首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Wood treated with chromated copper arsenate (CCA) is found in construction and demolition (C&D) debris, and a common use for wood recycled from C&D debris is the production of mulch. Given the high metals concentrations in CCA-treated wood, a small fraction of CCA-treated wood can increase the metal concentrations in the mulch above regulatory thresholds. The objective of this study was to determine the extent of contamination of CCA-treated wood in consumer landscaping mulch and to determine whether visual methods or rapid X-ray fluorescence (XRF) technology can be used to identify suspect mulch. Samples were collected throughout the State of Florida (USA) and evaluated both visually and chemically. Visual analysis focused on documenting wood-chip size distribution, whether the samples were artificially colored, and whether they contained plywood chips which is an indication that the sample was, in part, made from recycled C&D wood. Chemical analysis included measurements of total recoverable metals, leachable metals as per the standardized synthetic precipitation leaching procedure (SPLP), and XRF analysis. Visual identification methods, such as colorant addition or presence of plywood, were found effective to preliminarily screen suspect mulch. XRF analysis was found to be effective for identifying mulch containing higher than 75 mg/kg arsenic. For mulch samples that were not colored and did not contain evidence of C&D wood, none exceeded leachable metal concentrations of 50 microg/L and only 3% exceeded 10 mg/kg for recoverable metals. The majority of the colored mulch made from recycled C&D wood contained from 1% to 5% CCA-treated wood (15% maximum fraction) resulting in leachable metals in excess of 50 microg/L and total recoverable metals in excess of 10 mg/kg. The maximum arsenic concentration measured in the mulch samples evaluated was 230 mg/kg, which was above the Florida residential direct exposure regulatory guideline of 2.1 mg/kg.  相似文献   

2.
The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.  相似文献   

3.
Environmental problems associated with sewage sludge disposal have prompted strict legislative actions over the past few years. At the same time, the upgrading and expansion of wastewater treatment plants have greatly increased the volume of sludge generated. The major limitation of land application of sewage sludge compost is the potential for high heavy metal content in relation to the metal content of the original sludge. Composting of sewage sludge with natural zeolite (clinoptilolite) can enhance its quality and suitability for agricultural use. However, the dewatered anaerobically stabilized primary sewage sludge (DASPSS) contained a low concentration of humic substances (almost 2%), and the addition of the waste paper was necessary in order to produce a good soil conditioner with high concentrations of humics. The final results showed that the compost produced from DASPSS and 40-50% w/w of waste paper was a good soil fertilizer. Finally, in order to estimate the metal leachability of the final compost product, the generalized acid neutralization Capacity (GANC) procedure was used, and it was found that by increasing the leachate pH, the heavy metal concentration decreased. The application of the sequential chemical extraction indicated that metals were bound to the residual fraction characterized as a stabilize fractions.  相似文献   

4.
In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material).  相似文献   

5.
The chemical composition of Danish household waste was determined by two approaches: a direct method where the chemical composition (61 substances) of 48 material fractions was determined after hand sorting of about 20 tonnes of waste collected from 2200 households; and an indirect method where batches of 80–1200 tonnes of unsorted household waste was incinerated and the content of the waste determined from the content of the outputs from the incinerator. The indirect method is believed to better represent the small but highly contaminated material fractions (e.g., batteries) than the direct method, because of the larger quantities included and the more homogenous material to sample from. Differences between the direct and the direct methods led to corrections in the of heavy metal concentration of a few fractions.The majority of the energy content of the waste originates from organic waste like paper, cardboard and organic fractions. The single fraction contributing most to the total energy content is the non-recyclable plastic fraction, contributing 21% of the energy content and 60% of the chlorine content, although this fraction comprises less than 7% by weight. Heavy metals originate mainly from inert fractions, primarily batteries.  相似文献   

