首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
During three consecutive seasons (1987-1989), the effects of low-levels of O3, SO2 and NO2 singly and in all possible combinations (NO2 in 1988 and 1989 only) on growth and yield of potted plants of spring rape (Brassica napus L. var. napus, 'callypso') were investigated by means of factorial fumigation experiments in open-top chambers. Plants were exposed from the early vegetative stage of development until seed harvest, to charcoal-filtered air (CF; control) and CF which was supplemented for 8-h per day (8.00-16.00) with O3, for 16-h per day with NO2 (16.00-8.00) and continuously with SO2. Including the controls, the 24-h daily mean concentrations [microg m(-3)] ranged between 6-44 (O3), 9-88 (SO2) and 10-43 (NO2). The corresponding daily mean concentrations during the time of fumigation were 10-121 and 11-60 microg m(-3) for O3 and NO2, respectively. Single effects of O3 on growth and yield parameters were mostly negative and the magnitude of this effect was dependent on the season. O3 reduced plant dry weight by 11.3-18.6% and yield of seeds by 11.4-26.9%. While medium levels of SO2 stimulated the weight of pods up to 33%, higher concentrations (88 microg m(-3)) caused a decline of yield of 12.3%. From the significant interactive effects which were observed, it could be established that SO2 and NO2 alone mostly acted positively, but that their interaction with each other and especially with O3 was antagonistic, as some of the detrimental effects of O3 were mitigated by these pollutants. An important antagonistic effect between SO2 and O3 or NO2 was observed on yield. While 56 microg m(-3) SO2 increased yield by 9.9% compared to the control treatment, it aggravated the yield loss caused by O3 from -16.18% to -21.4%, and it reduced the yield stimulation caused by NO2 from +11.8% to +4.2%. Leaf area was the only parameter which was negatively affected by all pollutants, their joint action being synergistic.  相似文献   

2.
Maize (Zea mays, L.) plants were exposed intermittently to O(3), HF or both pollutants and the progression of foliar senescence was followed by measuring chlorophyll loss, membrane breakdown and changes in stomatal conductance. At concentrations insufficient to cause foliar symptoms (0.06 microl O(3) litre(-1) and 1.0 microg Fm(-3)), exposures to HF had little or no effect, whereas O(3) exposures accelerated the rate of senescence. The rapid rate of senescence produced by O(3) was moderated if the plants were also exposed to HF. Topical application of 6-benzyladenine (BA) prior to pollutant exposures delayed senescence in all plants and completely prevented the O(3)-induced acceleration of senescence.  相似文献   

3.
Patterns of environmental change in the biosphere include concurrent and sequential combinations of increasing ultraviolet (UV-B) and ozone (O(3)) at increasing carbon dioxide (CO(2)) levels; long-term changes are resulting mainly from stratospheric O(3) depletion, greater tropospheric O(3) photochemical synthesis, and increasing CO(2) emissions. Effects of selected combinations were evaluated in tomato (Lycopersicon esculentum cv. New Yorker) seedlings using sequential exposures to enhanced UV-B radiation and O(3) in differential CO(2) concentrations. Ambient (7.2 kJ m(-2 )day(-1)) or enhanced (13.1 kJ m(-2) day(-1)) UV-B fluences and ambient (380 microl l(-1)) or elevated (600 microl l(-1)) CO(2) were imposed for 19 days before exposure to 3-day simulated O(3) episodes with peak concentrations of 0.00, 0.08, 0.16 or 0.24 microl l(-1) O(3) in ambient or elevated CO(2). CO(2) enrichment increased dry mass, leaf area, specific leaf weight, chlorophyll concentration and UV-absorbing compounds per unit leaf area. Exposure to enhanced UV-B increased leaf chlorophyll and UV-absorbing compounds but decreased leaf area and root/shoot ratio. O(3) exposure generally inhibited growth and leaf photosynthesis and did not affect UV-absorbing compounds. The highest dose of O(3) eliminated the stimulating effect of CO(2) enrichment after ambient UV-B pre-exposure on leaf photosynthesis. Pre-exposure to enhanced UV-B mitigated O(3) damage to leaf photosynthesis at elevated CO(2).  相似文献   

