首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, electro-Fenton dye degradation was performed in an airlift continuous reactor configuration by harnessing the catalytic activity of Fe alginate gel beads. Electro-Fenton experiments were carried out in an airlift reactor with a working volume of 1.5 L, air flow of 1.5 L/min and 115 g of Fe alginate gel beads. An electric field was applied by two graphite bars connected to a direct current power supply with a constant potential drop. In this study, Lissamine Green B and Reactive Black 5 were selected as model dyes. Fe alginate gel beads can be used as an effective heterogeneous catalyst for the degradation of organic dyes in the electro-Fenton process, as they are more efficient than the conventional electrochemical techniques. At optimal working conditions (3 V and pH 2), the continuous process was performed. For both dyes, the degree of decolourisation increases when the residence time augments. Taking into account hydrodynamic and kinetic behaviour, a model to describe the reactor profile was obtained, and the standard deviation between experimental and theoretical data was lower than 6 %. The results indicate the suitability of the electro-Fenton technique to oxidise polluted effluents in the presence of Fe alginate gel beads. Moreover, the operation is possible in a continuous airlift reactor, due to the entrapment of iron in the alginate matrix.  相似文献   

2.
The aim of this work was to improve the ability of the electro-Fenton process using Fe alginate gel beads for the remediation of wastewater contaminated with synthetic dyes and using a model diazo dye such as Reactive Black 5 (RB5). Batch experiments were conducted to study the effects of main parameters, such as voltage, pH and iron concentration. Dye decolourisation, reduction of chemical oxygen demand (COD) and energy consumption were studied. Central composite face-centred experimental design matrix and response surface methodology were applied to design the experiments and to evaluate the interactive effects of the three studied parameters. A total of 20 experimental runs were set, and the kinetic data were analysed using first-order and second-order models. In all cases, the experimental data were fitted to the empirical second-order model with a suitable degree for the maximum decolourisation of RB5, COD reduction and energy consumption by electro-Fenton–Fe alginate gel beads treatment. Working with the obtained empirical model, the optimisation of the process was carried out. The second-order polynomial regression model suggests that the optimum conditions for attaining maximum decolourisation, COD reduction and energy consumption are voltage, 5.69 V; pH 2.24 and iron concentration, 2.68 mM. Moreover, the fixation of iron on alginate beads suggests that the degradation process can be developed under this electro-Fenton process in repeated batches and in a continuous mode.  相似文献   

3.
Decolorization of synthetic dyes using a copper complex with glucaric acid   总被引:1,自引:0,他引:1  
Selected azo, acridine, triphenyl methane, anthraquinone and thiazine-based dyes were decolorized using a catalytic system consisting of Cu(II)/glucaric acid/H(2)O(2). More than 90% decolorization was obtained with 100 ppm Acridine Orange, Azure B, Chicago Sky Blue, Crystal Violet, Methyl Orange, Poly B-411, Reactive Black 5, Reactive Blue 2, and Remazol Brilliant Blue R within 24 h. Seventy to eighty percent decolorization was achieved within the first 6 h. The decolorizaton was not affected by pH. The involvement of hydroxyl radicals produced in the system in the decolorization of the dye molecules was confirmed by electron spin resonance study.  相似文献   

4.
Copper-ligand complex for the decolorization of synthetic dyes   总被引:1,自引:0,他引:1  
Verma P  Baldrian P  Gabriel J  Trnka T  Nerud F 《Chemosphere》2004,57(9):1207-1211
The reaction system containing Cu(II), hydrogen peroxide and D-arabinono-1,4-lactone was found to be effective in the decolorization and reduction of toxicity of azo, thiazine-, triphenylmethane- and anthraquinone-based synthetic dyes. More than 85% decolorization was obtained with 100ppm Acridine Orange, Azure B, Chicago Sky Blue 6B, Crystal Violet, Evans Blue, Poly B-411, Reactive Blue 2, Reactive Blue 5, and Remazol Brilliant Blue R incubated for 24h in the presence of 10mM CuSO(4), 20mM D-arabinono-1,4-lactone and 80 mM H(2)O(2). The rate of decolorization was not affected by pH in the range of 3-9. The rapid decolorization was accompanied by a fast decomposition of H(2)O(2) in the reaction mixture and by a fast production of hydroxyl radicals.  相似文献   

