首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
汪磊  孙红文 《生态环境》2004,13(3):420-424
异相催化是催化反应的重要组成部分,其应用十分广泛。固一液异相催化作为环境科学领域中的一项比较新颖的技术,在研究污染物在多介质环境中的迁移转化行为、开发受污染环境修复及污废水处理新技术等诸多方面都具有很大的发展潜力。因此,对不同类型固一液异相催化剂在环境科学领域的应用研究逐渐成为国内外环境科学领域的研究热点之一。其中,金属和金属氧化物因对某些氧化一还原反应具有较好的催化作用,在饮用水脱氮、污废水脱卤及深度氧化处理等水处理领域的应用较为广泛;固态酸催化剂能催化聚合、裂化、水解反应,因此与某些有机污染物的降解密切相关;将同相催化剂固定化为异相催化剂,同样成为新技术开发的方向之一;天然催化剂对污染物在多介质环境中行为影响的研究近年来也屡有发表。此外,载体因对催化剂的活性及应用具有重要影响,也日益受到关注。文章对环境科学领域中固一液异相催化剂的应用研究进行了综述。  相似文献   

2.

The energy crisis and environmental pollution have recently fostered research on efficient methods such as environmental catalysis to produce biofuel and to clean water. Environmental catalysis refers to green catalysts used to breakdown pollutants or produce chemicals without generating undesirable by-products. For example, catalysts derived from waste or inexpensive materials are promising for the circular economy. Here we review environmental photocatalysis, biocatalysis, and electrocatalysis, with focus on catalyst synthesis, structure, and applications. Common catalysts include biomass-derived materials, metal–organic frameworks, non-noble metals nanoparticles, nanocomposites and enzymes. Structure characterization is done by Brunauer–Emmett–Teller isotherm, thermogravimetry, X-ray diffraction and photoelectron spectroscopy. We found that water pollutants can be degraded with an efficiency ranging from 71.7 to 100%, notably by heterogeneous Fenton catalysis. Photocatalysis produced dihydrogen (H2) with generation rate higher than 100 μmol h−1. Dihydrogen yields ranged from 27 to 88% by methane cracking. Biodiesel production reached 48.6 to 99%.

  相似文献   

3.
For effective wastewater reclamation and water recovery, the treatment of natural and effluent organic matters (NOM and EfOM), toxic anions, and micropollutants was considered in this work. Two different NOM (humic acid of the Suwannee River, and NOM of US and Youngsan River, Korea), and one EfOM from the Damyang wastewater treatment plant, Korea, were selected for investigating the removal efficiencies of tight nanofiltration (NF) and ultrafiltration (UF) membranes with different properties. Nitrate, bromate, and perchlorate were selected as target toxic anions due to their well known high toxicities. Tri-(2-chloroethyl)-phosphate (TCEP), oxybenzone, and caffeine, due to their different K ow and pK a values, were selected as target micropollutants. As expected, the NF membranes provided high removal efficiencies in terms of all the tested contaminants, and the UF membrane provided fairly high removal efficiencies for anions (except for nitrate) and the relatively hydrophobic micropollutant, oxybenzon. Through the wetlands, nitrate was successfully removed. Therefore, a fair process of combining membranes with an engineered wetland could be proposed for sustainable wastewater reclamation and optimum control of contaminats.  相似文献   

4.
两相分配生物反应器治理高浓度有机污染研究进展   总被引:1,自引:0,他引:1  
高浓度有机污染物难以进行生物降解的主要原因之一是其会对微生物产生较大毒害作用而抑制微生物生长以及降解过程,而两相分配生物反应器(Two-phase partitioning bioreactor,TPPB)可以有效解决污染物毒性的问题,因而在高浓度有机污染治理中具有较大的应用潜力.本文系统介绍了TPPB类型以及各自的工作原理,即TPPB通过非水相的引入可以溶解系统内大部分有机污染物,减少水相中污染物的浓度,降低其对微生物的毒性,并通过微生物的代谢活动实现污染物的降解,随着降解过程的进行污染物在两相间的分配平衡不断被打破,污染物又不断从非水相进入到水相之中,使得微生物的降解过程持续进行.同时分析了反应过程中的各种影响因素,如传质速率、微生物影响等,进而阐述了该技术在水体、土壤、大气污染治理中的应用,最后根据目前的研究进展,对TPPB技术的工程应用前景进行了展望.  相似文献   

