首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
采用纳米Fe0还原水溶液中的Cr(Ⅵ),考察纳米Fe0投加量、Cr(Ⅵ)初始浓度、溶液pH值和有机酸等因素对Cr(Ⅵ)还原的影响.结果表明,纳米Fe0对Cr(Ⅵ)的还原效果明显,其对Cr(Ⅵ)的还原率分别是铁粉和铁屑的7和13倍.Cr(Ⅵ)溶液初始质量浓度为20 mg·L-1、Fe0投加量为5g·L-1条件下,反应24 h时纳米Fe0对Cr(Ⅵ)的还原率达82.7%.溶液低pH值可以促进Fe0的腐蚀速度,提高反应速率,当pH值为3.0时还原效果最好.草酸、丙二酸和丁二酸对纳米Fe0还原Cr(Ⅵ)均有明显的促进作用,3种有机酸对Cr(Ⅵ)还原率的提高幅度由高到低依次为草酸、丙二酸和丁二酸.  相似文献   

2.
碘化物-罗丹明6G体系共振瑞利散射法测定痕量铅   总被引:11,自引:0,他引:11  
王丹  罗红群  李念兵 《环境化学》2005,24(1):97-100
在稀磷酸介质中 ,铅 (Ⅱ )与过量的I-离子形成 [PbI4]2 -配阴离子 ,并进一步与罗丹明 6G(Rh6G )形成离子缔合配合物 ,产生强烈的共振瑞利散射 (RRS )光谱 ,最大RRS波长位于 315nm 对共振瑞利散射光谱特性、主要影响因素和反应的最佳条件进行了研究 ,在 4 0× 10 -5%D 2 0× 10 -4μg·ml-1范围内 ,共振瑞利散射强度与铅的浓度成线性关系 ,实验结果表明 ,铅的检出限为 3 5× 10 -5μg·ml-1,可用于自来水中痕量铅的测定  相似文献   

3.
以木本泥炭为吸附材料,用于去除水中的Cr(Ⅵ).研究了溶液pH值、吸附时间、木本泥炭用量、缓冲液浓度和初始浓度对Cr(Ⅵ)吸附的影响,以及溶液pH值对Cr(Ⅵ)解吸附的影响.结果表明,木本泥炭对Cr(Ⅵ)的去除率随溶液pH值的增大而减小,当溶液pH值为4时,木本泥炭对Cr(Ⅵ)的吸附能力最强,3.33 g·L~(-1)木本泥炭对100 mg·L~(-1)Cr(Ⅵ)的吸附量为29. 98 mg·g~(-1);当磷酸盐缓冲液浓度在0. 10—0.20 mol·L~(-1)范围内时,随着缓冲液浓度的增大Cr(Ⅵ)的吸附量逐渐减小;木本泥炭对Cr(Ⅵ)的吸附符合准一级反应动力学,其吸附等温线符合Langmuir吸附模型;当溶液pH值小于6时,Cr(Ⅵ)的解吸率低于0.32%.  相似文献   

4.
纳米零价铁去除垃圾渗滤液中铬(Ⅵ)的性能及机理研究   总被引:2,自引:0,他引:2  
利用柠檬酸处理后的纳米零价铁(NZVI)对铬(Cr(Ⅵ))的去除进行了研究.NZVI对Cr(Ⅵ)的去除率受Cr(Ⅵ)初始浓度、pH值、反应温度和NZVI的浓度等因素影响,在Cr(Ⅵ)初始浓度为20mg·1-1、pH=5.0、NZVI投加量为1.0g·1-1和20℃条件下,Cr(Ⅵ)去处率达到了100%.腐殖酸(HA)与Cr(Ⅵ)可以形成稳定的HA-Cr螯合物,这种螯合物减少了溶液中有效的Cr(Ⅵ)浓度;同时,HA与NZVI的反应减少了NZVI的有效活性位点,HA的存在对NZVI去除Cr(Ⅵ)有竞争抑制的作用.  相似文献   