5.
This work reports a preliminary study of semiconductor-assisted photochemical degradation of lignin, Remazol Brilliant Blue R and Kraft E1 paper effluent by using ZnO and Ag-doped ZnO photocatalysts. The doped semiconductor was prepared in the reaction media by photoreduction of silver nitrate. With the use of 100 mg of ZnO and 15 mg of Ag-ZnO, almost total decolorization of the dye and lignin samples in reaction times lower than 60 min were observed. Extending the photochemical reaction up to 120 min, the total organic carbon content (TOC) was reduced in 90%. For the paper effluent, a fast decolorization was obtained for relatively short reaction times. However, de TOC reduction was negligible (near of 10%) up to high reaction times (300 min). By using the Ag-ZnO photocatalyst, the toxicity of lignin and Kraft E1 effluent toward E. Coli was completely removed. For the dye, the formation of transient toxic species was observed.  相似文献   

6.
The production of ligninolytic enzymes by the fungus Phanerochaete chrysosporium in a fixed-bed tubular bioreactor, filled with cubes of nylon sponge, operating in semi-solid-state conditions, was studied. Maximum individual manganese-dependent peroxidase (MnP) and lignin peroxidase (LiP) activities of 1293 and 225 U/l were detected.The in vitro decolourisation of two structurally different dyes (Poly R-478, crystal violet) by the extracellular liquid obtained in the above-mentioned bioreactor was monitored in order to determine its degrading capability. The concentration of some compounds (sodium malonate, manganese sulphate) from the reaction mixture was optimised in order to maximise the decolourisation levels. A percentage of Poly R-478 decolourisation of 24% after 15 min of dye incubation was achieved.On the other hand, a methodology for a long treatment of these dyes based on the continuous addition of MnP enzyme and H(2)O(2) was developed. Moreover, this enzymatic treatment was compared with a photochemical decolourisation process. The former allowed to maintain the degradation rate almost constant for a long time, resulting in a decolourisation percentage of 70% and 30% for crystal violet and Poly R-478, respectively, after 2 h of treatment. As for the latter, it was not able to degrade Poly R-478, whereas crystal violet reached a degradation of 40% in 2 h.  相似文献   

7.
Electrochemical decolourisation of structurally different dyes   总被引:8,自引:0,他引:8  
The electrochemical decolourisation of structurally different dyes (bromophenol blue, indigo, poly R-478, phenol red, methyl orange, fuchsin, methyl green and crystal violet) by means of the application of DC electric current was assessed. It was found that the electrochemical process allowed a colour removal of all dyes studied, although the decolourisation rate largely depended on the chemical structure of the different dyes. Nearly complete decolourisation was achieved for bromophenol blue followed by methyl orange and methyl green, whereas phenol red was hardly decolourised (30% in 60 min). In mixtures of two dyes, the decolourisation rate became similar for both dyes. However, the addition of a redox mediator, (Co(2+/3+)) clearly enhanced the degradation rate of all tested dyes, but the simplest dye molecules were attacked firstly, followed by dyes with more complex chemical structures. The results revealed the suitability of the process to effectively decolourise wastewaters from dyeing process.  相似文献   

8.
This work reports the semiconductor-assisted photochemical degradation of reactive dyes. In an oxygenated-UV-ZnO system almost total decolorization of Remazol Brilliant Blue R, Remazol Black B, Reactive Blue 221 and Reactive Blue 222 was observed in reaction times of about 60 min. Extending the photochemical treatment up to 120 min, mineralization higher than 80% for all the dyes was observed. During the same period, the residual acute toxicity was significantly reduced only for Remazol Black B. A systematic optimization study carried out by factorial design showed that for the reactive dyes tested, the ZnO semiconductor exhibits a better efficiency than that observed with anatase TiO2. A synergistic effect in the coupled TiO2-ZnO system was not observed.  相似文献   