5.
过氧乙酸(peracetic acid,PAA)是一种广谱、高效、环保型消毒剂.近年来,基于活化过氧乙酸的高级氧化技术由于适用pH范围广、产生毒副产物少及具备一定剩余消毒能力等优点在水体有机污染物去除方面受到了越来越多的关注.本文介绍了PAA的性质,综述了活化PAA技术去除水体有机污染物的基本原理及研究现状,分析了活化PAA技术去除有机污染物的主要影响因素(pH及水质组分).最后提出了该技术目前面临的问题及未来发展方向,以期为开发可实际应用于饮用水/污水深度处理的活化PAA技术提供借鉴.  相似文献   

6.
• Applications of non-thermal plasma reactors for reduction of VOCs were reviewed. • Dielectric barrier discharge (DBD) plasma was considered. • Effect of process parameters was studied. • Effect of catalysts and inhibitors were evaluated. Volatile organic compounds (VOCs) released from the waste treatment facilities have become a significant issue because they are not only causing odor nuisance but may also hazard to human health. Non-thermal plasma (NTP) technologies are newly developed methods and became a research trend in recent years regarding the removal of VOCs from the air environment. Due to its unique characteristics, such as bulk homogenized volume, plasma with high reaction efficiency dielectric barrier discharge (DBD) technology is considered one of the most promising techniques of NTP. This paper reviews recent progress of DBD plasma technology for abatement of VOCs. The principle of plasma generation in DBD and its configurations (electrode, discharge gap, dielectric barrier material, etc.) are discussed in details. Based on previously published literature, attention has been paid on the effect of DBD configuration on the removal of VOCs. The removal efficiency of VOCs in DBD reactors is presented too, considering various process parameters such as initial concentration, gas feeding rate, oxygen content and input power. Moreover, using DBD technology, the role of catalysis and inhibitors in VOCs removal are discussed. Finally, a modified configuration of the DBD reactor, i.e. double dielectric barrier discharge (DDBD) for the abatement of VOCs is discussed in details. It was suggested that the DDBD plasma reactor could be used for higher conversion efficiency as well as for avoiding solid residue deposition on the electrode. These depositions can interfere with the performance of the reactor.  相似文献   

7.
Catalytic wet air oxidation (CWAO) is one of the most promising technologies for pollution abatement. Developing catalysts with high activity and stability is crucial for the application of the CWAO process. The Mn/Ce complex oxide catalysts for CWAO of high concentration phenol-containing wastewater were prepared by coprecipitation. The catalyst preparation conditions were optimized by using an orthogonal layout method and single-factor experimental analysis. The Mn/Ce serial catalysts were characterized by Brunauer-Emmett-Teller (BET) analysis and the metal cation leaching was measured by inductively coupled plasma torch-atomic emission spectrometry (ICP-AES). The results show that the catalysts have high catalytic activities even at a low temperature (80°C) and low oxygen partial pressure (0.5 MPa) in a batch reactor. The metallic ion leaching is comparatively low (Mn<6.577 mg/L and Ce<0.6910 mg/L, respectively) in the CWAO process. The phenol, CODCr, and TOC removal efficiencies in the solution exceed 98.5% using the optimal catalyst (named CSP). The new catalyst would have a promising application in CWAO treatment of high concentration organic wastewater.  相似文献   

8.
普遍认为,邻苯二甲酸酯类物质(Phthalic Acid Esters,PAEs)是内分泌干扰物质(Endocrine Disrupting Chemicals,EDCs),被广泛应用于增塑剂、化妆品中,具有致畸性,致癌性,致突变性以及拟/抗雌激素活性、拟/抗甲状腺激素活性等内分泌干扰特性。邻苯二甲酸酯类物质很容易扩散到环境中,在土壤、大气、水环境中均有检出,是环境中常见污染物,严重威胁人体健康和生态环境,已经引起国内外的广泛关注。在综述邻苯二甲酸酯类物质的物理化学性质、毒性影响、国内外天然水体、地下水和生活污水中的污染现状的基础上,讨论消除水环境中PAEs污染的强化混凝、吸附、膜处理、生物处理和高级氧化技术。高级氧化技术因其能够快速有效地去除饮用水和污水中不同种类的有机污染物而备受关注,且发展迅速。重点介绍了高级催化氧化法对水环境中PAEs的去除,包括催化湿式过氧化物氧化过程,催化臭氧氧化过程,光催化氧化过程,超声波、微波辅助催化氧化过程以及高级纳米催化氧化过程。其中,Fenton催化氧化技术在氧化过程中通过使用催化剂或协同紫外光等方式产生高度反应性羟基自由基,可无选择性地将PAEs完全降解为无毒无害的小分子物质,对PAEs的氧化去除效果最好。虽然在高级氧化过程中应用催化剂可大大提高氧化效率和降解程度,但催化氧化法耗能较大、催化剂消耗量大、受水体pH值的影响,且研究大多限于实验室阶段,未能大量投入工业应用,需要进一步发展创新。因此,开发新型高效催化剂、提高催化剂选择性、优化催化氧化反应条件、优化设计催化反应器、与其他技术耦合是水体中PAEs类环境激素污染控制技术的发展方向。  相似文献   