6.
Five different fractions of the biodegradable municipal solid waste (BMSW) were evaluated as potential animal feedstuffs. For each source of waste (meat waste (MW), fish waste (FW), fruit and vegetables waste (FVW), restaurant waste (RW), household waste (HW)), samples were obtained from small shops (butchers, fishmongers, fruit and vegetable shops), restaurants and a MSW treatment plant (household waste). The chemical composition, microbiological characterization, dioxins, furans, PCB's and mineral content were determined for every type of waste fraction. The analysed biodegradable waste presented high moisture content (from 60% to 90%). Some fractions were dense in one nutrient: meat waste in ether extract, fish waste in crude protein, fruit and vegetable waste in nitrogen free extract. The other studied fractions (restaurant fraction and household fraction) presented a more balanced composition, but the presence of toxic concentrations of contaminants such as metals was higher than European legislation permitted values in animal feeding. From a microbiological standpoint, a heat treatment at 65 degrees C for 20 min was sufficient to ensure microbiological quality of the samples. This treatment was also advisable to reduce the moisture content: a lower moisture content facilitates the waste handling and processing and, therefore, the inclusion of these waste fractions in commercial animal diets. This paper presents a potential alternative for the recovery of organic matter content in municipal solid waste. The results obtained in this research and the feedstuffs legislation in force related to animal feed, indicated that some of the studied biodegradable waste fractions (meat waste, fruit and vegetable waste and fish waste) could be considered as alternatives to typical raw materials used in animal feeds.  相似文献   

7.
Data for the composition of municipal solid waste (MSW) from around the world are used to further examine a previously reported statistical correlation between the fraction of food residues and the fractions of paper and board, metal, glass and plastics residues in MSW. For data from many locations, these correlations are statistically significant; multiple linear regressions are computed. The fraction of food waste decreases as the fractions of waste from paper and board, metals and glass increase.The situation in the U.S.A. is examined further for just packaging waste. Similar correlations are established for the fraction of food residues and the fractions of paper and board and plastics packaging residues for predicted compositions for 1980 to 2000. Similar correlations for the U.K. are not statistically significant. Some reasons for this are postulated.The results of the statistical analyses predict that a strategy for decreasing the fraction of food waste in MSW is to increase the use of food packaging by some amount, especially plastics and metals, contrary to conventional wisdom.  相似文献   

8.
The Waste Framework Directive (WFD; 2008/98/EG) describes how waste materials are to be classified as hazardous or not. For complex waste materials chemical analyses are often not conclusive and the WFD provides the possibility to assess the hazardous properties by testing on the waste materials directly. As a methodology WFD refers to the protocols described in the CLP regulation (regulation on Classification, Labeling and Packaging of chemicals) but the toxicity tests on mammals are not acceptable for waste materials. The DISCRISET project was initiated to investigate the suitability of alternative toxicity tests that are already in use in pharmaceutical applications, for the toxicological hazard assessment of complex waste materials. Results indicated that Microtox was a good candidate as a first screening test in a tiered approached hazard assessment. This is now further validated in the present study. The toxic responses measured in Microtox were compared to biological responses in other bioassays for both organic and inorganic fractions of the wastes. Both fractions contribute to the toxic load of waste samples. Results show that the Microtox test is indeed a good and practical screening tool for the organic fraction. A screening threshold (ST) of 5 geq/l as the EC50 value in Microtox is proposed as this ST allows to recognize highly toxic samples in the screening test. The data presented here show that the Microtox toxicity response at this ST is not only predictive for acute toxicity in other organisms but also for sub lethal toxic effects of the organic fraction. This limit value has to be further validated. For the inorganic fraction no specific biotest can be recommended as a screening test, but the use of direct toxicity assessment is also preferable for this fraction as metal speciation is an important issue to define the toxic load of elutriate fractions. A battery of 3 tests (Microtox, Daphnia and Algae) for direct toxicity assessment of this fraction is recommended in literature, but including tests for mechanistic toxicity might be useful.  相似文献   

9.
This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442, EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non-combustibles (such as stone/rock and glass particles), was found in the reject material stream.  相似文献   