9.
The effect of high concentrations of sulphate on the reductive decolourisation of different azo dyes by anaerobic sludge was studied in batch cultures. Sludge cultures were pre-incubated under sulphate-reducing conditions prior addition of dyes. Little or no effects of sulphate (5-10 g sulphate l(-1)) on the rate of decolourisation of Reactive Orange 14 (RO14), Direct Blue 53 (DB53) and Direct Blue 71 (DB71) were observed when no external redox mediator was provided. However, an increase in sulphate concentration, in the presence of riboflavin (20 microM), enhanced the decolourisation of all dyes. The first-rate constant of decolourisation (k) was increased up to 2-, 3.6- and 2-fold for RO14, DB53 and DB71, respectively, by supplying high sulphate concentrations, compared to the controls lacking sulphate, in the presence of the redox mediator. Sulphate reduction did not take place during the course of azo reductions, but was only evident before dye addition and after complete decolourisation, suggesting azo dyes reduction out-competed sulphate reduction for the available reducing equivalents. The experimental data suggest that reduction of azo dyes by riboflavin, which had been reduced by biogenic sulphide, was the major mechanism implicated during decolourisations, which was corroborated by abiotic incubations. Riboflavin greatly accelerated the abiotic reduction of RO14, so that the k value was increased up to 44-fold compared to the control lacking riboflavin.  相似文献   

10.

Introduction

A biosorbent was developed by simple dried Agaricus bisporus (SDAB) and effectively used for the biosorption of cationic dyes, Crystal Violet and Brilliant Green.

Materials and methods

For the evaluation of the biosorbent system, all the batch equilibrium parameters like pH, biomass dose, contact time, and temperature were optimized to determine the decolorization efficiency of the biosorbent. The maximum yields of dye removal were achieved at pH 4.0 for Crystal Violet (CV) and pH 5.0 for Brilliant Green (BG), which are closer to their natural pH also.

Result and discussion

Equilibrium was established at 60 and 40 min for CV and BG, respectively. Pseudo first-order, pseudo second-order, and intraparticle-diffusion kinetic models were studied at different temperatures. Isotherm models such as Freundlich, Langmuir, and Dubinin–Radushkevich were also studied. Biosorption processes were successfully described by Langmuir isotherm model and the pseudo second-order kinetic model.

Conclusions

The biosorption capacity of A. bisporus over CV and BG were found as 21.74 and 12.16 mg gm?1. Thermodynamic parameters indicated that the CV and BG dye adsorption onto A. bisporus is spontaneous and exothermic in the single and ternary systems. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were used for the surface morphology, crystalline structure of biosorbent, and dye–biosorbent interaction, respectively. This analysis of the biosorption data confirmed that these biosorption processes are ecofriendly and economical. Thus, this biomass system may be useful for the removal of contaminating cationic dyes.  相似文献   

11.
The development of a complete set of extensive studies combining both the preparation factors of catalysts and photocatalytic experimental factors for the photodegradation of methylene blue, crystal violet, and Congo red using effective nano zinc oxide (ZnO) obtained from polysaccharides (chitosans, corn starch, and sodium alginate) as chelating agents was the main objective of this study. The influence of nature of polysaccharides, ratio of reactants, calcination temperatures during preparation process, and effects of photocatalytic experimental conditions on photodegradation was investigated. Corn starch and sodium alginate were found to be effective chelating agents and optimum preparation parameters were set as 3:3 % ratio of reactants and 450 °C calcination temperature to prepare nano ZnO with good photocatalytic activity. The order of organic dyes based on their photodegradation rates was arranged as crystal violet > methylene blue > Congo red. Our findings shed light on the optimization of both preparation conditions of photocatalysts and photocatalytic experimental conditions.  相似文献   

