首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To enhance the removal efficiency of polycyclic aromatic hydrocarbons (PAHs) by natural biosorbent, sorption of phenanthrene and pyrene onto raw and modified tea leaves as a model biomass were investigated. Tea leaves were treated using Soxhlet extraction, saponification, and acid hydrolysis to yield six fractions. The structures of tea leaf fractions were characterized by elemental analysis, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). The amorphous cellulose components regulated the sorption kinetics, capacity, and mechanism of biomass fractions. The adsorption kinetics fit well to pseudo-second-order model and isotherms followed the Freundlich equation. By the consumption of the amorphous cellulose under acid hydrolysis, both the aliphatic moieties and aromatic domains contributed to total sorption, thus sorption capacities of the de-sugared fractions were dramatically increased (5–20-fold for phenanthrene and 8–36-fold for pyrene). All de-sugared fractions exhibited non-linear sorption due to strong specific interaction between PAHs and exposed aromatic domains of biosorbent, while presenting a relative slow rate because of the condensed domain in de-sugared samples. The availability of strong sorption phases (aromatic domains) in the biomass fractions were controlled by polar polysaccharide components, which were supported by the FTIR, CHN, and SEM data.  相似文献   

2.
Earlier studies had shown significant differences in sorption of nine pesticides in soils collected from two landuses (native vegetation and market gardens), which could not be explained on the basis of organic carbon content alone. Consequently it was hypothesised that the differences in sorption behaviour between the two landuses may be due to variation in the chemistry of the organic carbon. In this study the relationship between sorption behaviour of the nine chemicals and soil organic carbon chemistry, as determined by solid-state (13)C NMR spectroscopy, was investigated. No significant differences were found between the two landuses in the distribution of the four main spectral regions of the (13)C NMR spectra of soil OC, except for the carbonyl fraction (165-220ppm), which may reflect the low OC content of the soils from both landuses. For all chemicals, except prometryne, the most significant (P<0.01 or P<0.001) relationship between K(d) values and types of OC was found with the aromatic (110-165ppm) or the alkyl (0-45ppm) fraction. A comparison was made of the variability of K(d) values normalized over OC (i.e. K(oc)), alkyl, aromatic and alkyl+aromatic fractions. Expressing K(d) values for all chemicals, except azinphos methyl, in soils under native vegetation as K(alkyl) or K(aromatic) greatly decreased the variability compared with the K(oc) value. However in the cultivated soils only the sorption coefficients for DEA, DIA and fenamiphos showed a decrease in variability when expressed as K(alkyl) or K(aromatic). This reflected the stronger relationship between sorption coefficients and the alkyl and aromatic fraction of soil OC in soils from native vegetation compared with those determined from the market garden soils. The different relationships between sorption coefficients and types of OC of the two landuses also suggests that the type of aromatic and alkyl carbon under the two landuses is different and NMR characterisation of the OC was not sufficient to distinguish these differences.  相似文献   

3.
Sorption of naphthalene and phenanthrene by soil humic acids   总被引:26,自引:0,他引:26  
Humic acids are a major fraction of soil organic matter (SOM), and sorption of hydrophobic organic chemicals by humic acids influences their behavior and fate in soil. A clear understanding of the sorption of organic chemicals by humic acids will help to determine their sorptive mechanisms in SOM and soil. In this paper, we determined the sorption of two hydrophobic organic compounds, naphthalene and phenanthrene by six pedogenetically related humic acids. These humic acids were extracted from different depths of a single soil profile and characterized by solid-state CP/MAS 13C nuclear magnetic resonance (NMR). Aromaticity of the humic acids increased with soil depth. Similarly, atomic ratios of C/H and C/O also increased with depth (from organic to mineral horizons). All isotherms were nonlinear. Freundlich exponents (N) ranged from 0.87 to 0.95 for naphthalene and from 0.86 to 0.92 for phenanthrene. The N values of phenanthrene were consistently lower than naphthalene for a given humic acid. For both compounds, N values decreased with increasing aromaticity of the humic acids, such an inverse relationship was never reported before. These results support the dual-mode sorption model where partitioning occurs in both expanded (flexible) and condensed (rigid) domains while nonlinear sorption only in condensed domains of SOM. Sorption in the condensed domains may be a cause for slow desorption, and reduced availability and toxicity with aging.  相似文献   

