首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biomass and productivity were compared in two plantations and in one stand of natural regeneration on similar sites in a premontane moist forest region of Puerto Rico. While initial growth rates of plantation species were higher, after four decades productivity of the natural regeneration plots was equal to or greater than productivity of the plantations. For the first 44 years, aboveground biomass of natural regeneration increased at an average annual rate of 3.8t·ha–1·yr–1, but the last year of the study it was 14.7t·ha–1. Biomass increment of a pine plantation averaged between 8 and 10.5t·ha–1·yr–1 except for one year when the rate was much lower, possibly because of hurricane damage. A tropical hardwood plantation averaged close to 4t·ha–1·yr–1 for 41 years. It is suggested that in countries where funds for land reclamation are limited, intensive plantations may not always be the best strategy. Natural regeneration or shelterbelt plantations may be suitable alternatives.  相似文献   

2.
Soil erosion under different vegetation covers in the Venezuelan Andes   总被引:13,自引:0,他引:13  
This comparative study of soil erosion considered different environments in an ecological unit of the Venezuelan Andes. The soils belong to an association of typic palehumults and humic dystrudepts. Soil losses were quantified by using erosion plots in areas covered by four types of vegetation, including both natural and cultivated environments. The highest soil erosion rate evaluated corresponded to horticultural crops in rotation: reaching a value of 22 Mg ha–1 per year. For apple tree (Malus sylvestris Miller) plots, soil losses reached values of 1.96 Mg ha–1 per year. Losses from pasture (Pennisetum clandestinum Hochst. ex Chiov.) plots, without livestock grazing, were as high as 1.11 Mg ha–1 during the second year of the experiment. The highest soil losses generated from plots under natural forest were equal to 0.54 Mg ha–1 per year. Environmental factors such as total and effective rainfall, runoff, and some soil characteristics as those related to soil losses by water erosion were evaluated. The type of management applied to each site under different land use type and the absence of conservation practices explain, to a large extent, the erosive processes and mechanisms.  相似文献   

3.
We investigated the influence of long-term (56 years) grazing on organic and inorganic carbon (C) and nitrogen (N) contents of the plant–soil system (to 90 cm depth) in shortgrass steppe of northeastern Colorado. Grazing treatments included continuous season-long (May–October) grazing by yearling heifers at heavy (60–75% utilization) and light (20–35% utilization) stocking rates, and nongrazed exclosures. The heavy stocking rate resulted in a plant community that was dominated (75% of biomass production) by the C4 grass blue grama (Bouteloua gracilis), whereas excluding livestock grazing increased the production of C3 grasses and prickly pear cactus (Opuntia polycantha). Soil organic C (SOC) and organic N were not significantly different between the light grazing and nongrazed treatments, whereas the heavy grazing treatment was 7.5 Mg ha–1 higher in SOC than the nongrazed treatment. Lower ratios of net mineralized N to total organic N in both grazed compared to nongrazed treatments suggest that long-term grazing decreased the readily mineralizable fraction of soil organic matter. Heavy grazing affected soil inorganic C (SIC) more than the SOC. The heavy grazing treatment was 23.8 Mg ha–1 higher in total soil C (0–90 cm) than the nongrazed treatment, with 68% (16.3 Mg ha–1) attributable to higher SIC, and 32% (7.5 Mg ha–1) to higher SOC. These results emphasize the importance in semiarid and arid ecosystems of including inorganic C in assessments of the mass and distribution of plant–soil C and in evaluations of the impacts of grazing management on C sequestration.  相似文献   