12.
This study is focused on the optimisation of the electrochemical decolourisation of textile effluents containing reactive dyes with the aim of making feasible-technically and economically-this method at industrial scale. Coloured waters were treated in continuous at low current density, to reduce the electrical consumption. Ti/PtO(x) electrodes were used to oxidize simulated dyebaths prepared with an azo/dichlorotriazine reactive dye (C.I. Reactive Orange 4). The decolourisation yield was dependent on the dyeing electrolyte (NaCl or Na(2)SO(4)). Dyeing effluents which contained from 0.5 to 20 gl(-1) of NaCl reached a high decolourisation yield, depending on the current density, immediately after the electrochemical process. These results were improved when the effluents were stored for several hours under solar light. After the electrochemical treatment the effluents were stored in a tank and exposed under different lighting conditions: UV light, solar light and darkness. The evolution of the decolourisation versus the time of storage was reported and kinetic constants were calculated. The time of storage was significantly reduced by the application of UV light. A dye mineralization study was also carried out on a concentrated dyebath. A TOC removal of 81% was obtained when high current density was applied for a prolonged treatment with recirculation. This treatment required a high electrical consumption.  相似文献   

13.
A cellulose bleaching effluent (E1) was degraded in batch conditions by photocatalysis using TiO2 and ZnO supported on glass Raschig rings. The effluent was completely decolourised and the total phenol content was reduced by 85% after 120 min treatment with both catalysts. Partial mineralization of the organic matter was confirmed by total organic carbon (TOC) reduction, approximately 50%. The residual organic matter shows a low acute toxicity as compared to the initial values and AOX values are strongly reduced after the photocatalytic oxidation. Molecular mass distribution showed that high molecular mass compounds were almost completely degraded.  相似文献   

14.
Azo dye decolourisation by anaerobic granular sludge   总被引:8,自引:0,他引:8  
The decolourisation of 20 selected azo dyes by granular sludge from an upward-flow anaerobic sludge bed (UASB) reactor was assayed. Complete reduction was found for all azo dyes tested, generally yielding colourless products. The reactions followed first-order kinetics and reaction rates varied greatly between dyes: half-life times ranged from 1 to about 100 h. The slowest reaction rates were found for reactive dyes with a triazine reactive group. There was no correlation between a dye's half-life time and its molecular weight, indicating that cell penetration was probably not an important factor. Since granular sludge contains sulphide, eight dyes were also monitored for direct chemical decolourisation by sulphide. All these dyes were reduced chemically albeit at slower rates than in the presence of sludge at comparable sulphide levels. Increasing sulphide concentrations, even when present in huge excess, stimulated the azo reduction rate. The results indicate that granular sludge can decolourise a broad spectrum of azo dye structures due to non-specific extracellular reactions. Reducing agents (e.g., sulphide) in sludge play an important role. The presence of anaerobic biomass is probably beneficial for maintaining the pools of these reduced compounds.  相似文献   

15.
Klavins M  Eglite L  Zicmanis A 《Chemosphere》2006,62(9):1500-1506
A new method was developed for the immobilization of humic substances. Humic acids (HA) immobilized onto different carriers were studied as sorbents for organic and inorganic substances. The sorption isotherms of 4-aminoazobenzene, Crystal Violet, Methylene Green, and flavine mononucleotide on immobilized HA show that pH and salt concentration have a significant effect on the sorption process, largely depending on the properties of polymeric matrix. Humic acids from different sources showed differing sorption capacity for the studied groups of substances.  相似文献   

16.

Background, aim and scope  

Because of high discharged volumes and effluent composition, wastewater from the textile industry can be considered as the most polluting amongst all industrial sectors, thus greatly requiring appropriate treatment technologies. Although some abiotic methods for the reduction of several dyes exist, these require highly expensive catalysts and reagents. Biotechnological approaches were proven to be potentially effective in the treatment of this pollution source in an eco-efficient manner. The white-rot fungi are, so far, the most efficient microorganisms in degrading synthetic dyes. This white-rot fungi’s property is due to the production of extracellular lignin-modifying enzymes, which are able to degrade a wide range of xenobiotic compounds because of their low substrate specificity. In this paper, we studied the ability of the white-rot fungus Phanerochaete chrysosporium immobilised into Ca-alginate beads to decolourise different recalcitrant azo dyes such as Direct Violet 51 (DV), Reactive Black 5 (RB), Ponceau Xylidine (PX) and Bismark Brown R (BB) in successive batch cultures. To the best of our knowledge, this is the first study on the immobilisation of P. chrysosporium into Ca-alginate beads for its application in dye decolouration.  相似文献   