4.
To better understand interaction mechanisms of pine needles with persistent organic pollutants, single-solute and bi-solute sorption of phenanthrene and pyrene onto isolated cuticular fractions of pine needle were investigated. The structures of cuticular fractions were characterized by elemental analysis, Fourier transform infrared spectroscopy and solid-state 13C NMR. Polymeric lipids (cutin and cutan) exhibited notably higher sorption capabilities than the soluble lipids (waxes), while cellulose showed little affinity with sorbates. With the coexistence of the amorphous cellulose, the sorption of cutan (aromatic core) was completely inhibited, so the cutin components (nonpolar aliphatic moieties) dominated the sorption of bulk needle cuticle. By the consumption of the amorphous cellulose under acid hydrolysis, sorption capacities of the de-sugared fractions were dramatically enhanced, which controlled by the exposed aromatic cores and the aliphatic moieties. Furthermore, the de-sugared fractions demonstrated nonlinear and competitive sorption due to the specific interaction between aromatic cores and polycyclic aromatic hydrocarbon.  相似文献   

5.
Yang K  Zhu L  Lou B  Chen B 《Chemosphere》2005,61(1):116-128
The estimation of solute sorptive behaviors is essential when direct sorption data are unavailable and will provide a convenient way to assess the fate and the biological activity of organic solutes in soil/sediment environments. In this study, the sorption of 2,4-dichlorophenol (2,4-DCP) on 19 soil/sediment samples and the sorption of 13 organic solutes on one sediment were investigated. All sorption isotherms are nonlinear and can be described satisfactorily by a simple dual-mode model (DMM): q(e)=KpCe+Q0 . bCe/(1+bCe), where Kp (mlg(-1)) is the partition coefficient; Ce (microgml(-1)) is the equilibrium concentration; Q0 (microgg(-1)) is the maximum adsorption capacity; Q0 . b (mlg(-1)) is the Langmuir-type isotherm slope in the low concentration (Henry's law) range and b (mlmicrog(-1)) is a constant related to the affinity of the surface for the solute. Based on these nonlinear sorption isotherms and similar other nonlinear isotherms, it is observed that, for both polar 2,4-DCP and nonpolar phenanthrene, Kp, Q0 and Q0 . b are linearly correlated with soil/sediment organic carbon content (f(oc) in the range of 0.118-53.7%). The results indicate that the nonlinear sorption of organic solutes results primarily from interactions with soil/sediment organic matter. The K*oc K*oc=Kp/f(oc)), Qoc (Qoc=Q0/f(oc)), Loc (Loc=Q0 . b/f(oc)) and b for a given organic solute with different soils/sediments are largely invariant. Furthermore, logK*oc, logb and logLoc for various organic solutes are correlated significantly with the solute logKow or logSw (logKow in the range of 0.9 to 5.13 and logSw in the range of -6.176 to -0.070). A fundamental empirical equation was then established to calculate approximately the nonlinear sorption from soil/sediment f(oc) and solute Sw for a given solute equilibrium concentration.  相似文献   

6.
Oren A  Chefetz B 《Chemosphere》2005,61(1):19-29
Sorption and desorption behaviors of phenanthrene and naphthalene were studied with the whole sediment, humic acid (HA) and humin samples from downstream and upstream sites along the Kishon River, Israel. The 13C nuclear magnetic resonance spectra and the sorption coefficients suggest that sorption occurs to both aromatic and aliphatic moieties of the sedimentary organic matter and that rigid paraffinic domains probably contribute to the sorption non-linearity. The carbon-normalized Freundlich affinity values for the two sorbates were significantly higher for the whole sediment and humin samples from the downstream region of the river than for the upstream sediment samples. On the basis of the measured affinity values, the sorbents can be arranged in the following order: humin>HA>whole sediment. Phenanthrene exhibited the lowest desorption from the whole sediment samples compared with the other sorbents. For naphthalene, the desorption hysteresis obtained with the whole sediment and humin samples were similar: both exhibited a decrease in desorption with decreasing solute concentration. The higher sorption affinities observed for all the organic fractions from the downstream sediment are suggested to be related to the low levels of polar domains and humin content. It is concluded that in bulk sediment samples, the overall contribution of the HA fraction to short-term sorption is of high importance, but the sorption non-linearity is controlled mainly by the humin complexes. The low desorption potential recorded for the whole sediment samples could affect the natural attenuation of the sorbed hydrophobic organic compounds.  相似文献   