4.
The objective of this research was to evaluate the impacts of increasing product removal on biomass and nutrient content of a central hardwood forest ecosystem. Commercial thinning, currently the most common harvesting practice in southern New England, was compared with whole-tree clearcutting or maximum aboveground utilization. Using a paired-watershed approach, we studied three adjacent, first-order streams in Connecticut. During the winter of 1981–82, one was whole-tree clearcut, one was commercially thinned, and one was designated as the untreated reference. Before treatment, living and dead biomass and soil on the whole-tree clearcut site contained 578 Mg ha–1 organic matter, 5 Mg ha–1 nitrogen, 1 Mg ha–1 phosphorus, 5 Mg ha–1 potassium, 4 Mg ha–1 calcium, and 13 Mg ha–1 magnesium. An estimated 158 Mg ha–1 (27% of total organic matter) were removed during the whole-tree harvest. Calcium appeared to be the nutrient most susceptible to depletion with 13% of total site Ca removed in whole-tree clearcut products. In contrast, only 4% (16 Mg ha–1) of the total organic matter and 2% of the total nutrients were removed from the thinned site. Partial cuts appear to be a reliable management option, in general, for minimizing nutrient depletion and maximizing long-term productivity of central hardwood sites. Additional data are needed to evaluate the long-term impacts of more intensive harvests.  相似文献   

5.
Changes in commodity prices, such as the fall in coffee prices from 2000 to 2004, affect land use decisions on farms, and the environmental services they provide. A survey of 50 farms showed a 35 % loss in the area under coffee between 2000 and 2004 below 700 m with the majority of this area (64 %) being coffee agroforest systems that included native forest species. Loss of coffee only occurred on large and medium-scale farms; there was no change in area on cooperatives. Coffee productivity declined below 1,100 m altitude for sun and Inga shade coffee, but only below 700 m altitude for agroforest coffee. Coffee productivity was 37–53 % lower under agroforests than other systems. Increases in rubber and pasture were related to low altitude large-scale farms, and bananas and timber plantations to mid-altitude farms. Average aboveground carbon stocks for coffee agroforests of 39 t C ha?1 was similar to rubber plantations, but one-third to one half that of natural forest and timber plantations, respectively. Coffee agroforests had the highest native tree diversity of the productive systems (7–12 species ha?1) but lower than natural forest (31 species ha?1). Conversion of coffee agroforest to other land uses always led to a reduction in the quality of habitat for native biodiversity, especially avian, but was concentrated among certain farm types. Sustaining coffee agroforests for biodiversity conservation would require targeted interventions such as direct payments or market incentives specifically for biodiversity.  相似文献   

6.
Silvopastoral management of fast-growing tree plantations is becoming popular in the Brazilian Cerrado (savanna). To understand the influence of such systems on soil carbon (C) storage, we studied C content in three aggregate size classes in six land-use systems (LUS) on Oxisols in Minas Gerais, Brazil. The systems were a native forest, a treeless pasture, 24- and 4-yr-old eucalyptus ( sp.) plantations, and 15- and 4-yr-old silvopastures of fodder grass plus animals under eucalyptus. From each system, replicated soil samples were collected from four depths (0-10, 10-20, 20-50, and 50-100 cm), fractionated into 2000- to 250-, 250- to 53-, and <53-μm size classes representing macroaggregates, microaggregates, and silt + clay, respectively, and their C contents determined. Macroaggregate was the predominant size fraction under all LUS, especially in the surface soil layers of tree-based systems. In general, C concentrations (g kg soil) in the different aggregate size fractions did not vary within the same depth. The soil organic carbon (SOC) stock (Mg C ha) to 1-m depth was highest under pasture compared with other LUS owing to its higher soil bulk density. The soils under all LUS had higher C stock compared with other reported values for managed tropical ecosystems: down to 1 m, total SOC stock values ranged from 461 Mg ha under pasture to 393 Mg ha under old eucalyptus. Considering the possibility for formation and retention of microaggregates within macroggregates in low management-intensive systems such as silvopasture, the macroaggregate dynamics in the soil seem to be a good indicator of its C storage potential.  相似文献   

