首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, the well-known case of day 33 of the Wangara experiment is resimulated using the Weather Research and Forecasting (WRF) model in an idealized single-column mode to assess the performance of a frequently used planetary boundary layer (PBL) scheme, the Yonsei University PBL scheme. These results are compared with two large eddy simulations for the same case study imposing different surface fluxes: one using previous surface fluxes calculated for the Wangara experiment and a second one using output from the WRF model. Finally, an alternative set of eddy diffusivity equations was tested to represent the transition characteristics of a sunset period, which led to a gradual decrease of the eddy diffusivity, and replaces the instantaneous collapse of traditional diagnostics for eddy diffusivities. More appreciable changes were observed in air temperature and wind speed (up to 0.5 K, and 0.6 m s?1, respectively), whereas the changes in specific humidity were modest (up to 0.003 g kg?1). Although the representation of the convective decay in the standard parameterization did not show noticeable improvements in the simulation of state variables for the selected Wangara case study day, small changes in the eddy diffusivity over consecutive hours throughout the night can impact the simulation of distribution of trace gases in air quality models. So, this work points out the relevance of simulating the turbulent decay during sunset, which could help air quality forecast models to better represent the distribution of pollutants storage in the residual layer during the entire night.  相似文献   

2.
Mesoscale transport and dispersion of air pollutants from a few major point sources in the Mississippi Gulf coastal region is calculated using a coupled modeling system consisting of the atmospheric dynamical model WRF and the lagrangian particle model HYSPLIT. The sensitivity of the dispersion model results to the meteorological fields is studied by conducting an ensemble of simulations using the WRF model for the same dispersion case. Several parameterization schemes for the physical processes of boundary layer turbulence and land surface temperature/moisture prediction in WRF are used in various combinations to produce different meteorological members which are then used for dispersion simulation. The uncertainty in the simulated concentration probabilities to the meteorological model configurations and the ensemble mean are presented. The parameters used for determining the uncertainties include the wind fields, temperature, area of concentration and the levels of concentration. The results indicate that dispersion model results are influenced by the choices made in respect of the planetary boundary layer and land surface schemes in the mesoscale model to produce the meteorological forecast thereby leading to certain amount of uncertainty in the resultant concentrations. Results show that the specific choices made about the atmospheric model configuration can significantly after the simulated concentrations.  相似文献   

3.
Numerical simulations of the evolution of the planetary boundary layer (PBL) and nocturnal low-level jets (LLJ) have been carried out using MM5 (version 3.3) with four-dimensional data assimilation (FDDA) for a high pollution episode in the northeastern United States during July 15–20, 1999. In this paper, we assess the impact of different parameterizations on the PBL evolution with two schemes: the Blackadar PBL, a hybrid local (stable regime) and non-local (convective regime) mixing scheme; and the Gayno–Seaman PBL, a turbulent kinetic energy (TKE)-based eddy diffusion scheme. No FDDA was applied within the PBL to evaluate the ability of the two schemes to reproduce the PBL structure and its temporal variation. The restriction of the application of FDDA to the atmosphere above the PBL or the lowest 8 model levels, whichever is higher, has significantly improved the predicted strength and timing of the LLJ during the night. A systematic analysis of the PBL evolution has been performed for the primary meteorological fields (temperature, specific humidity, horizontal winds) and for the derived parameters such as the PBL height, virtual potential temperature, relative humidity, and cloud cover fraction. There are substantial differences between the PBL structures and evolutions simulated by these two different schemes. The model results were compared with independent observations (that were not used in FDDA) measured by aircraft, RASS and wind profiler, lidar, and tethered balloon platforms during the summer of 1999 as part of the NorthEast Oxidant and Particle Study (NE-OPS). The observations tend to support the non-local mixing mechanism better than the layer-to-layer eddy diffusion in the convective PBL.  相似文献   