4.
Four non-filtered and four charcoal-filtered open-top chambers were employed to determine the effects of ambient levels of gaseous air pollutants at Braunschweig, FRG, on growth and yield of potted plants of winter and spring barley. During the exposure period (November 1985-August 1986) monthly mean values of gaseous air pollutants (microg m(-3)) ranged between 34 and 127 for SO(2), 34 and 52 for NO(2) and 12 and 33 for O(3) in winter (November-March), and 16 to 26 for SO(2), 20 to 33 for NO(2) and 42 to 53 for O(3) in spring-summer (April-August). Monthly 2% percentile values for these gases reached (microg m (-3)) 561 for SO(2), 140 for NO(2) and 170 for O(3). The filtering efficiencies of the charcoal filters used averaged 60% for SO(2), 50% for NO(2) and 70% for O(3). All plants of winter barley from the unchambered plot were killed by severe frost periods in winter, 1986. Little frost damage occurred on plants grown in the chambers. Air filtration resulted in higher numbers of plants of winter barley per pot, i.e. a higher number of individuals per area, and a higher dry weight of whole plants and ears compared to the non-filtered atmosphere. In the experiments with spring barley, fresh and dry weight of whole plants were lower and dry weight of leaves were higher in the filtered open-top chambers. These effects could not be observed at all harvests which were carried out during the growing season. Grain yield and sulphur content of the leaves of both barley cultivars were not affected by the air filtration. Production of biomass of spring barley grown in ambient air was higher than of that grown in open-top chambers.  相似文献   

5.
A single 12 h ozone exposure peaking at 0.20 ppm proved phytotoxic to greenhouse-grown 'Cutler 71' soybeans at each growth stage tested from V5 to R6. Visible injury occurred within 40 h on the unifoliodate leaves and middle-aged and older trifoliolates while the younger leaves were free from toxicity symptoms. In some instances visible injury was accompanied by a decrease in chlorophyll and an increase in leaf diffusive resistance. Although nitrogen fixation was not significantly altered except at early pod formation (R3), and nitrate reductase activity was significantly reduced only if the ozone exposure occurred at the time of maximal enzyme activity (V5), nitrogen content of the leaves was reduced by ozone treatment. Shoot dry weight was not affected 40 h after ozone treatment, but root dry weight was significantly reduced. Plants grown with supplemental NO(3)(-) were more sensitive to ozone than those dependent on fixed nitrogen. At plant maturity, there was no evidence of an ozone effect on shoot, root, or seed dry weight, NO(3)(-) -grown plants showed a significant increase in growth and yield over N(2)(-) plants; but no ozone effect was observed, despite the increased foliar sensitivity. Multiple ozone exposures at growth stages V3, R1 and R3 exacerbated the effects noted with a single episode and also reduced nitrogenase activity (reflected in specific and total nodule activity) and shoot and root dry weight. At plant maturity, there was again no evidence of a significant effect of multiple ozone treatment on shoot dry weight or seed yield although root weight remained low. The results would tend to support the hypothesis that older leaves of soybean do not make a significant contribution to seed yield. Although they may be injured by ozone during the reproductive phases of growth, seed yield may not be affected if the younger O(3)-tolerant leaves remain functional.  相似文献   