7.
Sorption of phenanthrene by soils contaminated with heavy metals   总被引:4,自引:0,他引:4  
Gao Y  Xiong W  Ling W  Xu J 《Chemosphere》2006,65(8):1355-1361
The fate of polycyclic aromatic hydrocarbons (PAHs) in soils with co-contaminants of heavy metals has yet to be elucidated. This study examined sorption of phenanthrene as a representative of PAHs by three soils contaminated with Pb, Zn or Cu. Phenanthrene sorption was clearly higher after the addition of heavy metals. The distribution coefficient (K(d)) and the organic carbon-normalized distribution coefficient (K(oc)) for phenanthrene sorption by soils spiked with Pb, Zn or Cu (0-1000 mg kg(-1)) were approximately 24% larger than those by unspiked ones, and the higher contents of heavy metals added into soils resulted in the larger K(d) and K(oc) values. The enhanced sorption of phenanthrene in the case of heavy metal-contaminated soils could be ascribed to the decreased dissolved organic matter (DOM) in solution and increased soil organic matter (SOM) as a consequence of DOM sorption onto soil solids. Concentrations of DOM in equilibrium solution for phenanthrene sorption were lower in the case of the heavy metal-spiked than unspiked soils. However, the decreased DOM in solution contributed little to the enhanced sorption of phenanthrene in the presence of metals. On the other hand, the sorbed DOM on soil solids after the addition of heavy metals in soils was found to be much more reactive and have far stronger capacity of phenanthrene uptake than the inherent SOM. The distribution coefficients of phenanthrene between water and the sorbed DOM on soil solids (K(ph/soc)) were about 2-3 magnitude larger than K(d) between water and inherent SOM, which may be the dominant mechanism of the enhanced sorption of phenanthrene by soils with the addition of heavy metals.  相似文献   

8.
Sorption capability of bedrock components from a fractured chalk province was evaluated using ametryn, phenanthrene, m-xylene, 2,4,6-tribromophenol, and 1,2-dichloroethane. Sorption isotherms for the four aromatic compounds were nonlinear on gray (unoxidized) chalk. Over the studied solution ranges, the distribution coefficient decreased by factor of 3 for phenanthrene and m-xylene, a factor 4 for ametryn, and by an order of magnitude for 2,4,6-tribromophenol. In contrast, 1,2-dichloroethane displayed a linear isotherm. The importance of polar interactions for ametryn sorption was evaluated by normalizing sorption to an "inert" solvent, n-hexane. n-Hexane-normalized sorption of ametryn was much greater than that of phenanthrene, presumably due to ametryn participation in hydrogen bonding interactions. In sharp contrast to sorption to gray chalk, sorption to white (oxidized) chalk is 100- to 1000-fold lower at any given solution concentration. The much greater sorption on gray chalk cannot be explained by specific surface area, clay content, or organic matter content; thus, the nature of the organic matter is considered to control sorption in the chalk samples. Gray chalk sorption capacity estimates for ametryn and 2,4,6-tribromophenol are similar, which, together with evidence of competition for sorption sites, suggests that the limited capacity sorption domain for both compounds is similar.  相似文献   

9.
Yu Z  Huang W  Song J  Qian Y  Peng P 《Chemosphere》2006,65(11):2493-2501
The objective of this study was to quantify sorption properties for kerogen/black carbon (BC)-bearing sediments. Single-solute sorption isotherms were measured for five pristine marine sediments using phenanthrene, naphthalene, 1,3,5-trichlorobenzene, and 1,4-dichlorobenzene as the sorbates. The results showed that the sorption isotherms were nonlinear and that the organic carbon normalized single point KOC values were comparable to those reported in the literature for the purified keorgen and BC, but are much higher than the data reported for HA and kerogen/BC-containing terrestrial soils and sediments. It is likely that koergen and BC associated with these pristine marine sediments may not be encapsulated with humic acids or Fe and Mn oxides and hydroxides as often do in terrestrial soils and sediments. As a result, they may be fully accessible to sorbing molecules, exhibiting higher sorption capacities. The study suggests that competition from background HOCs and reduced accessibility when kerogen and BC are associated with terrestrial sediments may dramatically increase variability of sorption reactivities of geosorbents. Such variability may lead to large uncertainties in the prediction of sorption from the contents of kerogen and/or BC along with TOC.  相似文献   