4.
In the present article, the potential of embedded large eddy simulation (ELES) approach to reliably predict pollutant dispersion around a model building in atmospheric boundary layer is assessed. The performance of ELES in comparison with large eddy simulation (LES) is evaluated in several ways. These include a number of qualitative and quantitative comparisons of time-averaged and instantaneous results with wind tunnel measurements supplemented by statistical data analyses using scatter plots and standard evaluation metrics. Results obtained by both LES and ELES approaches show very good agreement with the experiment. However, addition of turbulence to mean flow at Reynolds averaged Navier–Stokes (RANS)–LES interface in ELES approach not only increases the turbulence intensity, it also results in larger values of turbulent kinetic energy (TKE) as well as a shorter reattachment length in the wake region. Accordingly, higher levels of TKE predicted by ELES increase the local intensity of concentration leading to shorter plume shapes as compared with LES. In general, ELES shows better agreement with experiment on the surfaces of model building and also in the downstream wake region. In terms of computational costs, the CPU time required to obtain statistical values in ELES is about 49 % lower than that of LES and the number of iterations per time step is also reduced by 55 % as compared with LES.  相似文献   

5.
Theoretical analysis of boundary layer turbulence has suggested a feasibility of sufficiently accurate turbulence resolving simulations at relatively coarse meshes. However, large eddy simulation (LES) codes, which employ traditional eddy-viscosity turbulence closures, fail to provide adequate turbulence statistics at coarse meshes especially within a surface layer. Manual tuning of parameters in these turbulence closures may correct low order turbulence statistics but severely harms spectra of turbulence kinetic energy (TKE). For more than decade, engineering LES codes successfully employ dynamic turbulence closures. A dynamic Smagorinsky turbulence closure (DSM) has been already tried in environmental LES. The DSM is able to provide adequate turbulence statistics at coarse meshes but it is not completely consistent with the LES equations. This paper investigates applicability of an advanced dynamic mixed turbulence closure (DMM) to simulations of Ekman boundary layers of high Reynolds number flows. The DMM differs from the DSM by explicit calculation of the Leonard term in the turbulence stress tensor. The Horizontal Array Turbulence Study (HATS) field program has revealed that the Leonard term is indeed an important component of the real turbulence stress tensor. This paper presents validation of a new LES code LESNIC. The study shows that the LES code with the DMM provides rather accurate low order turbulence statistics and the TKE spectra at very coarse meshes. These coarse LES maintain more energetic small scale fluctuations of velocity especially within the surface layer. This is critically important for success of simulations. Accurate representation of higher order turbulence statistics, however, requires essentially better LES resolution. The study also shows that LES of the Ekman boundary layer cannot be directly compared with conventionally neutral atmospheric boundary layers. The depth of the boundary layer is an important scaling parameter for turbulence statistics.  相似文献   

6.
In the present paper, we use numerical simulation to investigate currents, mixing and water renewal in Barcelona harbour under typical conditions of wind forcing for the winter season. This site is of particular importance due to the interplay between touristic and commercial activities, requiring detailed and high-definition studies of water quality within the harbour. We use Large Eddy Simulation (LES) which directly resolves the anisotropic and energetic large scales of motion and parametrizes the small, dissipative, ones. Small-scale turbulence is modelled by the anisotropic Smagorinsky model (ASM) to be employed in presence of large cell anisotropy. The complexity of the harbour is modelled using a combination of curvilinear, structured, non-staggered grid and the immersed boundary method. Boundary conditions for wind and currents at the inlets of the port are obtained from in-situ measurements. Analysis of the numerical results is carried out based on both instantaneous and time-averaged velocity fields. First- and second-order statistics, such as turbulent kinetic energy and horizontal and vertical eddy viscosities, are calculated and their spatial distribution is discussed. The study shows the presence of intense current in the narrow and elongated part of the harbour together with sub-surface along-shore elongated rolling structures (with a time scale of a few hours), and they contribute to the vertical water mixing. Time-averaged velocity field reveals intense upwelling and downwelling zones along the walls of the harbour. The analysis of second-order statistics shows strong inhomogeneity of turbulent kinetic energy and horizontal and vertical eddy viscosities in the horizontal plane, with larger values in the regions characterized by stronger currents. The water renewal within the port is quantified for particular sub-domain regions, showing that the complexity of the harbour is such that certain in-harbour basins have a water renewal of over five days, including the yacht marina area. The LES solution compares favourably with available current-meter data. The LES solution is also compared with a RANS solution obtained in literature for the same site under the same forcing conditions, the comparison demonstrating a large sensitivity of properties to model resolution and frictional parametrization.  相似文献   