6.
One month old soybean (Glycine max (L.) Merrill) cv. 'Williams' plants were exposed to nitrogen dioxide (NO2 at 0.1, 0.2, 0.3, and 0.5 microl liter(-1) and carbon filtered air (control), 7 h per day for five days, under controlled environment. Data were collected on net photosynthetic rate (PN), stomatal resistance (SR), and dark respiration rate (DR), immediately following the fifth day of exposure and 24 h after termination of exposure. Chlorophyll a (Ch a), chlorophyll b (Ch b), total chlorophyll (tot Ch) and foliar nitrogen (N) were measured before and after exposures. Growth characteristics--relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), and root shoot ratio (RSR) -- were computed for treated plants using standard growth equations. Increases of 18% and 23% in PN were observed immediately following exposure to 0.2 microl liter(-1) NO2 and after 24 h recovery period, respectively. With 0.5 microl liter(-1) NO2 treatment, reductions in PN of 23% and 50% were observed, immediately after exposure and following 24 h recovery, respectively. DR rates with 0.2 l liter(-1) treatment were higher than the control. Chlorophyll a and tot Ch showed significant reduction with 0.5 microl liter(-1) NO2 treatment. The percent reduction in Ch a and tot Ch with 0.5 microl liter(-1) NO2 were 45% and 47%, respectively. Increases in foliar nitrogen content after 0.2 and 0.3 microl liter(-1) NO2 treatments were 46% and 69%, respectively. Nitrogen dioxide at 0.5 microl liter(-1) reduced RGR and NAR by 47% and 51%, respectively. Leaf area ratio was 42% higher in 0.5 microl liter(-)1 NO2 treated plants, compared with the control; this increase was insufficient to compensate for the decrease in NAR resulting in a net decline in RGR. Nitrogen dioxide up to 0.2 microl liter(-1) increased PN and foliar-N content of soybean. With 0.5 microl liter(-1) NO2, significant decreases were observed in PN, leaf chlorophyll, foliar-N, NAR and RGR. Nitrogen dioxide up to 0.2 microl liter(-)1 has a favorable influence on overall growth characteristics of soybean; however, inhibitory effects were seen with NO2 treatment at 0.5 microl liter(-1).  相似文献   

7.
为了研究2008年北京奥运会前期污染物浓度变化特征,对北京气象塔3层高度上的大气污染物(NO2和O3)进行加强观测,分析其变化特征。观测结果表明,由于北京奥运会前期采取了严格的空气质量控制措施,NO2浓度相对车辆限行前下降了45.3%,且随着高度递增逐渐降低;O3浓度最大值和日均值有所降低,其最大值出现时间较10年前提前了12 h,且有4 h左右处于相对平稳状态。O3浓度峰值主要是受NO2的控制,O3浓度峰值出现时间提前反映出北京大气氧化效率不断提高。对于观测期间出现光化学污染事件,利用同期气象资料和大气污染监测数据分析,发现造成这次大气污染的主要原因是气象因子:地面多处于弱高压场控制中,大气层结稳定,风力较弱(小于2 m/s),并伴随着连续高温、强辐射和低湿。  相似文献   

8.
Spring barley (Hordeum vulgare cv. Klaxon) plants, 9 days old, were exposed to 0.05, 0.10 or 0.15 microl litre(-1) ozone (O3) for 12 days. Fumigation was administered for 7 h between 9.00 h and 16.00 h each day. Using conventional IRGA equipment, the carbon dioxide exchange rate (CER) was shown to decrease with increasing concentration of O3 during the exposure period, falling to 60% of the control value at the highest O3 concentration. Transpiration rates and stomatal conductance showed similar trends. Light saturation curves, obtained using a leaf disc oxygen electrode, demonstrated that O3-treated leaves had lower apparent quantum yields (QY) and generally lower rates of O2 evolution at saturating light and CO2 levels. Oscillations in chlorophyll a fluorescence, normally observed in control plants, could not be detected after O3 treatment and could only be restored to some extent by feeding the phosphate sequestering agent D-mannose to the leaves.  相似文献   