5.
中国铬盐生产量及消费量均居世界第一,铬盐生产排放的铬渣量很大,其中Cr(Ⅵ)是一种高毒性物质,是国家重点控制的重金属污染物之一,寻找经济、高效的Cr(Ⅵ)去除方法一直是研究的热点。以煤矸石为原料,以水玻璃和Na OH为碱性激发剂,合成矿物聚合物,用亚铁盐添加的矿物聚合物对Cr(Ⅵ)进行解毒与固化研究,并采用XRD、TEM/EDS、XPS对固化体进行检测。结果发现,当添加的Fe(Ⅱ)与Cr(Ⅵ)摩尔比大于3∶1时,矿物聚合物中总铬浸出的质量浓度小于1 mg·L-1,铬固化率大于99%。以亚铁盐Fe SO4·7H2O作还原剂,矿物聚合物对Cr(Ⅵ)的最大固化量为0.8%。随着Fe SO4·7H2O和Cr(Ⅵ)添加量按3∶1的摩尔比增加,矿物聚合物的抗压强度减小。XRD检测表明,Fe SO4·7H2O和Cr(Ⅵ)添加的矿物聚合物为非晶质结构。TEM/EDS检测表明,矿物聚合物的非晶质结构中含有Fe和Cr。XPS检测结果证明,矿物聚合物中Fe和Cr分别为Fe(Ⅲ)和Cr(Ⅲ)。亚铁盐添加的矿物聚合物对Cr(Ⅵ)的解毒与固化是基于氧化还原反应。在Fe(Ⅱ)和Cr(Ⅵ)添加的矿物聚合物合成过程中,Fe(Ⅱ)被氧化成了Fe(Ⅲ),Cr(Ⅵ)被还原成了Cr(Ⅲ),随后Fe(Ⅲ)和Cr(Ⅲ)被矿物聚合物中的-OAl(-)(OH)3吸引,并被固定在非晶质结构中。  相似文献   

6.
铁(Ⅲ)-丙酮酸盐配合物光解引发水中铬(Ⅵ)还原   总被引:2,自引:0,他引:2  
初步研究了含有Fe(Ⅲ)及丙酮酸盐的溶液在高压汞灯照射下对铬(Ⅵ)的光还原反应.考察了溶液pH值、Fe(Ⅲ)浓度、丙酮酸钠浓度、Cr(Ⅵ)浓度对反应的影响.分析了光还原反应的动力学及反应机制.结果表明:铁-丙酮酸盐体系能光还原Cr(Ⅵ);最佳pH为3.0;Cr(Ⅵ)光还原的初始速率随着加入的铁(Ⅲ)、丙酮酸盐、Cr(Ⅵ)初始浓度的增加而增加;实验条件下的表观动力学方程为:-dGCr(Ⅵ)/dt=0.021[Cr(Ⅵ)]0.39[Fe(Ⅲ)r1.05[CH3COCOONa]0.39;Fe(Ⅲ)-丙酮酸盐配合物光解产生的Fe(Ⅱ)是Cr(Ⅵ)的主要还原剂.  相似文献   

7.
研究了在紫外光照射下,Fe(Ⅲ)-柠檬酸盐体系同时还原Cr(Ⅵ)和氧化酸性黄.同时,考察了溶液的pH值、Fe(Ⅲ)的浓度、柠檬酸盐(cit3-)的浓度、酸性黄(AY)的浓度以及Cr(Ⅵ)的初始浓度对反应速率的影响.分析了光反应动力学.研究结果表明,Cr(Ⅵ)的光还原和酸性黄的氧化互相促进,具有协同效应;Cr(Ⅵ)光还原的初始速率和酸性黄氧化的初始速率随着Fe(Ⅲ)的浓度、柠檬酸盐的浓度、酸性黄的浓度以及Cr(Ⅵ)的初始浓度的增加而增大;Cr(Ⅵ)的光还原和酸性黄光氧化的表观动力学方程分别为:-dCCr(Ⅵ)/dt=0.1123[Cr(Ⅵ)]0.16[Fe(Ⅲ)]0.4[cit3-]0.11[AY]0.37,-dCAY/dt=0.0916[Cr(Ⅵ)]0.72[Fe(Ⅲ)]0.74[cit3-]0.42[AY]0.3.  相似文献   