7.
The rice fields, depleted of O2, contain large amount of moisture and organic substrates to provide an ideal anaerobic environment for methanogenesis and are one of the principal anthropogenic sources of methane. In order to mitigate this emission Alternative Electron Acceptors (AEA) were altered in the soil. The experiments were carried out in four seasons at the site of Balarampur, near Baruipur, South 24 Parganas, West Bengal, namely September–December, 2005 (Cultivar: Sundari), February–May, 2006 (Cultivar: Sundari), September–December, 2006 and February–May, 2007 (Cultivar: Swarna-Pankaj). The seasonal average methane flux (Fe treated), for the cultivar type “Sundari” (season: September–December, 2005), is 4.41 t ha−1, as compared to the value of 6.40 t ha−1 for the untreated soil. Similarly for February–May, 2006, the seasonal average methane flux (Fe treated) is 5.52 t ha−1, whereas the untreated flux is 5.69 t ha−1. In the third and fourth seasons we had two treatments with Ammonium Thiosulphate and Ferric Hydroxide. The seasonal average methane flux (treatment: Ammonium Thiosulphate) is 4.35 t ha−1 and 5.41 t ha−1 respectively, whereas for the ferric hydroxide treated soil it is 4.35 t ha−1 and 6.14 t ha−1 respectively. The properties related to the nutrient quality of the harvested paddy seeds supplement these results.  相似文献   

8.
Although the native forests of China are exceptionally diverse, only a small number of tree species have been widely utilized in forest plantations and reforestation efforts. We used dendrochronological sampling methods to assess the potential growth and carbon sequestration of native tree species in Jilin Province, Northeast China. Trees were sampled in and near the Changbaishan Biosphere Reserve, with samples encompassing old-growth, disturbed forest, and plantations. To approximate conditions for planted trees, sampling focused on trees with exposed crowns (dominant and co-dominant individuals). A log-linear relationship was found between diameter increment and tree diameter, with a linear decrease in increment with increasing local basal area; no significant differences in these patterns between plantations and natural stands were detected for two commonly planted species (Pinus koraiensis and Larix olgensis). A growth model that incorporates observed feedbacks with individual tree size and local basal area (in conjunction with allometric models for tree biomass), was used to project stand-level biomass increment. Predicted growth trajectories were then linked to the carbon process model InTEC to provide estimates of carbon sequestration potential. Results indicate substantial differences among species, and suggest that certain native hardwoods (in particular Fraxinus mandshurica and Phellodendron amurense), have high potential for use in carbon forestry applications. Increased use of native hardwoods in carbon forestry in China is likely to have additional benefits in terms of economic diversification and enhanced provision of "ecosystem services", including biodiversity protection.  相似文献   

9.
Grassland management affects soil organic carbon (SOC) storage and can be used to mitigate greenhouse gas emissions. However, for a country to assess emission reductions due to grassland management, there must be an inventory method for estimating the change in SOC storage. The Intergovernmental Panel on Climate Change (IPCC) has developed a simple carbon accounting approach for this purpose, and here we derive new grassland management factors that represent the effect of changing management on carbon storage for this method. Our literature search identified 49 studies dealing with effects of management practices that either degraded or improved conditions relative to nominally managed grasslands. On average, degradation reduced SOC storage to 95% ± 0.06 and 97% ± 0.05 of carbon stored under nominal conditions in temperate and tropical regions, respectively. In contrast, improving grasslands with a single management activity enhanced SOC storage by 14% ± 0.06 and 17% ± 0.05 in temperate and tropical regions, respectively, and with an additional improvement(s), storage increased by another 11% ± 0.04. We applied the newly derived factor coefficients to analyze C sequestration potential for managed grasslands in the U.S., and found that over a 20-year period changing management could sequester from 5 to 142 Tg C yr–1 or 0.1 to 0.9 Mg C ha–1 yr–1, depending on the level of change. This analysis provides revised factor coefficients for the IPCC method that can be used to estimate impacts of management; it also provides a methodological framework for countries to derive factor coefficients specific to conditions in their region.  相似文献   