10.
Ground discarded tires remove naphthalene, toluene, and mercury from water   总被引:2,自引:0,他引:2  
Gunasekara AS  Donovan JA  Xing B 《Chemosphere》2000,41(8):1155-1160
Ground discarded tires adsorb naphthalene, toluene, and mercury ions (Hg2+) from aqueous solutions. Their sorption properties and kinetics were determined by batch equilibration techniques at 20 degrees C. The isotherms were linear for naphthalene and toluene and their sorption coefficients were about 1340 and 255 (ml/g), respectively. Sorption of the organic compounds by the ground rubber particles was relatively fast (within 30 min). However, the mercury isotherms were non-linear, and its sorption was slow as compared to the sorption of the organics. The rubber particles had a strong affinity for Hg2+. These results show that ground discarded tires are effective in removing organic compounds and Hg2+ from wastewater and other contaminated environments. In addition it would be a useful, environmentally friendly use of discarded tires (one tire per year per capita is discarded in the United States).  相似文献   

11.
Chen H  Chen S  Quan X  Zhao H  Zhang Y 《Chemosphere》2008,73(11):1832-1837
Sorption of nonpolar (phenanthrene and butylate) and polar (atrazine and diuron) organic chemicals to oil-contaminated soil was examined to investigate oil effects on sorption of organic chemicals and to derive oil–water distribution coefficients (Koil). The resulting oil-contaminated soil–water distribution coefficients (Kd) for phenanthrene demonstrated sorption-enhancing effects at both lower and higher oil concentrations (Coil) but sorption-reducing (competitive) effects at intermediate Coil (approximately 1 g kg−1). Rationalization of the different dominant effects was attempted in terms of the relative aliphatic carbon content which determines the accessibility of the aromatic cores to phenanthrene. Little or no competitive effect occurred for butylate because its sorption was dominated by partitioning. For atrazine and diuron, the changes in Kd at Coil above approximately 1 g kg−1 were negligible, indicating that the presently investigated oil has little or no effect on the two tested compounds even though the polarity of the oil is much less than soil organic matter (SOM). Therefore, specific interactions with the active groups (aromatic and polar domains) are dominantly responsible for the sorption of polar sorbates, and thus their sorption is controlled by available sorption sites. This study showed that the oil has the potential to be a dominant sorptive phase for nonpolar pollutants when compared to SOM, but hardly so for polar compounds. The results may aid in a better understanding of the role of the aliphatic and aromatic domains in sorption of nonpolar and polar organic pollutants.  相似文献   

12.

Background, aim, and scope  

Sorption of hydrophobic organic compounds (HOCs) to natural organic matter (NOM) is an important process that affects the transport, transformation, bioavailability, and fate of HOCs in the environment. Manufactured nanoparticles (NPs) such as nano-oxides will inevitably enter the environment in the processes of their production, transfer, and use and could be coated by the ubiquitous NOM. Thus, sorption of HOCs to NOM in the environment could be affected by the NP interactions with NOM. Furthermore, the toxicity of nano-oxides could be increased due to the adsorbed HOCs. Therefore, sorption of phenanthrene by nano-Al2O3 coated with humic acid (HA) was examined in this study to explore the possible effect of nanoparticles (NPs) on the environmental behavior of HOCs and the potential environmental and health risks of NPs.  相似文献   

13.
《Chemosphere》2009,74(11):1832-1837
Sorption of nonpolar (phenanthrene and butylate) and polar (atrazine and diuron) organic chemicals to oil-contaminated soil was examined to investigate oil effects on sorption of organic chemicals and to derive oil–water distribution coefficients (Koil). The resulting oil-contaminated soil–water distribution coefficients (Kd) for phenanthrene demonstrated sorption-enhancing effects at both lower and higher oil concentrations (Coil) but sorption-reducing (competitive) effects at intermediate Coil (approximately 1 g kg−1). Rationalization of the different dominant effects was attempted in terms of the relative aliphatic carbon content which determines the accessibility of the aromatic cores to phenanthrene. Little or no competitive effect occurred for butylate because its sorption was dominated by partitioning. For atrazine and diuron, the changes in Kd at Coil above approximately 1 g kg−1 were negligible, indicating that the presently investigated oil has little or no effect on the two tested compounds even though the polarity of the oil is much less than soil organic matter (SOM). Therefore, specific interactions with the active groups (aromatic and polar domains) are dominantly responsible for the sorption of polar sorbates, and thus their sorption is controlled by available sorption sites. This study showed that the oil has the potential to be a dominant sorptive phase for nonpolar pollutants when compared to SOM, but hardly so for polar compounds. The results may aid in a better understanding of the role of the aliphatic and aromatic domains in sorption of nonpolar and polar organic pollutants.  相似文献   