8.
模拟饮用水消毒过程中高铁酸钾(Fe(Ⅵ))对吲哚美辛(IDM)的降解,考察了Fe(Ⅵ)投加量、IDM初始浓度、溶液pH值、温度等因素对IDM降解速率的影响.实验结果表明,Fe(Ⅵ)可以有效地去除饮用水中的IDM,当Fe(Ⅵ)投加量为0.3 mmol·L~(-1),溶液pH值为7,温度为25℃时,反应20 min后IDM的去除率达到95%,其反应过程符合准一级反应动力学模型;准一级动力学常数与Fe(Ⅵ)的投加量正相关,与IDM的初始浓度负相关;pH值升高会降低反应速率,温度升高会加快反应的进行.将不同温度条件下反应速率常数进行线性拟合,推算出了Fe(Ⅵ)与IDM反应的热力学参数Ea、ΔH和ΔS的值分别为15.79 J·mol~(-1)、13.27 J·mol~(-1)、-183.76 J·mol-1·K~(-1),说明该反应是吸热反应,同时活化能较低也说明了该反应在常规饮用水消毒条件下即可进行.TOC测定实验表明,Fe(Ⅵ)对IDM的矿化效率较低,大部分IDM转化成其它大分子有机物.  相似文献   

9.
针对黑炭/零价铁复合材料(BF)、金属还原菌(GY~(-1))单独使用修复Cr(Ⅵ)污染环境存在的问题,构建了黑炭零价铁与金属还原菌的耦合体系,考察了耦合体系中溶液pH值、Cr(Ⅵ)浓度、反应时间、温度对微生物生长和溶液中Cr(Ⅵ)去除的影响,并且研究了耦合体系中铁的动态变化。实验结果表明:黑炭/零价铁复合材料可作为金属还原菌的固定化载体,为金属还原菌提供繁殖场所的同时,提高其对Cr(Ⅵ)的抗性。耦合体系中Cr(Ⅵ)的去除效果明显优于单独使用零价铁/黑炭和单独铬还原菌的效果。在耦合体系中,3 mL细胞培养液(OD_(600)为1.2—1.6)和0.1 g黑炭负载零价铁材料,Cr(Ⅵ)初始质量浓度为100mg·L~(-1)条件下,反应24h后可将溶液中Cr(Ⅵ)完全去除。XPS结果显示,反应阶段Cr(Ⅵ)和Cr(Ⅲ)共同存在于耦合体系中,但大部分的Cr(VI)会被零价铁和铬还原菌还原为Cr(Ⅲ),此外,存在黑炭和菌体对Cr(Ⅵ)的吸附作用。耦合体系中Fe(Ⅱ)含量高于单独黑炭负载零价铁材料,说明微生物能还原零价铁钝化层的Fe(Ⅲ)为Fe(Ⅱ),使Fe(II)继续参与还原反应,产生循环效果,增强耦合体系对Cr(Ⅵ)的去除效果。同时,铁离子作为一种电子传递介质增强微生物对Cr(Ⅵ)还原过程中的电子传递,加速反应进行的同时,解决零价铁表面易钝化问题。  相似文献   

10.
黑液电渗析回收碱的研究   总被引:1,自引:0,他引:1  
采用电渗析法回收草浆黑液中的氢氧化钠,在恒压条件下,曝气时电渗析的效率比不曝气时好,90min时,曝气和不曝气条件下疏水氟膜的R值分别为1.62×10-6mol·ml-1·cm-2和8.48×10-7mol·ml-1·cm-2.在恒流条件下,不曝气时电渗析的效果反而好,180min时,曝气和不曝气条件下疏水氟膜的R值分别为3.24×10-6mol·ml-1·cm-2和3.76×10-6mol·ml-1·cm-2.疏水氟膜的电渗析效果远好于阳离子交换膜.在恒流不曝气条件下,180min时阳离子交换膜和疏水氟膜的R值分别为4.95 ×10-7mol·ml-1·cm-2和3.76×10-6 mol·ml-1·cm-2.在各种影响因素中,电极间距较小时效果好;电流变大时,能耗迅速上升,钠离子回收率也有所下降.  相似文献   