10.
The sulphur dioxide and nitrogen oxides emissions from all sources in Alberta, Canada, during 1982 amounted to 488,297 and 353,511 tonnes, respectively. During this year deposition of wet sulphate from all stations in the province, 8 kg ha–1 yr–1, compares well with the five-year average (1978–1982) value of 10 kg ha–1 yr–1. These measurements are about one-half of the wet sulphate deposition criteria of 20 kg ha–1 yr–1 established for protecting the moderately sensitive aquatic ecosystem in eastern Canada. Due to dry, cold, continental climate conditions of Alberta, dry sulphate or sulphur deposition is equally or more important than wet deposition. No effects of the long-range transport of atmospheric pollutants (LRTAP) on the ecosystems in Alberta have been observed to date. Atmospheric deposition target loadings of SO4 –2, NO3 , and H+ for Alberta and western Canadian environmental conditions should be developed to protect the highly sensitive ecosystems. Some future research and monitoring priorities for Alberta and western Canada are outlined.  相似文献   

11.
The aim of this study was to assess the effects of forest management on carbon sequestration in forests and wood products by using a gap-type forest model interfaced with a wood product model. The assessment is based on total carbon sequestration, i.e. the amount of carbon left in vegetation, litter, soil organic matter and products when the flows of carbon back to the atmosphere have been subtracted. Thirty mixed-species stands, representing medium fertility sites in southern Finland, were included in each simulation for 300 years under current climatic conditions and predicted conditions of changing climate. The average total balance for the first 100 years was higher in the unmanaged system than in the managed system, but for the second and third 100-year periods the results were clearly opposite. Differences in the total balance between the treatments were larger during the first 100 years than over the whole 300-year period. Under conditions of changing climate, differences in carbon sequestration between management options were more pronounced than under current climatic conditions. Under current climatic conditions with the 100-year time frame, the ratio between the total annual balance and annual gross production was 0·208–0·289. Over the whole 300 years, however, efficiency was much lower, 0·088–0·121. Under changing climatic conditions, efficiency was also lower, 0·182–0·252 and 0·081–0·096, respectively. Different management alternatives clearly produced different amounts of timber for the production process; under conditions of changing climate, timber production was substantially enhanced. However, total carbon storages at the end of the simulation varied less than timber production. In the managed system, the flow back into the atmosphere was largest from litter, 41–51% of the total outflow, the flow from vegetation was 23–28%, from soil organic matter 22–25%, emissions from products 1–7%, and emissions from landfills 0–3%. If emissions due to the use of machinery in timber harvesting and transportation were included, they made up only 0·03–0·33% of the total outflow.  相似文献   

12.
The boreal forest is subject to natural and anthropogenic disturbances, but the production of greenhouse gases as a result of flooding for hydroelectric power generation has received little attention. It was hypothesized that flooded soil would result in greater CO(2) and CH(4) emissions and carbon (C) fractionation compared with non-flooded soil. To evaluate this hypothesis, soil C and nitrogen (N) dynamics, CO(2) and CH(4) mean production rates, and (13)C fractionation in laboratory incubations at 14 and 21 degrees C under non-flooded and flooded conditions and its effect on labile and recalcitrant C sources were determined. A ferro-humic Podzol was collected at three different sites at the Experimental Lakes Area, Canada, with a high (19,834 g C m(-2)), medium (18,066 g C m(-2)), and low (11,060 g C m(-2)) soil organic C (SOC) stock. Soil organic C and total N stocks (g m(-2)) and concentrations (g kg(-1)) were significantly different (p < 0.05) among soil horizons within each of the three sites. Stable isotope analysis showed a significant enrichment in delta(13)C and delta(15)N with depth and an enrichment in delta(13)C and delta(15)N with decreasing SOC and N concentration. The mean CO(2) and CH(4) production rates were greatest in soil horizons with the highest SOC stock and were significantly higher at 21 degrees C and in flooded treatments. The delta(13)C of the evolved CO(2) (delta(13)C-CO(2)) became significantly enriched with time during decomposition, and the greatest degree of fractionation occurred in the organic Litter, Fungal, and Humic forest soil horizons and in soil with a high SOC stock compared with the mineral horizon and soil with a lower SOC stock. The delta(13)C-CO(2) was significantly depleted in flooded treatments compared with non-flooded treatments.  相似文献   