9.
Thirty-five cultivars of pot plants of 20 families were exposed for 50-64 days in a greenhouse facility to either 1 microl litre(-1) NO with 0.5 microl litre(-1) NO2, or 1 microl litre(-1) NO2 with 0.1 microl litre(-1) NO for 15 h each day, with air which was free from these gases as the reference. A sensitivity ranking of the pot plants was compiled, with the highest priority on visible injuries, followed by growth reductions, primarily as a response to the NO-dominated exposures, simulating the NOx-polluted environment in direct-fired, CO2-enriched greenhouses. This treatment reduced the leaf dry weight more than the number and area of the leaves. Twenty-two cultivars were significantly injured, while two (Hibicus sp, Epipremnum pinnatum, green) were significantly improved. The NOx-sensitivity of pot plants was highest in cultivars with variegated, small or narrow leaves, and in the Moraceae family. Nine cultivars (Ficus elastica 'Robusta', F. benjamina, F. pumila 'Sonny', Dieffenbachia maculata 'Camilla', F. elastica 'Tineke', Epipremnum pinnatum 'Marble Queen', Begonia elatior 'Nelson', Cyclamen persica, Poinsettia 'Mini') were specifically sensitive to the NO-containing exposure; six were specifically sensitive to the NO2-containing exposure (F. elastica 'Robusta', Asparagus den. 'Sprengeri', Hedera helix 'Shamrock', Aspledium nidus, Aster novo-belgii, Hypoestes phyl. 'Betina'); and 12 (Soleirolia soleirolii, Asparagus den. 'Sprengeri', H. helix 'Ester', Codiaeum 'Pictum', Rosa 'Minimo Red', F. benjamina 'Starlight', Saintpaulia ionantha 'light blue', F. pumila, Rhododendron simsii, H. helix 'Shamrock', Hibiscus sp., E. pinnatum) were equally sensitive to mixtures dominated by either gas, as measured by at least one response parameter.  相似文献   

10.
A new large-scale closed chamber fumigation system with cooling facilities is described for studying effects of low concentrations of SO(2), NO(2) and O(3) and low temperatures on woody species and herbaceous plants. The system is based on modified hemispherical greenhouses with a forced air ventilation system. This provides a chamber environment with low spatial variability of pollutant gas concentrations and rapid air circulation which allows exposure of plants at near ambient temperatures and relative humidity. Large capacity cooling units come into operation when ambient temperatures fall below 0 degrees C, and these allow chamber temperatures to be lowered by an additional 4 to 8 degrees C in experiments designed to test whether exposure to pollutants enhances the frost sensitivity of plants.  相似文献   

11.
One-month-old soybean (Glycine max [L.] Merrill), cultivar 'Williams', plants were exposed to nitrogen dioxide (0.1, 0.2, 0.3 and 0.5 ppm) and carbon filtered air (control), 7 h per day, for 5 days, under a controlled environment. Leaf chlorophyll content (Ch a, Ch b, and total Ch content) and foliar nitrogen content (%N) were determined before and after the exposure. The influence of NO(2) treatments up to 0.3 ppm on leaf chlorophyll content was negligible although a stimulatory effect was evident in Ch a and total Ch content with 0.2 ppm NO(2). Marked decline in Ch content was observed with 0.5 ppm treatment; the reductions in Ch a and total Ch were 45% and 47%, respectively. Foliar-N contents of plants treated with 0.2 and 0.3 ppm NO(2) were higher than the control; plants exposed to 0.5 ppm NO(2) showed a 41% reduction in foliar-N compared to pre-exposure values.  相似文献   

12.
Dry deposition contributes a substantial part of the total deposition of acidic pollutants and acid precursors to agricultural systems. However, because of the relative intractability of measurement of dry deposition fluxes, little work has been done to directly quantify dry inputs of pollutants to crops. In this research, foliar surface sampling ('leaf-washing') methods were developed and shown to be a practical and fairly precise means of monitoring the accumulation of dry-deposited SO4(2-) and NO3- on plant surfaces. Leaching of these ions from plant tissues was shown to be negligible; however, uptake by plants (e.g. stomatal gas exchange of SO2 or HNO3 and/or assimilation of surface accumulations of materials) is not accounted for by the sampling method. The significance of dry deposition to modification of the chemical microenvironment of leaf surfaces appears to be a factor of 3 to 20 or more greater than that of wet deposition alone. This is due to the cyclic reactivation of accumulated materials by dew and light rains, which may dissolve and mobilize, but not remove, the pollutant surface deposit. Therefore, while dry deposition of SO2 and SO4(2-) containing particles may contribute only part of the total mass of sulfur inputs to crop systems, the exposure of plant surface tissue to pollutants can be dominated by the dry-deposited material. The alteration of leaf surface chemistry may contribute to possible stress-producing mechanisms such as reduction of cuticular integrity, cellular injury and death, enhanced leaching of primary and secondary metabolites, and changes in pathogen infection efficiency.  相似文献   