10.
To harmonize with international standards, the Republic of Korea is in the process of converting its current hazardous waste classification system and setting up regulatory standards for all toxic substances present in hazardous waste. Detailed characterization of each form of hazardous waste belonging to five chemical processes and their correlations were studied. In the present work, the concentrations of 13 heavy metals, F?, CN?, 7 PAH compounds, total PCDD/F and 7 PCB isomers present in the hazardous waste generated among chemical processes such as synthetic rubber (SR), man-made fibers (MF), organic dyes and pigments (DP), pharmaceuticals and cosmetics were analyzed along with their leaching characteristics. Comparing all the processes, most of the heavy metal concentrations were high in SR waste. Naphthalene was the dominant PAH in most of the chemical process waste. PCDD/F concentrations of the samples were in the range of 0.001–0.003 ng I-TEQ/g. PCB isomer-101 and isomer-118 were found to be slightly higher than the permissible limit in the SR filter cake sample. SR process wastes doesn’t show any resemblance with the other process waste in either the heavy metals and PAH trend. Each sample from DP and MF were suitable only for hazardous waste landfill.  相似文献   

11.
Construction and demolition debris (CDD) fines, a residue generated from mechanized CDD recycling, can often be beneficially reused. Concentrations of chemicals of potential concern in CDD fines should be evaluated prior to being reintroduced into the environment to assess risk and make informed decisions about appropriate reuse opportunities. The distribution of trace chemicals in CDD fines as a function of particle size was measured to evaluate if concentrations in the bulk material can be reduced by removing certain particle size ranges through screening. Chemicals of potential concern, including arsenic, lead, sulfate and polycyclic aromatic hydrocarbons (PAH), were characterized in four different size fractions (19–4.8 mm, 4.8–0.84 mm, 0.84–0.3 mm, < 0.3 mm) of CDD fine samples collected from 12 US CDD recycling facilities throughout the US. Results revealed that aluminum, arsenic and chromium concentrations were distributed evenly throughout all four size fractions. As for the remaining chemicals, most samples had lower concentrations in the 19–4.8 mm size range. In some samples and for certain chemicals, removal of the finer size fractions reduced overall concentrations in CDD fines, suggesting that additional processing may be worth further investigation.  相似文献   

12.
Nickel–metal hydride (NiMH) batteries contain high amount of industrial metals, especially iron, nickel, cobalt and rare earth elements. Although the battery waste is a considerable secondary source for metal and chemical industries, a recycling process requires a suitable pretreatment method before proceeding with recovery step to reclaim all valuable elements. In this study, AA- and AAA-type spent NiMH batteries were ground and then sieved for size measurement and classification. Chemical composition of the ground battery black mass and sorted six different size fractions were determined by an analytical technique. Crystal structures of the samples were analyzed by X-ray diffraction. Results show that after mechanical treatment, almost 87 wt% of the spent NiMH batteries are suitable for further recycling steps. Size classification by sieving enriched the iron content of the samples in the coarse fraction which is bigger than 0.25 mm. On the other hand, the amounts of nickel and rare earth elements increased by decreasing sample size, and concentrated in the finer fractions. Anode and cathode active materials that are hydrogen storage alloy and nickel hydroxide were mainly collected in finer size fraction of the battery black mass.  相似文献   

13.
A huge amount of fly ash is produced by coal-fired power plants every year in China and leads to increasing environmental problems associated with disposal and treatment. It will be very helpful for the study of management and disposal of solid waste to understand the bioaccessibility and environmental behaviors of arsenic in fly ash. In this paper, an in vitro physiologically-based extraction test was applied to estimate the solubility and bioaccessibility of arsenic in fly ash in the human gastrointestinal tract. The fly ash samples were sieved into different fractions with different particle sizes (100–60, 60–10, 10–2.5, <2.5 μm). The influence of particle size on both total and bioaccessible arsenic was also investigated. The results demonstrated that arsenic concentrations in fly ash were significantly correlated with particle size. The proportion of bioaccessible arsenic (gastric and intestinal arsenic) accounting for the total arsenic was in the range of 36–67 %. The statistic analysis indicated that total arsenic in fly ash was linearly correlated with bioaccessible arsenic. The results illustrated that bioaccessible arsenic was dominated by total arsenic.  相似文献   