13.
Soil analyses were conducted on home lawns across diverse ecoregions of the U.S. to determine the soil organic carbon (SOC) sink capacity of turfgrass soils. Establishment of lawns sequestered SOC over time. Due to variations in ecoregions, sequestration rates varied among sites from 0.9 Mg carbon (C) ha?1 year?1 to 5.4 Mg C ha?1 year?1. Potential SOC sink capacity also varied among sites ranging from 20.8 ± 1.0–96.3 ± 6.0 Mg C ha?1. Average sequestration rate and sink capacity for all sites sampled were 2.8 ± 0.3 Mg C ha?1 year?1 and 45.8 ± 3.5 Mg C ha?1, respectively. Additionally, the hidden carbon costs (HCC) due to lawn mowing (189.7 kg Ce (carbon equivalent) ha?1 year?1) and fertilizer use (63.6 kg Ce ha?1 year?1) for all sites totaled 254.3 kg Ce ha?1 year?1. Considering home lawn SOC sink capacity and HCC, mean home lawn sequestration was completely negated 184 years post establishment. The potential SOC sink capacity of home lawns in the U.S. was estimated at 496.3 Tg C, with HCC of between 2,504.1 Gg Ce year?1 under low management regimes and 7551.4 Gg Ce year?1 under high management. This leads to a carbon-positive system for between 66 and 199 years in U.S. home lawns. More efficient and reduction of C-intensive maintenance practices could increase the overall sequestration longevity of home lawns and improve their climate change mitigation potential.  相似文献   

14.
Summary This study evaluates the impact of intensive market gardening on the nutrient status of hydromorphic soil in the Ojo area of Lagos metropolis. Following 15–20 years of continuous market gardening, the organic matter content of the 0–10 cm layer of the hydromorphic soil has been reduced to 75 percent of the level found in a swamp forest soil used as a control. The extent of the organic matter decline in the cultivated soil is slight compared with the degree of organic matter diminution in well-drained soil used for shifting or continuous cultivation. This is due to the low degree of humus mineralisation in water-logged soil and the application of organic manure.In spite of regular application of both organic and inorganic fertilisers, the levels of exchangeable calcium, magnesium, potassium and sodium are lower in the 0–10 cm and 10–20 cm layers of the intensively cultivated hydromorphic soil used for market gardening than in the swamp forest control areas. The mean level of extractable manganese is lower in the 10–20 cm layer of the cultivated soil. These differences are due to nutrient immobilisation and removal in harvested vegetables, and to nutrient loss from the market gardening plots through erosion. There is, however, a build-up of available phosphorus in the surface layer of the market garden soil due to the application of inorganic phosphate fertilisers.The levels of mineral nutrients in the surface layers of the cultivated soil are within the optimal ranges for most arable crops, suggesting that the soil is not impoverished. This is due to the judicious application of both organic and inorganic fertilisers, and is indicative of the fact that hydromorphic soils can support continuous cultivation under proper management.Dr A.O. Aweto is a Senior Lecturer in the Department of Geography, and Mr G.M. Ogurie was until recently a geography student in the same department.  相似文献   