11.
季桂娟  赵勇胜 《生态环境》2006,15(3):499-502
通过静态实验和动态实验研究了铁粉、煤灰及其混合物对地下水中六价铬离子Cr(Ⅵ)的去除效果。在静态实验中,探讨了铁粉用量,煤灰用量,煤灰粒度,放置时间对地下水中Cr(Ⅵ)去除率的影响及两者混合后对地下水中Cr(Ⅵ)去除效果。实验结果表明,两者混合后,对水中Cr(Ⅵ)的去除效果较好,并可节省铁粉的用量,即0.5g铁粉和10.0g煤灰混合,处理50mLCr(Ⅵ)质量浓度为10mg·L-1的水样,与单独用0.7g铁粉处理的效果相同,水中Cr(Ⅵ)的去除率接近100%。在动态实验中,用与静态实验等量的铁粉和煤灰,可处理150MlCr(Ⅵ)质量浓度为10mg·L-1的水样,处理后水中的Cr(Ⅵ)可达到饮用水的水质标准。结果表明,铁粉和煤灰可作为原位处理地下水中Cr(Ⅵ)的反应材料,为地下水的原位处理技术奠定了实验基础。  相似文献   

12.
采用纳米Fe0还原水溶液中的Cr(Ⅵ),考察纳米Fe0投加量、Cr(Ⅵ)初始浓度、溶液pH值和有机酸等因素对cr(Ⅵ)还原的影响。结果表明,纳米Fe。对Cr(Ⅵ)的还原效果明显,其对Cr(Ⅵ)的还原率分别是铁粉和铁屑的7和13倍。Cr(Ⅵ)溶液初始质量浓度为20mg·L-1、Fe。投加量为5g·L“条件下,反应24h时纳米Fe0对Cr(Ⅵ)的还原率达82.7%。溶液低pH值可以促进Fe。的腐蚀速度,提高反应速率,当pH值为3.0时还原效果最好。草酸、丙二酸和丁二酸对纳米Fe。还原Cr(Ⅵ)均有明显的促进作用,3种有机酸对Cr(Ⅵ)还原率的提高幅度由高到低依次为草酸、丙二酸和丁二酸。  相似文献   

13.
以锐钛型纳米TiO2为原材料,采用水热法合成了钛酸盐纳米片(TNS),系统研究了Cr(Ⅵ)和Cr(Ⅲ)在TNS上的吸附行为,以及不同pH下TNS光催化协同吸附对水体中Cr(Ⅵ)和Cr(Ⅲ)的同步去除.TEM及XRD表征结果表明,制备的TNS呈现出锐钛矿与钛酸盐混合晶相,这对于其光催化和吸附性能的发挥极为重要.吸附实验证实,TNS对Cr(Ⅵ)和Cr(Ⅲ)的吸附显著受pH影响,高pH利于Cr(Ⅲ)的吸附,而Cr(Ⅵ)在低pH下吸附量更大.Cr(Ⅵ)和Cr(Ⅲ)在TNS上的吸附速度较快,吸附动力学符合准二级动力学模型(R20.99).吸附等温线结果符合Langmuir方程(R20.99),pH 5时,Cr(Ⅲ)的最大吸附量(13.19 mg·g-1)远大于Cr(Ⅵ)(0.63 mg·g-1),因此,单一吸附不是有效处理Cr(Ⅵ)的手段,光催化还原是必要的.光催化-吸附实验表明,随着pH的增加,TNS光催化还原Cr(Ⅵ)反应速率逐渐降低,但产生的Cr(Ⅲ)在TNS表面的吸附量显著增加.综合可知,光催化-吸附协同反应最佳pH值为5,Cr(Ⅵ)和总Cr的去除率可达97.6%,且体系中无Cr(Ⅲ)的积累.该研究为同步有效去除水体中的Cr(Ⅵ)和Cr(Ⅲ)提供了一种新的可参照的途径.  相似文献   