9.
新型溴系阻燃剂(NBFRs, novel brominated flame retardants)作为传统溴系阻燃剂的替代品已广泛应用于电子产品、纺织品、家具等商品中,随着这些商品的生产、使用和处置,NBFRs不可避免地释放到环境中,给环境和人体带来潜在的危害.部分NBFRs可通过摄食和呼吸作用进入人体对人体产生一定危害,已被证明具有潜在的生物毒性.而NBFRs的环境污染现状研究对控制NBFRs的污染具有重要意义.近年来有不少研究者对不同环境基质中的NBFRs进行了定量测定.基于这些研究成果,本文综述了近年来环境中NBFRs的研究现状、进展,重点介绍了水体、沉积物和大气中NBFRs的含量分布.多种类型水体中NBFRs的浓度水平在ng·L-1至μg·L-1之间,浓度受地区工业生产和季节等因素影响,且不同污水处理系统对水体中NBFRs的去除效率具有一定差异;NBFRs倾向于分布在富含有机碳的介质中,沉积物中NBFRs的含量在ng·g-1至μg·g-1级别,浓度与地区工业生产、化合物性质以及总有机碳含量等因素有关;大气中的NBFRs倾向吸附于颗粒相中,在两相中的含量分别为pg·m-3和ng·g-1级别,其含量受环境因素影响较为复杂.  相似文献   

10.
Contamination of wastewater by organic pollutants is a major worldwide issue. For instance plastic additives such as phthalates are found in wastewater. Efficient techniques are thus needed to clean wastewaters. The Fenton reaction involving H2O2 and Fe(II) salts can be used to treat polluted water. During the Fenton reaction pollutants are decomposed directly by hydroxyl radicals. In some cases toxic by-products are produced. Here dimethyl phthalate, diethyl phthalate, and dipropyl phthalate by-products formed during the Fenton reaction were studied. Fenton degradation of selected phthalates yielded numerous transformation products such as hydroxylated phthalates. The hydroxylation reaction occurred at the aromatic ring of phthalates and yielded mono- and dihydroxylated phthalates. For monohydroxylated phthalate, 3-hydroxy- and 4-hydroxydialkylphthalates are the main transformation products. In addition to hydroxylated derivatives, aliphatic chain degraded mono- and dihydroxylated phthalates were also detected.  相似文献   

11.
This paper computes the efficient air pollution abatement ratios of 30 regions in China during the period 1996–2002. Three air emissions (SO2, soot and dust) are considered. Data envelopment analysis (DEA) with a single output (real GDP) and five inputs (labour, real capital stock, SO2, dust and soot emissions) is used to compute the target emissions of each region for each year. The efficient abatement ratios of each region in each year are then obtained by dividing the target emission by the actual emission of an air pollutant. Our major findings are: 1. The eastern area is the most efficient region with respect to SO2, soot and dust emissions in every year during the research period. 2. The eastern, central and western areas have the lowest, medium and highest 1996–2002 average target abatement ratios of SO2 (22.09%, 42.23% and 57.58%), soot (26.19%, 56.34% and 66.37%) and dust (15.20%, 29.09% and 40.59%), respectively. 3. These results are consistent with the Environmental Kuznets Curve (EKC) theory, whereby a more developed area will use environmental goods more efficiently than a less developed area. 4. Compared to dust emission, the average target abatement ratios for SO2 and soot emissions (as direct outcomes of burning coal) are relatively much higher for all three areas.  相似文献   