13.
Alfalfa (Medicago sativa L.) were exposed to O(3) concentrations varying between 118 x 10(-6) microg cm(-3) (0.06 ppm) and 157 x 10(-6) microg cm(-3) (0.08 ppm) for 6 h per day 5 days per week for several weeks. Typical plants were sacrificed weekly, and growth parameters were measured. O(3) reduced overall growth, relative growth rates and unit leaf rates in alfalfa before it was cut, indicating that O(3) had reduced photosynthesis. However, after the alfalfa was cut, these same parameters indicated that in some cases, O(3)-stressed plants had greater photosynthetic rates than controls during regrowth. O(3) also altered dry matter partitioning. Roots were most affected, followed by leaves and stems, respectively. In general, O(3) reduced photosynthate production and reduced the proportion of photosynthate partitioned to roots relative to leaves and stems. This could reduce starch reserves in alfalfa, and be detrimental to stand longevity. However, the post-cutting study indicated that at least some alfalfa cultivars may be able to acclimate to O(3)-stress, though plants did not fully recover from pre-cutting differences.  相似文献   

14.
Responses to ozone of insects feeding on a crop and a weed species   总被引:1,自引:0,他引:1  
The influence of ozone on insect herbivore growth and population development was investigated. Fumigation of both pea (Pisum sativum L.) and dock (Rumex obtusifolius L.) at a range of O(3) concentrations between 21-206 nl litre(-1) produced changes in mean relative growth rates of the aphids Acyrthosiphon pisum Harris and Aphis rumicis L. of between 24 and -6% relative to controls. However, there was no evidence of a dose-related response to O(3) fumigation and no clear differences in aphid response when fumigated with the plant on prefumigated or previously unfumigated plant material. It is suggested that this may, in part, be due to the presence of NO contamination during O(3) fumigation. However, the MRGR of dock aphids was found to be greater on new compared to old leaves as well as the increase on the new growth and decrease on the old growth of fumigated plants relative to unfumigated controls. The size of egg batches of the chrysomelid beetle Gastrophysa viridula Degeer were found to be larger, survival and productivity of larvae was higher, and the food consumption lower on R. obtusifolius fumigated with 70 nl litre(-1) O(3) compared with unfumigated controls. This meant that these beetle larvae consumed less leaf area per mg of production on fumigated leaves probably because of their better nutritional quality and/or reduced leaf defences. However, the rate of development of larvae was similar on fumigated and control plants.  相似文献   