14.
研究了纳米氧化铁吸附Cr(Ⅵ)反应特征及其对柠檬酸还原Cr(Ⅵ)的催化作用,并探讨了该作用的土壤环境意义.结果表明,纳米氧化铁对Cr(Ⅵ)的吸附能力较强;提高p H和离子强度对吸附过程有抑制作用;吸附速率可区分为快、慢阶段,5 min内吸附量可占总吸附量80%以上.纳米氧化铁可加速柠檬酸还原Cr(Ⅵ),且还原过程主要发生在溶液相,部分机理是柠檬酸与Fe(Ⅲ)相互作用生成的Fe(Ⅱ)将Cr(Ⅵ)还原.同时,体系p H越低,上述催化作用越明显.此外,砖红壤-柠檬酸体系Cr(Ⅵ)还原转化为Cr(Ⅲ)的比例较低,但加入纳米氧化铁后则明显提高,说明后者将有助于消除土壤环境中Cr(Ⅵ)污染风险.  相似文献   

15.
不同因素对多硫化钙处理地下水中Cr(Ⅵ)效果影响   总被引:1,自引:0,他引:1  
选用多硫化钙为还原剂,进行地下水中Cr(Ⅵ)去除效果的研究。主要考察了多硫化钙投加量、溶液p H、温度、Mn(II)、Fe(III)、腐殖酸(HA)存在条件下,对多硫化钙处理Cr(Ⅵ)效果的影响。结果表明:当多硫化钙与Cr(Ⅵ)的摩尔比由1∶1变到5∶1时,去除率从41.03%增加到100.00%;溶液p H值从6.0增上升到9.0时,去除率下降27.16%;水环境温度由(7±1)℃增加到(27±1)℃时,去除率达到100.00%所需反应时间,缩短了4~6倍;当地下水中含有Mn(II),随着Mn(II)质量浓度升高(0.00~10.00 mg·L-1),Cr(Ⅵ)浓度低于检测线所需要的时间缩短3倍;当地下水中含有Fe(III),Fe(III)质量浓度从0.00 mg·L-1增加到10.00 mg·L-1,去除率增加9.05%;当地下水中含有HA(0.00~15.00 mg·L-1),去除率由99.31%降低至90.28%。(7)多硫化钙与六价铬的反应产物的X射线衍射光谱图像中2θ值为18.2°、19.36°、26.67°与Cr(OH)3,2θ值为23.02°与单质S的标准卡片匹配度较高。另外,对含有11.36 mg·L-1 Cr(Ⅵ)实际污染地下水的处理效果表明,Cr(Ⅵ)的去除率达到99.78%,残留浓度达到GB/T 1448—1993地下水质量标准III类标准,说明多硫化钙修复实际铬污染地下水具有良好的应用前景。  相似文献   

16.
以2,6-吡啶二羧酸和1,5-二苯碳酰二肼为衍生试剂,采用柱前和柱后衍生的方式建立了离子色谱法同时测定环境水样中三价铬和六价铬的方法.通过六通阀控制1,5-二苯碳酰二肼注入系统的时间,避免了六价铬衍生液本底对三价铬测定的干扰,提高了三价铬检测的灵敏度,将三价铬的检出限由原来的0.17 mg·L-1降低至5.9μg·L-1.同时,对检测波长、淋洗液浓度、衍生液流速和定量环体积进行了选择优化.该方法对0.72 mg·L-1Cr(Ⅲ)和0.24 mg·L-1Cr(Ⅵ)峰面积测定值的相对标准偏差分别为0.34%和0.65%,六价铬的检出限为3.2μg·L-1.测定了含铬污染废水、电镀厂处理前后的废水和河水共9个样品中Cr(Ⅲ)和Cr(Ⅵ)的含量,并进行了加标回收实验.结果表明,在0.02—0.48 mg·L-1加标范围内,Cr(Ⅲ)的加标回收率在83.7%—117.0%;在0.02—0.24 mg·L-1加标范围内,Cr(Ⅵ)的加标回收率在96.0%—104.5%.  相似文献   