12.
Treating water contaminants via heterogeneously catalyzed reduction reaction is a subject of growing interest due to its good activity and superior selectivity compared to conventional technology, yielding products that are non-toxic or substantially less toxic. This article reviews the application of catalytic reduction as a progressive approach to treat different types of contaminants in water, which covers hydrodehalogenation for wastewater treatment and hydrogenation of nitrate/nitrite for groundwater remediation. For hydrodehalogenation, an overview of the existing treatment technologies is provided with an assessment of the advantages of catalytic reduction over the conventional methodologies. Catalyst design for feasible catalytic reactions is considered with a critical analysis of the pertinent literature. For hydrogenation, hydrogenation of nitrate/nitrite contaminants in water is mainly focused. Several important nitrate reduction catalysts are discussed relating to their preparation method and catalytic performance. In addition, novel approach of catalytic reduction using in situ synthesized H2 evolved from water splitting reaction is illustrated. Finally, the challenges and perspective for the extensive application of catalytic reduction technology in water treatment are discussed. This review provides key information to our community to apply catalytic reduction approach for water treatment.
  相似文献   

13.
For biological nitrogen (N) removal from wastewater, a sufficient organic carbon source is requested for denitrification. However, the organic carbon/nitrogen ratio in municipal wastewater is becoming lower in recent years, which increases the demand for the addition of external organic carbon, e.g. methanol, in wastewater treatment. The volatile fatty acids (VFAs) produced by acidogenic fermentation of sewage sludge can be an attractive alternative for methanol. Chemically enhanced primary sedimentation (CEPS) is an effective process that applies chemical coagulants to enhance the removal of organic pollutants and phosphorus from wastewater by sedimentation. In terms of the chemical and biological characteristics, the CEPS sludge is considerably different from the conventional primary and secondary sludge. In the present study, FeCl3 and PACl (polyaluminum chloride) were used as the coagulants for CEPS treatment of raw sewage. The derived CEPS sludge (Fe-sludge and Al-sludge) was then processed with mesophilic acidogenic fermentation to hydrolyse the solid organics and produce VFAs for organic carbon recovery, and the sludge acidogenesis efficiency was compared with that of the conventional primary sludge and secondary sludge. The results showed that the Fe-sludge exhibited the highest hydrolysis and acidogenesis efficiency, while the Al-sludge and secondary sludge had lower hydrolysis efficiency than that of primary sludge. Utilizing the Fe-sludge fermentation liquid as the carbon source for denitrification, more than 99% of nitrate removal was achieved in the main-stream wastewater treatment without any external carbon addition, instead of 35% obtained from the conventional process of primary sedimentation followed by the oxic/anoxic (O/A) treatment.
  相似文献   

14.
Nowadays, the water ecosystem is being polluted due to the rapid industrialization and massive use of antibiotics, fertilizers, cosmetics, paints, and other chemicals. Chemical oxidation is one of the most applied processes to degrade contaminants in water. However, chemicals are often unable to completely mineralize the pollutants. Enhanced pollutant degradation can be achieved by Fenton reaction and related processes. As a consequence, Fenton reactions have received great attention in the treatment of domestic and industrial wastewater effluents. Currently, homogeneous and heterogeneous Fenton processes are being investigated intensively and optimized for applications, either alone or in a combination of other processes. This review presents fundamental chemistry involved in various kinds of homogeneous Fenton reactions, which include classical Fenton, electro-Fenton, photo-Fenton, electro-Fenton, sono-electro-Fenton, and solar photoelectron-Fenton. In the homogeneous Fenton reaction process, the molar ratio of iron(II) and hydrogen peroxide, and the pH usually determine the effectiveness of removing target pollutants and subsequently their mineralization, monitored by a decrease in levels of total organic carbon or chemical oxygen demand. We present catalysts used in heterogeneous Fenton or Fenton-like reactions, such as H2O2–Fe3+(solid)/nano-zero-valent iron/immobilized iron and electro-Fenton-pyrite. Surface properties of heterogeneous catalysts generally control the efficiency to degrade pollutants. Examples of Fenton reactions are demonstrated to degrade and mineralize a wide range of water pollutants in real industrial wastewaters, such as dyes and phenols. Removal of various antibiotics by homogeneous and heterogeneous Fenton reactions is exemplified.  相似文献   

15.
Environmental pollution and climate change are requiring new methods to clean pollutants and produce sustainable energy. Aerogels and metal organic frameworks are emerging as advanced porous materials with higher functionality, high surface area, high porosity and flexible chemistry. Aerogels are dried gels prepared using the sol–gel procedure, whereas metal organic frameworks are networks of organic ligands and metal ions connected by coordination bonds. Applications of aerogels include the removal of heavy metals, CO2 capture and reduction, photodegradation of pollutants, air cleanup and water splitting. This article reviews the synthesis and types of aerogels and metal organic frameworks, and the application to pollutant removal, energy production including hydrogen, methane reforming, CO2 conversion and NOx removal.  相似文献   

