首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, steam-produced activated carbon (STAC) from maize tassel (MT) was evaluated for its ability to remove basic dye (methylene blue MB) from aqueous solution in a batch adsorption process. The equilibrium experiments were conducted in the range of 50–300 mg/L initial MB concentrations at 30°C, for effect of pH, adsorbent dosage and contact time. The experimental data were analysed by Langmuir, Freundlich and Temkin isotherm models of adsorption. Freundlich adsorption isotherm was found to have highest value of R2(R2=0.97) compared to other models of Langmuir and Temkin having (0.96 and 0.95 respectively). STAC has a high adsorptive capacity for MB dye (200 mg/g) and also showed favourable adsorption for the dye with the separation factor (RL<1) for the dye-activated carbon system. The kinetic data obtained were analysed using pseudo first-order kinetic equation and pseudo second-order kinetic equation. The experimental data fitted well into pseudo second-order kinetic equation, as demonstrated by the high value of R2.  相似文献   

2.
Multi-walled carbon nanotubes (MWCNTs) were oxidized and characterized by Fourier transform infrared spectroscopy. The adsorption characteristics of the oxidized MWCNT adsorbent were examined using Janus Green (JG) as adsorbate. In batch tests, the effects of pH, adsorbent dose, contact time, and temperature were studied. The maximum adsorption capacity was found to be 56 mg g?1. The experimental data were fitted to the Langmuir, Freundlich, and Tempkin isotherm models, the first one being the most appropriate. Kinetic analysis showed that adsorption was most accurately represented by a pseudo-second-order model.  相似文献   

3.
We report the adsorption isotherm of acid dye on the surface of chitin, a unique solid adsorbent. Adsorption process offers an attractive benefit for a dyeing house treatment. Influences of essential kinetic parameters such as adsorbent particle size, reaction temperature governing the dye adsorption have been investigated. Adsorptions isotherms of dye on chitin were developed and the equilibrium data fitted well to the Langmuir, Freundlich and Redlich Peterson isotherm model. At optimum conditions maximum dye adsorption capacity of chitin estimated with the Langmuir 44.0, 85.0, 104.3 mg/g and 85.0, 114.10, 113.62 mg/g adsorbent. The results showed that chelating polymer of chitin could be considered as potential adsorbents for acid dye removal from dilute solution.  相似文献   

4.
The adsorption of a synthetic textile dye (Remazol Brilliant Black Reactive) on cocoa pod husk-based activated carbon was investigated in batch process. The adsorbent prepared was characterized by gas adsorption surface analysis (Brunauer Emmett Teller, BET), scanning electron microscopy, and Fourier transform infrared spectroscopy. The effects of initial dye concentration, contact time, solution temperature, and solution pH were evaluated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models, the first being the best with maximum monolayer coverage of 111?mg?g?1. Kinetic data were fitted into pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models; the pseudo second-order model provided the best correlation. Maximum adsorption was observed at pH 7. Standard free energy, standard enthalpy, and standard entropy were also calculated. The adsorption interaction was found to be endothermic and spontaneous. Both the mean free energy of adsorption and the activation energy show that the mechanism is by physisorption.  相似文献   

5.
• A high-efficiency N-doped porous carbon adsorbent for Cr(VI) was synthesized. • The maximum adsorption capacity of Cr(VI) reached up to 285.71 mg/g at 318K. • The potential mechanism for Cr(VI) adsorption by NHPC was put forward. • DFT analyzed the adsorption energy and interaction between NHPC and Cr(VI). To develop highly effective adsorbents for chromium removal, a nitrogen-doped biomass-derived carbon (NHPC) was synthesized via direct carbonation of loofah sponge followed by alkali activation and doping modification. NHPC possessed a hierarchical micro-/mesoporous lamellar structure with nitrogen-containing functional groups (1.33 at%), specific surface area (1792.47 m2/g), and pore volume (1.18 cm3/g). NHPC exhibited a higher Cr(VI) adsorption affinity than the HPC (without nitrogen doping) or the pristine loofah sponge carbon (LSC) did. The influence of process parameters, including pH, dosage, time, temperature, and Cr(VI) concentration, on Cr(VI) adsorption by NHPC were evaluated. The Cr(VI) adsorption kinetics matched with the pseudo-second-order model (R2≥0.9983). The Cr(VI) adsorption isotherm was fitted with the Langmuir isotherm model, which indicated the maximum Cr(VI) adsorption capacities: 227.27, 238.10, and 285.71 mg/g at 298K, 308K, and 318K, respectively. The model analysis also indicated that adsorption of Cr(VI) on NHPC was a spontaneous, endothermal, and entropy-increasing process. The Cr(VI) adsorption process potentially involved mixed reductive and adsorbed mechanism. Furthermore, computational chemistry calculations revealed that the adsorption energy between NHPC and Cr(VI) (−0.84 eV) was lower than that of HPC (−0.51 eV), suggesting that nitrogen doping could greatly enhance the interaction between NHPC and Cr(VI).  相似文献   