14.
Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators is bottom ashes (BAs), which also have important resource potential. Based on a full-scale Danish recovery facility, detailed material and substance flow analyses (MFA and SFA) were carried out, in order to characterise the resource recovery potential of Danish BA: (i) based on historical and experimental data, all individual flows (representing different grain size fractions) within the recovery facility were quantified, (ii) the resource potential of ferrous (Fe) and non-ferrous (NFe) metals as well as rare earth elements (REE) was determined, (iii) recovery efficiencies were quantified for scrap metal and (iv) resource potential variability and recovery efficiencies were quantified based on a range of ashes from different incinerators. Recovery efficiencies for Fe and NFe reached 85% and 61%, respectively, with the resource potential of metals in BA before recovery being 7.2%ww for Fe and 2.2%ww for NFe. Considerable non-recovered resource potential was found in fine fraction (below 2 mm), where approximately 12% of the total NFe potential in the BA were left. REEs were detected in the ashes, but the levels were two or three orders of magnitude lower than typical ore concentrations. The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results, it is recommended to focus on limiting REE-containing products in waste for incineration and improving pre-incineration sorting initiatives for these elements.  相似文献   

15.
Municipal solid waste incineration (MSWI) bottom ash contains economically significant levels of silver and gold. Bottom ashes from incinerators at Amsterdam and Ludwigshafen were sampled, processed, and analyzed to determine the composition, size, and mass distribution of the precious metals. In order to establish accurate statistics of the gold particles, a sample of heavy non-ferrous metals produced from 15 tons of wet processed Amsterdam ash was analyzed by a new technology called magnetic density separation (MDS). Amsterdam’s bottom ash contains approximately 10 ppm of silver and 0.4 ppm of gold, which was found in particulate form in all size fractions below 20 mm. The sample from Ludwigshafen was too small to give accurate values on the gold content, but the silver content was found to be identical to the value measured for the Amsterdam ash. Precious metal value in particles smaller than 2 mm seems to derive mainly from waste of electrical and electronic equipment (WEEE), whereas larger precious metal particles are from jewelry and constitute the major part of the economic value. Economical analysis shows that separation of precious metals from the ash may be viable with the presently high prices of non-ferrous metals. In order to recover the precious metals, bottom ash must first be classified into different size fractions. Then, the heavy non-ferrous (HNF) metals should be concentrated by physical separation (eddy current separation, density separation, etc.). Finally, MDS can separate gold from the other HNF metals (copper, zinc). Gold-enriched concentrates can be sold to the precious metal smelter and the copper-zinc fraction to a brass or copper smelter.  相似文献   

16.
Recycling of packaging wastes may be compatible with incineration within integrated waste management systems. To study this, a mathematical model is presented to calculate the fraction composition of residual municipal solid waste (MSW) only as a function of the MSW fraction composition at source and recycling fractions of the different waste materials. The application of the model to the Lisbon region yielded results showing that the residual waste fraction composition depends both on the packaging wastes fraction at source and on the ratio between that fraction and the fraction of the same material, packaging and non-packaging, at source. This behaviour determines the variation of the residual waste LHV. For 100% of paper packaging recycling, LHV reduces 4.2% whereas this reduction is of 14.4% for 100% of packaging plastics recycling. For 100% of food waste recovery, LHV increases 36.8% due to the moisture fraction reduction of the residual waste. Additionally the results evidence that the negative impact of recycling paper and plastic packaging on the LHV may be compensated by recycling food waste and glass and metal packaging. This makes packaging materials recycling and food waste recovery compatible strategies with incineration within integrated waste management systems.  相似文献   