16.
Monosodium glutamate (MSG) effluent was sampled from three MSG mills and 21 metal elements were measured with a inductively coupled plasma (ICP) Spectrometer. The total metal concentration of each MSG wastewater sample was 19192, 3190 and 3161 mg/L respectively. Compared with the water quality standard issued by the Chinese Government and the World Health Organization (WHO), some values were found to exceed the standards. The 24hr‐LC50, 48hr‐LC50, 72hr‐LC50 and 96hr‐LC50 to the fish Ctenopharyngodon idellus were 6.9%, 3.2%, 2.5% and 1.4% MSG wastewater individually. The specific growth rate for photosynthetic bacteria (PSB) Rhodopseudomonas sphaeroides was inhibited by the metals in MSG wastewater. Therefor the MSG wastewater should not be discharged into drinking, irrigation and fishery water systems, moreover it cannot be treated by general biological processes efficiently. How to develop an effective biotechnique for the utilization of organic pollutants in MSG effluent will also be discussed in this paper.  相似文献   

17.
Review of fly ash inertisation treatments and recycling   总被引:1,自引:0,他引:1  
Fly ash (FA) is a by-product of power, and incineration plants operated either on coal and biomass, or on municipal solid waste. FA can be divided into coal fly ash, obtained from power plant burning coal, flue gas desulphurisation FA, that is, the by-product generated by the air pollution control equipment in coal-fired power plants to reduce the release of SO2, biomass FA produced in the plants for thermal conversion of biomass and municipal solid waste incineration (MSWI) FA, that is, the finest residue obtained from the scrubber system in a MSWI plant. Because of the large amount produced in the world, fly ash is now considered the world’s fifth largest material resource. The composition of FA is very variable, depending on its origins; then, also pollutants can be very different. In this frame, it is fundamental to exploit the chemical or physical potentials of FA constituents, thus rendering them second-life functionality. This review paper is addressed to FA typology, composition, treatment, recycling, functional reuse and metal and organic pollutants abatement. Because of the general growing of environmental awareness and increasing energy and material demand, it is expected that increasing recycling rates will reduce the pressure on demand for primary raw materials, help to reuse valuable materials which would otherwise be wasted and reduce energy consumption and greenhouse gas emissions from extraction and processing.  相似文献   

18.
广东集约化养猪业的环境影响及其防治对策   总被引:4,自引:0,他引:4  
分析和评价了广东省养猪场粪尿废水排放总量、污染物排放强度和废水治理现状,指出集约化养猪业对地表水、地下水、空气污染的严重性。养猪业排放的团体废弃物总量超过生活垃圾与了业固体废物总量;COD排放总量与生活废水及工业废水排放COD总量接近,并已排放大量的N、P、K等营养盐。养猪业已成为主要的有机污染源和N等营养盐污染源,分析厂养猪业污染防治中存在的问题,提出采用综合防治的方法解决广东省集约化养猪场污染问题。  相似文献   

19.
This paper extends earlier work on the standards and prices approach to pollution control by considering simultaneously spatial considerations, interactive pollutants, and joint abatement costs. The form of environmental constraints appropriate to water pollution problems is discussed in detail and the implications for the standards and prices approach to water pollution control are assessed. The presence of interactive pollutants and joint abatement costs is shown to have important implications for both the theoretical properties and the implementation of the standards and prices approach.  相似文献   

20.
An increasing number of organic compounds are manufactured, consumed, and discarded every year. Incomplete destruction of these compounds in wastewater treatment plants leads to pollution of natural waters, posing great health and ecological concerns. Ultrasound, as an emerging advanced oxidation technology, can quickly and effectively degrade organic pollutants in waters. To improve removal efficiency of organic pollutants in an ultrasonic system, operational parameters, especially pH, have been frequently evaluated and optimized. This review show that pH-induced changes in volatility, hydrophobicity and Coulombic force between the target compound and cavitation bubbles leads to higher degradation at acidic pH for most compounds. In addition, pH also changes free radical formation and reactivity in water during sonication, thereby altering degradation kinetics of target compounds. However, the influence of pH is not always consistent for various organic pollutants covering a broad range of physicochemical properties and reactivities. A systematic investigation on the pH effect is necessary to elucidate how pH alters cavitation bubble dynamics and collapse, radical yield and reactivity, distribution of target compounds in the vicinity of cavitation bubbles, water matrices transformation, and ultimately the degradation kinetics of organic pollutants. This first systematic review provides valuable insight into the pH effects on organic pollutant sonolysis, helps to improve our mechanistic understanding of the sonochemical system, and sheds light on future application of ultrasound in water engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号