7.
8.
Turbulence closures are fundamental for modelling the atmospheric diffusion in numerical codes and the resulting eddy diffusivities are key parameters in describing the transport and dispersion in the boundary layer. In this work, four turbulence closure schemes have been applied for reproducing a neutral flow over schematic complex terrain using the meteorological model RAMS. Two of the closures, a one-equation (E-l) and a two-equations (E-) model, have been implemented in RAMS in alternative to the ones originally available. In these cases, an analytical method based on the similarity theory for the atmospheric surface layer and boundary layer is adopted to calculate the empirical constants of the turbulence closures. Some examples of numerical studies performed to simulate the flow and turbulence over a 3-D hill in wind-tunnel experiment in neutral stratification are presented and discussed. An intercomparison of simulations related to different closures is considered by analysing the main features of the flow over the hill and by comparing calculated vertical profiles of turbulent kinetic energy with measured ones.  相似文献   

9.
Subgrid-scale (SGS) modeling is a long-standing problem and a critical component in the large-eddy simulation (LES) of atmospheric boundary layer. A variety of SGS models with different levels of sophistication have been proposed for different needs, such as Smagorinsky's (1963) eddy viscosity model, Mason and Thomson's (1992) stochastic backscattering model, and Sullivan et al.'s (1994) near surface model. A modified Smagorinsky SGS model has been used in the LES version of Terminal Area Simulation System (TASS-LES). It has successfully simulated the buoyancy-dominated, convective atmospheric boundary layer flows, while simulations of the shear-dominated, slightly unstable, neutral, and stably stratified boundary layer flows are not so good. For the later, we used a simpler version of Sullivan et al.'s subgrid-scale model in which turbulent kinetic energy equation is not included and the model is still the first-order closure. A momentum profile matching approach is adopted in the proposed model. A series of simulations for shear-dominated, slightly unstable and neutral boundary layers are performed using different subgrid-scale models and different grid resolutions. The results are compared with those of Sullivan et al. (1994) and with empirical similarity relations for the surface layer. The simulations with the new SGS model appear to be far more satisfactory than those with the modified Smagorinsky model.  相似文献   

10.
In large-eddy simulations of atmospheric boundary layer turbulence, the lumped coefficient in the eddy-diffusion subgrid-scale (SGS) model is known to depend on scale for the case of inert scalars. This scale dependence is predominant near the surface. In this paper, a scale-dependent dynamic SGS model for the turbulent transport of reacting scalars is implemented in large-eddy simulations of a neutral boundary layer. Since the model coefficient is computed dynamically from the dynamics of the resolved scales, the simulations are free from any parameter tuning. A set of chemical cases representative of various turbulent reacting flow regimes is examined. The reactants are involved in a first-order reaction and are injected in the atmospheric boundary layer with a constant and uniform surface flux. Emphasis is placed on studying the combined effects of resolution and chemical regime on the performance of the SGS model. Simulations with the scale-dependent dynamic model yield the expected trends of the coefficients as function of resolution, position in the flow and chemical regime, leading to resolution-independent turbulent reactant fluxes.  相似文献   