15.
Open pollinated families of loblolly pine differing in resistance to fusiform rust disease were screened in laboratory studies for responses to gaseous air pollutants. Twenty families were given acute exposures (2 fumigations for 4 h each) to SO(2) (0.4-1.0 ppm), O(3) (0.25 ppm), SO(2) (0.4-1.0 ppm) + O(3) (0.25 ppm) and control. Analyses of variance were performed to evaluate the treatment effects of these air pollutants on percent foliar injury, and to determine whether the families responded differentially to the air pollution treatments. Treatment effects were significant, with the combination treatment of SO(2) + O(3) producing a higher percentage of foliar injury than the controls; however, injury levels were very low and may not be of biological significance. Subsequently, twelve families were grown in two soil types for exposure to chronic levels of SO(2) (0.06 ppm), O(3) (0.07 ppm), SO(2) (0.06 ppm) + O(3) (0.07 ppm) and control. The families were then ranked for decreased primary shoot growth, shoot dry weight, root dry weight, total plant dry weight and root/shoot ratio after exposure to air pollution treatments. Air pollution treatments as a main effect were significant for only one of five growth parameters measured, that of primary shoot growth. The main effect of family, and the interaction of family and air pollution treatments, were significant for most growth parameters measured. In general, O(3) alone and in combination with SO(2) reduced growth more than SO(2) alone. Fumigation with O(3) reduced growth of two families in comparison with control groups, whereas SO(2) alone produced decreased growth in one family and stimulated growth in three families. Treatment with O(3) alone produced higher root/shoot ratios than fumigation with charcoal-filtered air in two families. Overall, families which were fast growers under control conditions maintained their ranking after exposure to air pollution. Families producing less growth in charcoal-filtered air also produced less growth under various air pollution regimes. Results indicated that these families exhibited a high degree of resistance to air pollution injury. Growth responses of seedlings may not reflect family differences in long-term productivity. No relationship was apparent between fusiform rust resistance and growth reductions due to air pollutants.  相似文献   

16.
Air pollution levels are increasing at an alarming rate in many developing countries, including India and causing a potential threat to crop production. Field experiments were conducted to examine the impact of urban air pollutants on biomass (yield) and some physiological and biochemical parameters of palak (Beta vulgaris L. var. All Green) that grew from germination to maturity at seven periurban sites of Allahabad city having different concentrations of air pollutants under different levels of nutrients. The 6h daily mean NO2, SO2 and O3 concentrations varied from 2.5 to 42.5, 10.6 to 65 and 3.5 to 30.8 microg m(-3), respectively at different locations. Levels of air pollution showed significant negative correlations with photosynthetic pigments, protein, ascorbic acid and starch contents and catalase activity of palak leaves. A significant negative correlation was found for total biomass with SO2 (r=-0.92), NO2 (r=-0.85) and O3 (r=-0.91) concentrations. The increased fertilizer application (N, P and K) over the recommended dose resulted in a positive response by reducing losses in photosynthetic pigments and total biomass. This study proved that ambient air pollution of Allahabad city is influencing negatively to the growth and yield of palak plants.  相似文献   

17.
Twenty-six-day-old black turtle bean cv. 'Domino' plants were exposed to nitrogen dioxide (0.0, 0.025, 0.05 and 0.10 microl liter(-1)), 7 h per day for 5 days per week for 3 weeks, under controlled environment. Data were collected on net photosynthesis rate (PN), stomatal resistance (SR), and dark respiration rate (DR), immediately after exposure, 24 h after the termination of exposure and at maturity (when the leaves had just started turning yellow), using a LICOR 6000 Portable Photosynthesis System. Chlorophyll-a (Ch-a), chlorophyll-b (Ch-b), total chlorophyll (tot-Ch) and leaf nitrogen were measured immediately after exposure and at maturity. Growth characteristics-relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and root: shoot ratio (RSR)-were computed for treated plants. Net photosynthesis rate increased by 53% in 0.10 microl liter(-1) NO2 treated plants immediately after exposure compared to control plants. Dark respiration rates were also higher in treated plants. Ch-a, Ch-b and tot-Ch showed significant increases with 0.1 microl liter(-1) NO2 treatment immediately after exposure. Foliar nitrogen content showed an increase in treated plants both immediately after exposure and at maturity. Increases were also seen in RGR and NAR. Plant yield increased by 86% (number of pods), 29% (number of seeds) and 46% (weight of seeds), respectively. Nitrogen dioxide stimulated the overall plant growth and crop yield.  相似文献   