14.
Sun H  Zhou Z 《Chemosphere》2008,71(11):2113-2120
Sorption of three polycyclic aromatic hydrocarbons (PAHs, phenanthrene, anthracene and pyrene) on three charcoals and their precursor substance (sawdust) was studied. The charcoals obtained by heating at 400 °C for different periods were different in chemical composition and structure. Sorption characteristics were described by a Polanyi–Dubinin–Manes model combined with poly-parameter linear free energy relationships. The results revealed that though partition could not be neglected for sawdust and charcoal containing large sawdust residue, adsorption controlled the sorption of PAHs on matured charcoals, where π–π electron donor–acceptor (EDA) exerted as the main molecular-scale interactions. Charring elevated partition coefficients (Koc) of the three PAHs more than one order of magnitude, which ranged from 105.74 to 106.58 on charcoals (for PAHs at equilibrium concentration Ce = 0.005Sw). Adsorption increased with the aromaticity of the charcoals, however, polar aromatic structure may stimulate sorption of PAHs due to the presence of π–π EDA interactions.  相似文献   

15.
Ran Y  Xiao B  Fu J  Sheng G 《Chemosphere》2003,50(10):1365-1376
Sorption and desorption hysteresis of 1,2-dichlorobenzene, 1,3,5-trichlorobenzene, naphthalene, and phenanthrene were investigated for the Borden aquifer material with total organic carbon of 0.021% and the isolated natural organic matter (NOM). The isolated NOM is a kerogen type of organic matter with relatively low maturation degree and contained many different types of organic matters including vitrinite particles. The modified Freundlich sorption capacities (logKf and logKfoc) are very close for the sorption of the four solutes by the isolated NOM and the original sand, respectively. Isotherm non-linearity (n value) and hysteric behaviors are related to solute molecular properties (e.g. Kow and molecular size). Kerogen encapsulated by inorganic matrices in the original aquifer may not be accessed fully by solutes. The larger the hydrophobic organic chemical (HOC) (hydrophobic organic contaminant) molecule is, the lower accessibility of the HOC to kerogen. This study disputes widely held hypothesis that sorption to mineral surfaces may play a major role in the overall sorption by low TOC (e.g. 0.1% by mass) geomaterials such as Borden sand. It also demonstrates the importance of the condensed NOM domain, even at very low contents, in the sorption and desorption hysteresis of HOCs in groundwater systems.  相似文献   

16.
Even though it is well established that soil C content is the primary determinant of the sorption affinity of soils for non-ionic compounds, it is also clear that organic carbon-normalized sorption coefficients (K(OC)) vary considerably between soils. Two factors that may contribute to K(OC) variability are variations in organic matter chemistry between soils and interactions between organic matter and soil minerals. Here, we quantify these effects for two non-ionic sorbates-diuron and phenanthrene. The effect of organic matter-mineral interactions were evaluated by comparing K(OC) for demineralized (HF-treated) soils, with K(OC) for the corresponding whole soils. For diuron and phenanthrene, average ratios of K(OC) of the HF-treated soils to K(OC) of the whole soils were 2.5 and 2.3, respectively, indicating a substantial depression of K(OC) due to the presence of minerals in the whole soils. The effect of organic matter chemistry was determined by correlating K(OC) against distributions of C types determined using solid-state (13)C NMR spectroscopy. For diuron, K(OC) was positively correlated with aryl C and negatively correlated with O-alkyl C, for both whole and HF-treated soils, whereas for phenanthrene, these correlations were only present for the HF-treated soils. We suggest that the lack of a clear effect of organic matter chemistry on whole soil K(OC) for phenanthrene is due to an over-riding influence of organic matter-mineral interactions in this case. This hypothesis is supported by a correlation between the increase in K(OC) on HF-treatment and the soil clay content for phenanthrene, but not for diuron.  相似文献   

17.
The salting-out effect by seawater constituents on the water solubilities of 11 aromatic compounds, anthracene, pyrene, phenanthrene, biphenyl, naphthalene, p-nitrotoluene, p-toluidine, o-nitrophenol, m-nitrophenol, p-nitrophenol and phenol was investigated. A best fit equation (r = 0.965) for the salting-out parameters, K, and distilled water solubilities, So, at 20°C was found to be K = ?0.0298 log So + 0.114. Seawater solubilities, S, predicted for solutions of ionic strength, I, using the equation log S = (0.0298 I + 1) log So ? 0.114 I were in agreement with observed values within 13 % (average 4.8 %) and there were no significant differences between values from the Pacific Ocean seawater and those from 35 o/oo NaCl solutions. It was concluded that dissolved organic matter in seawater had an insignificant effect for the test chemicals.  相似文献   