11.
LES validation of urban flow,part II: eddy statistics and flow structures   总被引:1,自引:0,他引:1  
Time-dependent three-dimensional numerical simulations such as large-eddy simulation (LES) play an important role in fundamental research and practical applications in meteorology and wind engineering. Whether these simulations provide a sufficiently accurate picture of the time-dependent structure of the flow, however, is often not determined in enough detail. We propose an application-specific validation procedure for LES that focuses on the time dependent nature of mechanically induced shear-layer turbulence to derive information about strengths and limitations of the model. The validation procedure is tested for LES of turbulent flow in a complex city, for which reference data from wind-tunnel experiments are available. An initial comparison of mean flow statistics and frequency distributions was presented in part I. Part II focuses on comparing eddy statistics and flow structures. Analyses of integral time scales and auto-spectral energy densities show that the tested LES reproduces the temporal characteristics of energy-dominant and flux-carrying eddies accurately. Quadrant analysis of the vertical turbulent momentum flux reveals strong similarities between instantaneous ejection-sweep patterns in the LES and the laboratory flow, also showing comparable occurrence statistics of rare but strong flux events. A further comparison of wavelet-coefficient frequency distributions and associated high-order statistics reveals a strong agreement of location-dependent intermittency patterns induced by resolved eddies in the energy-production range. The validation concept enables wide-ranging conclusions to be drawn about the skill of turbulence-resolving simulations than the traditional approach of comparing only mean flow and turbulence statistics. Based on the accuracy levels determined, it can be stated that the tested LES is sufficiently accurate for its purpose of generating realistic urban wind fields that can be used to drive simpler dispersion models.  相似文献   

12.
Accurate determination of the planetary boundary layer (PBL) height (i.e., mixing height (MH)) is critical to properly simulating pollutant levels with the grid-based photochemical models. In this study, the daytime mixing heights based on the parcel and bulk Richardson number methods are compared with those obtained directly from a numerical mesoscale meteorological model in an effort to evaluate the uncertainties in the estimation of the PBL evolution. Mixing heights are estimated from hourly outputs of meteorological variables of the Penn State/NCAR Mesoscale Model Version 3.3 (MM5V3) with two PBL schemes (Blackadar and Gayno-Seaman) during July 1999 over Philadelphia, PA. An analysis of the diurnal variation in the urban PBL and its influence on ground-level ozone (O3) levels is presented in this paper. The results indicate that on average, the MHs determined from the bulk Richardson number were larger than those estimated from the parcel method. The MHs from the MM5V3 output were much smaller than those derived from the parcel and bulk Richardson number methods, especially for the Gayno-Seaman scheme that is based on turbulent kinetic energy. The MH and ground-level O3 concentration have been found to be twice as much on episode days than on non-episode days. The average hourly MH growth rate and O3 tendency (i.e. rate of change in O3) were largest during the morning hours (0700 to 1000 eastern standard time (EST)), suggesting that vertical mixing contributes significantly to the accumulation of ground-level O3 in urban areas in the morning hours.  相似文献   

13.
• The Large scale Urban Consumption of energY model was updated and coupled with WRF. • Anthropogenic heat emissions altered the precipitation and its spatial distribution. • A reasonable AHE scheme could improve the performance of simulated PM2.5. • AHE aggravated the O3 pollution in urban areas. Anthropogenic heat emissions (AHE) play an important role in modulating the atmospheric thermodynamic and kinetic properties within the urban planetary boundary layer, particularly in densely populated megacities like Beijing. In this study, we estimate the AHE by using a Large-scale Urban Consumption of energY (LUCY) model and further couple LUCY with a high-resolution regional chemical transport model to evaluate the impact of AHE on atmospheric environment in Beijing. In areas with high AHE, the 2-m temperature (T2) increased to varying degrees and showed distinct diurnal and seasonal variations with maxima in night and winter. The increase in 10-m wind speed (WS10) and planetary boundary layer height (PBLH) exhibited slight diurnal variations but showed significant seasonal variations. Further, the systematic continuous precipitation increased by 2.1 mm due to the increase in PBLH and water vapor in upper air. In contrast, the precipitation in local thermal convective showers increased little because of the limited water vapor. Meanwhile, the PM2.5 reduced in areas with high AHE because of the increase in WS10 and PBLH and continued to reduce as the pollution levels increased. In contrast, in areas where prevailing wind direction was opposite to that of thermal circulation caused by AHE, the WS10 reduced, leading to increased PM2.5. The changes of PM2.5 illustrated that a reasonable AHE scheme might be an effective means to improve the performance of PM2.5 simulation. Besides, high AHE aggravated the O3 pollution in urban areas due to the reduction in NOx.  相似文献   