17.
Advanced Oxidation Processes (AOPs) have been used as emerging wastewater treatment technologies which can effectively handle various hazardous organics in wastewater and groundwater. The photooxidation of two non-biodegradable azo dyes, acid red 1 and acid yellow 23, were studied in an UV/hydrogen peroxide photochemical reactor with a 5 kW low pressure mercury lamp. It was observed that the decomposition of both azo dyes were pseudo-first order reactions with respect to the azo dye concentrations. Simultaneously, the effects of hydrogen peroxide dosage, pH, initial concentration of the azo dyes and intensity of UV light were also studied. Moreover, the time required for the 50% removal of azo dyes and observed pseudo-first order rate constants were used as parameters to show the efficiency of azo dye treatment.  相似文献   

18.
Couto SR  Rosales E  Sanromán MA 《Chemosphere》2006,62(9):1558-1563
The present paper studies the decolourization of different synthetic dyes (Indigo Carmine, Bromophenol Blue, Methyl Orange and Poly R-478) by the white-rot fungus Trametes hirsuta at bioreactor scale under solid-state conditions, operating with ground orange peelings as a support-substrate. Dye decolourization was performed in both batch and continuous mode. Batch cultivation led to high decolourization percentages in a short time (100% for Indigo Carmine in 3h and 85% for Bromophenol Blue in 7 h). As for continuous cultivation, different hydraulic retention times (HRT) were studied (0.8, 1, 1.5 and 3d). The highest decolourization percentages were obtained operating at a HRT of 3d, especially for the dyes Methyl Orange and Poly R-478 (81.4% and 46.9%, respectively). This is a very interesting result, since there are few studies dealing with the continuous decolourization of dyes at bioreactor scale by fungal laccases.  相似文献   

19.
Environmental Science and Pollution Research - Narrow band gap of ferrites makes it a good photocatalyst, and it plays very prominent role in the level of degradation of organic dyes by...  相似文献   

20.
Aguiar A  Ferraz A 《Chemosphere》2007,66(5):947-954
Several phenol derivatives were evaluated regarding their capacities for Fe(3+) and Cu(2+) reduction. Selected compounds were assayed in Fenton-like reactions to degrade Azure B. 3,4-Dihydroxyphenylacetic, 2,5-dihydroxyterephtalic, gallic, chromotropic and 3-hydroxyanthranilic acids were the most efficient reducers of both metallic ions. The reaction system composed of 3-hydroxyanthranilic acid/Fe(3+)/H(2)O(2) was able to degrade Azure B at higher levels than the conventional Fenton reaction (87% and 75% of decolorization after 20min reaction, respectively). Gallic and syringic acids, catechol and vanillin induced Azure B degradations at lower levels as compared with conventional Fenton reaction. Azure B was not degraded in the presence of 10% (v/v) methanol or ethanol, which are OH radical scavengers, confirming the participation of this radical in the degradation reactions. Iron-containing reactions consumed substantially more H(2)O(2) than reactions containing copper. In iron-containing reactions, even the systems that caused a limited degradation of the dye consumed high concentrations of H(2)O(2). On the other hand, the reactions containing Fe(3+), H(2)O(2) and 3-hydroxyanthranilic acid or 3,4-dihydroxyphenylacetic acid were the most efficient on degradation of Azure B and also presented the highest H(2)O(2) consumption. These results indicate that H(2)O(2) consumption occurs even when the dye is not extensively degraded, suggesting that part of the generated OH radicals reacts with the own phenol derivative instead of Azure B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号