18.
In order to contain the movement of organic contaminants in groundwater, a subsurface sorption barrier consisting of sand or clay minerals coated with a cationic surfactant has been proposed. The effectiveness of such a sorption barrier might be affected by the presence of dissolved organic matter (DOM) in the groundwater. To study the impact of DOM on barrier performance, a series of batch experiments were performed by measuring naphthalene and phenanthrene sorption onto sand coated with cetylpyridinium chloride (CPC) and bentonite coated with hexadecyltrimethylammonium bromide (HDTMA) in the presence of various concentrations of DOM. The overall soil-water distribution coefficient (K*) of naphthalene and phenanthrene onto CPC-coated sand decreased with increasing DOM concentration, whereas the K* of the compounds onto HDTMA-coated bentonite slightly increased with increasing DOM concentration. To describe the overall distribution of polycyclic aromatic hydrocarbons (PAHs) in the systems, a competitive multiphase sorption (CMS) model was developed and compared with an overall mechanistic sorption (OMS) model. The modeling studies showed that while the OMS model did not explain the CPC-coated sand experimental results, a model that included competitive sorption between DOM and PAH did. The experimental results and the modeling study indicated that there was no apparent competition between DOM and PAH in the HDTMA-coated bentonite system, and indicated that in groundwater systems with high DOM, a barrier using HDTMA-coated bentonite might be more effective.  相似文献   

19.
Xiao B  Huang W 《Chemosphere》2011,83(7):1005-1013
The goal of this study was to investigate the effects of both concentration levels and loading sequence or contamination history of each pollutant on the equilibrium sorption of mixed organic pollutants on soils. We measured binary sorption equilibria for a soil using ten concentration levels for both phenanthrene and naphthalene. Both solutes were either simultaneously loaded or sequentially loaded (i.e., the second sorbate was loaded after the sorption of the first sorbate had attained equilibrium) on soil. The results showed different competitive sorption equilibria between phenanthrene and naphthalene. In the presence of phenanthrene and regardless of loading sequence, naphthalene exhibited consistently lower sorption capacities and the ideal adsorbed solution theory (IAST) slightly underestimates the naphthalene sorption equilibria. Conversely, the sorption equilibria of phenanthrene in the presence of naphthalene depended upon the loading sequence of the two sorbates on the soil. Little competition from naphthalene on the sorption equilibria of phenanthrene was observed when phenanthrene was loaded either simultaneously with or sequentially after naphthalene, but appreciable competition from naphthalene was observed when the soil had been pre-contaminated with phenanthrene. IAST slightly underestimates the phenanthrene sorption equilibria observed in the latter system, but it cannot estimate the phenanthrene sorption equilibria in the former two systems. We proposed that adsorption on internal surfaces of ink-bottle shaped pores within relatively flexible sorbent matrix may have caused the competitive sorption phenomena observed in this study. The study suggests that contamination history may have strong influence on the equilibrium sorption of organic pollutant mixtures.  相似文献   

20.
Solubilization of naphthalene and phenanthrene into the micelles formed by three different anionic surfactants was investigated for single, binary, and ternary mixtures including pyrene. The three surfactants were sodium dodecylbenzene sulfonate (SDDBS), monoalkylated disulfonated diphenyl oxide (MADS-C12), and dialkylated disulfonated diphenyl oxide (DADS-C12). The order of increasing solubility enhancement of naphthalene and phenanthrene was SDDBS < MADS-C12 < < DADS-C12, which indicates that the hydrophobic chains in micellar core play more important role for the solubilization of polycyclic aromatic hydrocarbons (PAHs) than the benzene rings in palisade layer of a micelle. The solubility enhancement of naphthalene was slightly changed in PAH mixtures. The solubility of phenanthrene was greatly enhanced in presence of naphthalene but reduced in presence of pyrene. The explanation for these results could be that less hydrophobic compounds can be solubilized at the interfacial region of a hydrophobic core, which reduces the interfacial tension between the core and water, and then the reduced interfacial tension can support a larger core volume for the same interfacial energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号