14.
Data from a comprehensive field study in the Riviera Valley of Southern Switzerland are used to investigate convective boundary layer structure in a steep valley and to evaluate wind and temperature fields, convective boundary layer height, and surface sensible heat fluxes as predicted by the mesoscale model RAMS. Current parameterizations of surface and boundary layer processes in RAMS, as well as in other mesoscale models, are based on scaling laws strictly valid only for flat topography and uniform land cover. Model evaluation is required to investigate whether this limits the applicability of RAMS in steep, inhomogeneous terrain. One clear-sky day with light synoptic winds is selected from the field study. Observed temperature structure across and along the valley is nearly homogeneous while wind structure is complex with a wind speed maximum on one side of the valley. Upvalley flows are not purely thermally driven and mechanical effects near the valley entrance also affect the wind structure. RAMS captured many of the observed boundary layer characteristics within the steep valley. The wind field, temperature structure, and convective boundary layer height in the valley are qualitatively simulated by RAMS, but the horizontal temperature structure across and along the valley is less homogeneous in the model than in the observations. The model reproduced the observed net radiation, except around sunset and sunrise when RAMS does not take into account the shadows cast by the surrounding topography. The observed sensible heat fluxes fall within the range of simulated values at grid points surrounding the measurement sites. Some of the scatter between observed and simulated turbulent sensible heat fluxes are due to sub-grid scale effects related to local topography.  相似文献   

15.
A series of simulations under weakly to moderately stable boundary layers (SBLs) have been performed using the proposed subgrid-scale (SGS) model implemented into the Terminal Area Simulation System (TASS). The proposed SGS model incorporates some aspects of the two-part eddy viscosity SGS model of Sullivan et al. (1994) and further refinements which include the dependence of SGS mixing length on stratification, two-part separation of the SGS eddy diffusivity of heat, and more realistic empirical forms of Monin–Obukhov similarity functions. The potential temperature profiles from simulations clearly show a three-layer structure: a stable surface layer of strong gradients, a middle layer of small gradients, and an inversion layer on the top. The wind speed profiles show the formation of low level jet (LLJ). However, the sub-layer structures under moderately SBLs differ from those under weakly SBLs. Both the momentum and heat fluxes decrease almost linearly in the lower part of the SBL. The near surface values of the normalized turbulent kinetic energy (TKE/u * 2) in all simulations are about 4 which is much less than the typical value of 5.5 under the neutral condition. The decay of turbulence first occurs in the area with large values of Richardson number (R i<0.2). Generally, instantaneous values of the TKE and R i at the various grid points are negatively correlated, but there is not a unique relationship between the two parameters.  相似文献   

16.
A detailed analysis of the various processes at work in stable boundary layers was made. It pointed out that two main mechanisms may affect eddy covariance measurements in stable conditions and that their impacts were different. On one hand, intermittent turbulence produces strongly nonstationary events during which the validity of turbulent transport and storage measurements is uncertain. On the other hand, during breeze and drainage flow events, significant advection takes place and competes with turbulent flux and storage. Intermittent turbulence questions both the ability of eddy covariance systems to adequately capture turbulent flux and storage and the representativeness of the measurements. Ability of the systems to capture the fluxes could be improved by adapting the averaging time period or the high pass filtering characteristics. However, beyond this, the question of representativeness of the flux remains open as the flux measured during an intermittent turbulence event represents not only the source term, but also the removal of CO2 that built up in the control volume and that cannot be simply related to the source term. In these conditions, the u* discrimination is likely to be insufficient and should be completed with a stationarity criterion. Further research should allow determining better selection criteria. Advection occurs mainly in presence of flows associated with topographical slopes (drainage flows) or with land use changes (breezes). Direct advection measurements were performed at several sites, but the results were shown to be strongly site dependent. A classification based on the general flow pattern and on the source intensity evolution along streamlines was proposed here. Five different patterns were identified that helped to classify the different observations. The classification was found to be a fairly good fit for the observations. This could serve as a tool to better understand and quantify the fluxes at sites subjected to repeatable patterns.  相似文献   

