To alleviate neighborhood inequality in risks from extreme heat through increased vegetation and evaporative cooling, large increases in regional water use would be required. Together, these results suggest the need for a systems evaluation of the benefits, costs, spatial structure, and temporal trajectory for the use of ecosystem services to moderate climate extremes. Increasing vegetation is one strategy for moderating regional climate changes in urban areas and simultaneously providing multiple ecosystem services. However, vegetation has economic, water, and social equity implications that vary dramatically across neighborhoods and need to be managed through informed environmental policies.  相似文献   

19.
Abstract: Forest fragmentation leads to a dramatic increase in forest edge, and these edges may function as traps and concentrators for wind-borne nutrients and pollutants. We assessed the influence of forest edges on atmospheric deposition and subsequent inputs to the forest floor in deciduous-forest fragments in the eastern United States. To quantify these inputs, we collected throughfall—water that has passed through the forest canopy—from edge and interior zones of forests adjacent to open fields. During the 1995 growing season, atmospheric input (wet and dry deposition) of sulfur to forest edge zones was elevated compared with input to forest interiors. Throughfall fluxes of dissolved inorganic nitrogen and calcium were also greater at edges than interiors. The mean edge increases ranged from 17% to 56% for the nutrients and pollutants we measured. When we manipulated the structure of forest edges by removing all vegetation below half the canopy height, throughfall flux in the edge zone declined sharply and was less than that of the respective interior zone. Changing the vegetation structure of the edge also shifted the zone of highest throughfall flux farther into the interior of the forest. Our data suggest that forest edges can function both as significant traps for airborne nutrients and pollutants from adjoining agricultural or urban landscapes and effective concentrators of below-canopy chemical fluxes. These enhanced fluxes may have cascading effects on soil-nutrient cycling, microbial activity, seedling dominance, and other ecological processes near forest edges.  相似文献   

20.
This work investigates the role of materials selected for different urban surfaces (e.g. on building walls, roofs and pavements) in the intensity of the urban heat island (UHI) phenomenon. Three archetypal street-canyon geometries are considered, reflecting two-dimensional canyon arrays with frontal packing densities (λf) of 0.5, 0.25 and 0.125 under direct solar radiation and ground heating. The impact of radiative heat transfer in the urban environment is examined for each of the different built packing densities. A number of extreme heat scenarios were modelled in order to mimic conditions often found at low- to mid-latitudes dry climates. The investigation involved a suite of different computational fluid dynamics (CFD) simulations using the Reynolds-Averaged Navier–Stokes equations for mass and momentum coupled with the energy equation as well as using the standard k-ε turbulence model. Results indicate that a higher rate of ventilation within the street canyon is observed in areas with sparser built packing density. However, such higher ventilation rates were not necessarily found to be linked with lower temperatures within the canyon; this is because such sparser geometries are associated with higher heat transfer from the wider surfaces of road material under the condition of direct solar radiation and ground heating. Sparser canyon arrays corresponding to wider asphalt street roads in particular, have been found to yield substantially higher air temperatures. Additional simulations indicated that replacing asphalt road surfaces in streets with concrete roads (of different albedo or emissivity characteristics) can lead up to a ~5 °C reduction in the canyon air temperature in dry climates. It is finally concluded that an optimized selection of materials in the urban infrastructure design can lead to a more effective mitigation of the UHI phenomenon than the optimisation of the built packing density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号