17.
The composition of household waste in Greenland was investigated for the first time. About 2 tonnes of household waste was sampled as every 7th bag collected during 1 week along the scheduled collection routes in Sisimiut, the second largest town in Greenland with about 5400 inhabitants. The collection bags were sorted manually into 10 material fractions. The household waste composition consisted primarily of biowaste (43%) and the combustible fraction (30%), including anything combustible that did not belong to other clean fractions as paper, cardboard and plastic. Paper (8%) (dominated by magazine type paper) and glass (7%) were other important material fractions of the household waste. The remaining approximately 10% constituted of steel (1.5%), aluminum (0.5%), plastic (2.4%), wood (1.0%), non-combustible waste (1.8%) and household hazardous waste (1.2%). The high content of biowaste and the low content of paper make Greenlandic waste much different from Danish household waste. The moisture content, calorific value and chemical composition (55 elements, of which 22 were below detection limits) were determined for each material fraction. These characteristics were similar to what has been found for material fractions in Danish household waste. The chemical composition and the calorific value of the plastic fraction revealed that this fraction was not clean but contained a lot of biowaste. The established waste composition is useful in assessing alternative waste management schemes for household waste in Greenland.  相似文献   

18.
Bio-drying can enhance the sortability and heating value of municipal solid waste (MSW), consequently improving energy recovery. Bio-drying followed by size sorting was adopted for MSW with high water content to improve its combustibility and reduce potential environmental pollution during the follow-up incineration. The effects of bio-drying and waste particle size on heating values, acid gas and heavy metal emission potential were investigated. The results show that, the water content of MSW decreased from 73.0% to 48.3% after bio-drying, whereas its lower heating value (LHV) increased by 157%. The heavy metal concentrations increased by around 60% due to the loss of dry materials mainly resulting from biodegradation of food residues. The bio-dried waste fractions with particle size higher than 45 mm were mainly composed of plastics and papers, and were preferable for the production of refuse derived fuel (RDF) in view of higher LHV as well as lower heavy metal concentration and emission. However, due to the higher chlorine content and HCl emission potential, attention should be paid to acid gas and dioxin pollution control. Although LHVs of the waste fractions with size <45 mm increased by around 2× after bio-drying, they were still below the quality standards for RDF and much higher heavy metal pollution potential was observed. Different incineration strategies could be adopted for different particle size fractions of MSW, regarding to their combustibility and pollution property.  相似文献   

19.
This study characterized the organic matter and heavy metals in the leachate from two typical municipal solid waste (MSW) sanitary landfills in China, the recently established (3-year-old) Liulitun landfill and the mature (11-year-old) Beishenshu landfill, using a size fractionation procedure. The organic matter of all raw and treated leachate samples primarily existed in a truly-dissolved fraction with an apparent molecular weight (AMW) of <1 kDa, and its percentage decreased with an increase in overall AMW. The leachate from the newer landfill had a higher percentage of truly-dissolved organic matter. After anaerobic treatment, this leachate had a similar size fraction of organic matter to that seen for the raw leachate of the mature landfill. Biochemical processes had different removal efficiencies for various types of AMW organic matter, and the concentration of moderate AMW organic matter appeared to increase throughout these processes. Most of the heavy metals existed in a colloidal fraction (AMW >1 kDa and particle size <0.45 μm). The behaviors of different species of heavy metals had large variations. The size fractions of heavy metal species were significantly affected by treatment processes and landfill age, except for Zn. The concentration ratio of heavy metals to organic matter was maximal in the colloidal fraction and showed an inverse change to that seen for organic matter concentration changes caused by biochemical processes. Consequently, the pollution levels of heavy metals were substantially increased by treatment processes, although their concentrations decreased.  相似文献   

20.
Ash from pig manure treated by combustion and thermal gasification was characterized and compared in terms of nutrient, i.e., potassium (K), phosphorus (P) and heavy metal, i.e., cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) contents. Total nutrient and metal concentrations were measured using energy dispersive X-ray fluorescence analysis. Acid (HNO3, H2SO4) and water-extractable concentrations were also measured both in non-classified ash and in selected ash particle size fractions using flame atomic absorption spectrometry and colorimetric spectrometry. Results indicate that ash from gasified manure contained more water-extractable K in comparison with combusted manure whereas the opposite was the case with respect to P. Heavy metals Ni, Cr and Cd were present in higher concentrations in the fine particle size fractions (< 30 microm of particle diameter), whereas K, P, Zn and Cu exhibited higher concentrations in the coarser particle size fractions (> 30 microm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号