18.
Intermittent exposure of tomato plants (cv. Pusa Ruby) to SO(2) at 286 microg m(-3) (3 h every heavy third day for 75 days) induced slight chlorosis of leaves. At 571 microg m(-3), considerable chlorosis with browning developed on the foliage. These symptoms were more pronounced and appeared earlier on SO(2)-exposed plants infected with Meloidogyne incognita race 1 (Mi), especially in post- and concomitant-inoculation exposures. Mi and/or SO(2) significantly reduced different parameters of plant growth. Synergistic (positive) interactions between SO(2) and Mi occurred in concomitant- and post-inoculation exposures at 286 and 571 microg m(-3), respectively. In other treatments, an antagonistic (negative) interaction was observed. However, in a few cases, additive effects of SO(2) and Mi were also recorded. Intensity of root-knot (galling) was enhanced at both concentrations of SO(2), while reproduction (egg mass production) of Mi was enhanced in concomitant-inoculation exposures at 286 microg m(-3) and inhibited at 571 micro m(-3). Exposure to SO(2) and/or Mi decreased the number and size of stomata but increased the number and length of trichomes on both the leaf surfaces. Stomatal aperture was significantly wider in the plants exposed to 571 microg SO(2) m(-3) alone and in pre-, post-, and concomitant-inoculation exposures at 286 or 571 microg m(-3). Stomatal aperture was directly related to foliar injury and reductions in growth, yield, and leaf pigments.  相似文献   

19.
An evaluation of the effects of ambient ozone (O3) on muskmelon was conducted with the use of open-top chambers (OTCs). 'Superstar' muskmelons grown in charcoal-filtered (CF) chambers compared to those grown in nonfiltered (NF) chambers showed significant differences in the severity of visible foliar O3 injury. Furthermore, plants grown in NF conditions had significantly less (21.3%) marketable fruit weight and fewer (20.9%) marketable fruit number than those from CF chambers. No differences were found in early biomass production, leaf area, or number of nodes after 3 weeks of exposure to treatment conditions. Ambient O3 did not affect soluble solids content of mature fresh fruit nor foliage fresh weight at final harvest. Results indicate that ambient concentrations of O3 in southwestern Indiana caused significant foliar injury and yield loss to muskmelons.  相似文献   

20.
Spring wheat (Triticum aestivum L.) and spring barley (Hordeum vulgare L.) plants were exposed to simulated ozone (O(3)) episodes (7 h day(-1) for 7 days) at maximum concentrations of 120, 180 and 240 microg m(-3) O(3), in comparison to a charcoal-filtered air control. Fumigations were conducted in four closed chambers placed in a climate room. Exposures took place prior to inoculation of the plants with six different facultative leaf pathogens. On wheat, significant enhancement of leaf attack by Septoria nodorum Berk. and S. tritici Rob. ex Desm. appeared, particularly on the older leaves and at the highest level of O(3). The same was true for Gerlachia nivalis W. Gams et E. Müll/Fusarium culmorum (W.F.Sm.) Sacc. on wheat and net blotch (Drechslera teres (Sacc.) Shoem.) or G. nivalis leaf spots on barley. Disease development was promoted both on leaves with and without visible injury following exposure to O(3). Sporulation of the two Septoria species increased at 120 and 180 microg m(-3) O(3); however, it was reduced to the level of the control, if 240 microg m(-3) were applied. No significant effects of predisposition were observed with Bipolaris sorokiniana (Sacc.) Shoem. (syn. Helminthosporium sativum Pamm., King et Bakke), the causal agent of spot blotch, neither on wheat nor on barley. Doses and peak concentrations applied in the experiments were in good agreement with measurements of ambient ozone in Southern Lower Saxony, FRG. Six years' ozone data (1984-1989) revealed the annual occurrence of between 3 and 11 ozone episodes with potentially harmful effects on cereals (three or more consecutive 'ozone days' with 8-h means above 80 microg m(-3)). The frequency of ozone episodes followed by weather periods favourable for infections by facultative pathogens was higher in years with low O(3) pollution than in ozone-rich years, and varied between one and five cases per season. The number of ozone days during the main growing season of cereals (1 April until 31 August) varied from 25 in 1984 to 98 in 1989. However, only 7.9% of ozone days during the 6 years examined were concurrent with weather conditions suitable for fungal infections. It is concluded that the majority of leaf infections in the field happens under low-level concentrations of photooxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号