17.
Essential prerequisites for a thorough model evaluation are the availability of problem-specific, quality-controlled reference data and the use of model-specific comparison methods. The work presented here is motivated by the striking lack of proportion between the increasing use of large-eddy simulation (LES) as a standard technique in micro-meteorology and wind engineering and the level of scrutiny that is commonly applied to assess the quality of results obtained. We propose and apply an in-depth, multi-level validation concept that is specifically targeted at the time-dependency of mechanically induced shear-layer turbulence. Near-surface isothermal turbulent flow in a densely built-up city serves as the test scenario for the approach. High-resolution LES data are evaluated based on a comprehensive database of boundary-layer wind-tunnel measurements. From an exploratory data analysis of mean flow and turbulence statistics, a high level of agreement between simulation and experiment is apparent. Inspecting frequency distributions of the underlying instantaneous data proves to be necessary for a more rigorous assessment of the overall prediction quality. From velocity histograms local accuracy limitations due to a comparatively coarse building representation as well as particular strengths of the model to capture complex urban flow features with sufficient accuracy are readily determined. However, the analysis shows that further crucial information about the physical validity of the LES needs to be obtained through the comparison of eddy statistics, which is focused on in part II. Compared with methods that rely on single figures of merit, the multi-level validation strategy presented here supports conclusions about the simulation quality and the model’s fitness for its intended range of application through a deeper understanding of the unsteady structure of the flow.  相似文献   

18.
Micro-scale thermal profile data were acquired in four lakes in northwest England and southeast Australia that ranged from a small, sheltered pond with a surface area of about 1 ha to more open lakes with surface areas of several square kilometres. These lakes provided a range of topographic and climatic contexts, basin morphologies and dominant macrophyte species. The data were acquired using two SCAMP profilers, one deployed in the open water and the other mounted on a field traverse deployed within the vegetated littoral zone. From these profile data, turbulence parameters were calculated. The results show the variation in the influence of vegetation on turbulence in the four lakes, which depends on the combination of wind stress, solar radiative forcing and macrophyte mechanical properties. In the sheltered pond, the vegetation alters the light climate within the water, thus reducing stratification and allowing weak, thermally-driven mixing. In the larger lakes, however, the primary action of the vegetation is to prevent surface-generated TKE from penetrating the water column, although this effect becomes less important as the plant separation increases. A simple mechanistic model, calibrated against the field data, suggests that the macrophyte mechanical properties are most important in determining the turbulent kinetic energy (TKE) profile. Increasing the number of turbulence-generating plants reduces the transport of surface-generated TKE into the deeper water, consistent with the field observations. The model suggests that solar forcing, as measured by the temperature gradient between the surface and bottom waters, is of less importance since the TKE profile is similar in runs with different gradients. Perhaps most surprisingly, the value of the surface-wind stress used in the model is not important, within the limitations of the model, as it does not change the TKE profile, except in a thin surface layer.  相似文献   

19.
20.
A multi-purpose model for small-scale atmospheric flows over heterogeneous landscapes is being developed. The aim of this research is to build a tool able to predict the dynamical (wind, turbulence) and diffusive (gases, particles) fields over landscapes characterised by heterogeneous plant cover. In its present stage of development the model is based on the numerical integration of neutral atmospheric flow equations, using an energy-dissipation closure scheme and over a domain that may include vegetation layers. Three validation cases of the model are presented: (i) response of the airflow to a change in surface roughness; (ii) airflow within and above a horizontally homogeneous plant canopy; (iii) airflow over two complex forest-to-clearing and clearing-to-forest transitions. All simulations provide results in good agreement with the experimental data, except for turbulent kinetic energy just after a clearing-to-forest transition. This result is not surprising for a statistical k– model in a flow region characterised by strong distorsion and intermittent turbulence. However the overall good performance of the model is promising for environmental research at fine scales over heterogeneous landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号