17.
铬(Ⅲ)的特效化学发光测定法   总被引:1,自引:0,他引:1  
本文用自制的化学发光测试仪研究了Cr(Ⅲ)催化鲁米诺-H_2O_2化学发光反应的条件及影响因素,并详细研究了铁、钴干扰的消除问题。实验表明,大浓度的EDTA不影响铬的测定,且可消除铁(Ⅲ,Ⅱ)和钴的干扰,大大提高了方法的选择性,从而建立了一种简便快速的化学发光测定水中痕量铬(Ⅲ)的方法,用于天然水样的分析,测定结果的变动系数均小于3.4%,回收率介于90—108%之间,Cr(Ⅲ)的检出限为0.008ppb,线性范围为4×10~(-10)—1×10~(-6)M。自制的化学发光测试仪经实验证明性能良好。  相似文献   

18.
在(298±3)K的温度下,采用相对速率法测得了3-甲基丁酮与OH自由基在气相中的反应速率常数:k=(2·6±0·4)×10~(-12)cm~3·molecule~(-1)·s~(-1).该结果与根据结构活性法估算的结果相一致.实验中还测定了该反应的主要产物:丙酮、甲醛和过氧乙酰基硝酸酯(PAN),讨论了该气体在NOx存在下与OH自由基反应的机理.根据上述实验结果讨论了3-甲基丁酮对对流层臭氧浓度的影响:3-甲基丁酮在大气对流层中的氧化反应活性不高,它的主要氧化产物丙酮同样具有低的反应活性.因此,3-甲基丁酮对大气中臭氧生成的贡献不是很大.  相似文献   

19.
研究了表面覆盖度、H2PO-4等因素对砖红壤吸附Cr(Ⅵ)反应动力学的影响,以及土壤与Cr(Ⅵ)反应时间对表面吸附态C r(Ⅵ)解吸量的影响,还对土壤吸附Cr(Ⅵ)机理进行了初步探讨.在所研究的pH值范围内,砖红壤对Cr(Ⅵ)的吸附量随离子强度增加而减少,这表明砖红壤吸附Cr(Ⅵ)机理中存在静电吸附.动力学实验表明,当Cr(Ⅵ)初始浓度较高时(0.1 mmo.ll-1),吸附反应速率开始比较快,持续约5m in,随后逐渐减缓.而当Cr(Ⅵ)初始浓度较低时(0.05 mmo.ll-1),土壤对其吸附速率十分迅速,5m in内的吸附量占总吸附量的96%以上.该结果表明,表面覆盖度越低,吸附反应速率越快.H2PO-4的存在将降低吸附反应速率和吸附量.H2PO-4对土壤表面吸附态Cr(Ⅵ)的解吸反应动力学也表现出双速率特征,即开始比较迅速而随后逐渐变缓.当延长土壤对Cr(Ⅵ)的吸附时间后,Cr(Ⅵ)吸附量虽然没有增加,但其解吸量却减少,这说明吸附态Cr(Ⅵ)滞留在土壤表面期间,其结合形态向难解吸态方向发生了转变.  相似文献   

20.
本文提出了甩(口底)唑和CTAB分光光度法测定微量Cr(Ⅵ)的新方法。五法灵敏度高,络合物在555nm处有最大吸收,表观摩尔吸光系数为9.0×10~4/摩尔·厘米。铬量在0—10μg/50ml符合比尔定律。用C_yDTA和H_2O_2掩蔽Fe(Ⅲ)、Al(Ⅲ)、Cu(Ⅱ)、Ti(Ⅳ)和V(Ⅴ).Cr(Ⅲ)不干扰测定。本法可应用于水中微量Cr(Ⅳ)的测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号