15.
Adsorptive bleaching potentials of activated animal bone on palm oil was investigated. Palm oil was obtained locally from the mesocarp of oil palm fruits. The obtained palm oil was degummed, neutralized, and subjected to proximate analysis before bleaching. The animal bone–based activated carbon used as a bleaching material was locally prepared by cleaning, drying, carbonization, and chemical activation process. The prepared activated carbon (CBAC) was characterized using Fourier transform infrared, scanning electron microscopy, Braummer–Emmett–Teller, and x‐ray diffraction (XRD) methods. Bleaching of the prepared palm oil on CBAC was done at different process conditions. The characterization results of BET analysis show that CBAC has a surface area of 593.270 m2/g, micropore surface area 595.56 m2/g, micropore volume 0.212 cm3/g, Langmuir surface area 1.38e+04 m2/g, and adsorption energy 3.998 KJ/mol. XRD analysis indicates gypsum as the dominant mineral in the activated carbon sample. The CBAC efficiency of 75.14% was obtained for time/temperature interactions at 50 min/120°C while at 25 g/50 min dosage/time interactions an efficiency of 75.17% was obtained.  相似文献   

16.
Five levels of oily sludge application were made to the surface layer of a desert sandy soil in Kuwait. The migration of the constituents of the sludge to subsurface soil layers was investigated at intervals over a period of 29 months. The data show very limited mobility to subsurface soil layer (40–70 cm depth) but not to 70–90 cm depth. The environmental impact of the added sludge is related to soil pH and to the Zn equivalent value of the sludge. Zn equivalent for the soil treated with oily sludge was 612 mg kg−1, which is much lower than permissible limits. This soil can accept more than 1000 t ha−1 from this type of sludge. However, due to the heterogeneous composition of sludge the Zn equivalent value should be calculated for each batch. Addition of oily sludge to the desert soil susceptible to wind erosion had a significant effect on minimizing soil loss under wind tunnel conditions. This effect is attributed to aggregation of the soil particles in the surface soil layers.  相似文献   

17.
The rehabilitation of sandy desertified land in semi-arid and arid regions has a great potential to increase carbon sequestration and improve soil quality. Our objective was to investigate the changes in the soil carbon pool and soil properties of surface soil (0–15 cm) under different types of rehabilitation management. Our study was done in the short-term (7 years) and long-term (32 years) desertification control sites in a marginal oasis of northwest China. The different management treatments were: (1) untreated shifting sand land as control; (2) sand-fixing shrubs with straw checkerboards; (3) poplar (Populus gansuensis) shelter forest; and (4) irrigated cropland after leveling sand dune. The results showed that the rehabilitation of severe sandy desertified land resulted in significant increases in soil organic C (SOC), inorganic C, and total N concentrations, as well as enhanced soil aggregation. Over a 7-year period of revegetation and cultivation, SOC concentration in the recovered shrub land, forest land and irrigated cropland increased by 4.1, 14.6 and 11.9 times compared to the control site (shifting sand land), and increased by 11.2, 17.0 and 23.0 times over the 32-year recovery period. Total N, labile C (KMnO4–oxidation C), C management index (CMI) and inorganic C (CaCO3–C) showed a similar increasing trend as SOC. The increased soil C and N was positively related to the accumulation of fine particle fractions. The accumulation of silt and clay, soil C and CaCO3 enhanced the formation of aggregates, which was beneficial to mitigate wind erosion. The percentage of >0.25 mm dry aggregates increased from 18.0% in the control site to 20.0–87.2% in the recovery sites, and the mean weight diameter (MWD) of water-stable aggregates significantly increased, with a range of 0.09–0.30 mm at the recovery sites. Long-term irrigation and fertilization led to a greater soil C and N accumulation in cropland than in shrub and forest lands. The amount of soil C sequestration reached up to 1.8–9.4 and 7.5–17.3 Mg ha?1 at the 0–15 cm layer over a 7- and 32-year rehabilitation period compared to the control site, suggesting that desertification control has a great potential for sequestering soil C and improving soil quality in northwest China.  相似文献   

18.
Large but feasible increases that have been projected for the production of wood energy in the United States can be expected to significantly alter the current carbon storage patterns in US forest vegetation. The 1976 net wood increment left after forest cutting equals about 136 × 106 tons of carbon/year, with about 60% of the increment found in merchantable trees, and the remainder in nonmerchantable components.Achieving 5–10 quads of wood energy beyond 1976 levels by the year 2010 can significantly change current carbon storage patterns with the magnitude of change dependent on the extent of residue harvest to meet energy goals, and the rate of future forest growth. Complete loss of the apparent net wood increment is a possible outcome.Although the future growth and harvest situation cannot be known now, a range of possible scenarios suggests that US forests in the year 2010 will store much less carbon than today, thus significantly changing their role in the global carbon cycle.  相似文献   

19.
The Potential Use of Chicken-Drop Micro-Organisms for Oil Spill Remediation   总被引:2,自引:0,他引:2  
An examination of chicken-drop micro-organisms for oil spill remediation is presented in this work. The chicken droppings contained aerobic heterotrophs (1.2×108 CFU g–1), total fungi (3.4×104 CFU g–1) and crude oil (transniger pipeline crude, TNP) degrading bacteria (1.5×106 CFU g–1). The crude oil degraders were identified as species of Micrococcus, Bacillus, Pseudomonas, Enterobacter, Proteus, Klebsiella, Aspergillus, Rhizopus, and Penicillium. Pseudomonas aeruginosa CDB-06 and species of Bacillus CDB-08 and Penicillium CDF-10 degraded the crude oil at exceedingly high rates. Pseuedomonas aeruginosa CDB-06 degraded 65.5 percent of the crude oil after 16 days, while Bacillus sp. CDB-08, and Penicillium sp. CDF-10 degraded 65.3 percent, and 53.3 percent, respectively of the crude oil over the same period. The chicken droppings also had a pH 7.3, 18.5 percent moisture content, 2.3 percent total nitrogen, and 0.5 percent available phosphorus. Addition of oil polluted soil (10 percent (v/w) pollution level) with chicken droppings enhanced degradation of the crude oil in the soil. 68.2 percent of the crude oil was degraded in the soil amended with chicken droppings, whereas only 50.7 percent of the crude oil was degraded in the unamended soil after 16 days. The amendment raised the acidic reaction (pH 5.7) of the oil-polluted soil to alkaline (pH 7.2) within 16 days. Chicken droppings could, therefore, be used in an integrated oil pollution abatement program.  相似文献   

20.
/ Despite their fast growth, tropical plantations are a small sink of atmospheric carbon because they occupy only a small area in relation to other land uses worldwide. Proper design and management of plantations can increase biomass accumulation rates, making them more effective C sinks. However, fast-growing plantations can extract large amounts of nutrients from the soil, and site fertility declines may limit sustained plantation forestry after a few rotations. We measured aboveground biomass accumulation, carbon sequestration, and soil chemistry in three young plantations of 12 indigenous tree species in pure and mixed designs in the humid lowlands of Costa Rica. Annual biomass increments for the three mixed plantations ranged from 10-13 Mg/ha. The mixtures of four species gave higher biomass per hectare than that obtained by the sum of one fourth hectare of each species in pure plots. At this early age of the plantations, estimated annual C sequestration values were comparable to other reports from young plantations of exotic species commonly grown in the tropics. Four years after planting, decreases in soil nutrients were apparent in pure plots of some of the fastest growing species, while beneficial effects on soils were noted under other species. The mixed plots showed intermediate values for the nutrients examined and, sometimes, improved soil conditions. A mixture of fast and slower growing species yields products at different times, with the slower growing species constituting a longer term sink for fixed carbon. Examination of the role of tropical plantations as C sinks necessitates integrative approaches that consider rates of C sequestration, potential deleterious effects on ecosystem nutrients, and economic, social, and environmental constraints.KEY WORDS: Native trees; Aboveground biomass; Stem increments; Rotation length; Soil nutrients; Economics  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号