6.
Biosorption studies of Cr(VI) were carried out using waste weed, Salvinia cucullata. Various adsorption parameters were studied, such as agitation speed, contact time, pH, particle size, and concentrations of adsorbent and adsorbate. The equilibrium was achieved in 12 h. A lower pH favoured adsorption of Cr(VI). The kinetics followed pseudo-second-order rate equations. The adsorption isotherm obeyed both the Langmuir and Freundlich models. The calculated activation energy (1.1 kJ mol-1) suggested that the adsorption followed a diffusion-controlled mechanism. Various thermodynamic parameters such as Δ G°, Δ H°, and Δ S° were also calculated. The positive values of enthalpy indicated the endothermic nature of the reaction, and Δ S° showed the increasing randomness at the solid liquid interface of Cr(VI) on the adsorbent, which revealed the ease of adsorption reaction. These thermo-dynamic parameters showed the spontaneity of the reaction. The maximum adsorption of uptake (232 mg g-1) compared well with reported values of similar adsorbents. The rate-determining step was observed to follow an intra-particle diffusion model.  相似文献   

7.
The present investigation deals with fluoride removal from aqueous solution by thermally activated neem (Azadirachta indica) leaves carbon (ANC) and thermally activated kikar (Acacia arabica) leaves carbon (AKC) adsorbents. In this study neem leaves carbon and kikar leaves carbon prepared by heating the leaves at 400 degrees C in electric furnace was found to be useful for the removal of fluoride. The adsorbents of 0.3 mm and 1.0 mm sizes of neem and kikar leaves carbon was prepared by standard sieve. Batch experiments done to see the fluoride removal properties from synthetic solution of 5 ppm to study the influence of pH, adsorbent dose and contact time on adsorption efficiency The optimum pH was found to be 6 for both adsorbents. The optimum dose was found to be 0.5g/100 ml forANC (activated neem leaves carbon) and 0.7g/100 ml forAKC (activated kikar leaves carbon). The optimum time was found to be one hour for both the adsorbent. It was also found that adsorbent size of 0.3 mm was more efficient than the 1.0 mm size. The adsorption process obeyed Freundlich adsorption isotherm. The straight line of log (qe-q) vs time at ambient temperature indicated the validity of langergren equation consequently first order nature of the process involved in the present study. Results indicate that besides intraparticle diffusion there maybe other processes controlling the rate which may be operating simultaneously. All optimized conditions were applied for removal of fluoride from four natural water samples.  相似文献   

8.
Leaf powder of spear grass, otherwise known as Imperata cylindrica (IC), was used to prepare activated carbon. The Imperata cylindrica activated carbon (ICAC) prepared was used for the removal of Congo red (CR) dye from aqueous solution. Operation parameters such as initial dye concentration, contact time, adsorbent dosage, pH, and temperature were studied in batch systems. Equilibrium was attained in 150 and 180?min at lowest and highest concentrations, respectively. Maximum adsorption was observed at pH 3. Quantum chemical studies suggested that the protonation of aniline groups and minimal molecular size at planar geometry coupled with electrostatic interaction enhances the adsorption at low pH. Adsorption data were tested using pseudo-first-order and second-order reaction kinetics; the latter was found to be more suitable with a coefficient of determination of ≥0.99. The adsorption process fits Langmuir isotherm model better than the Freundlich model, with a maximum monolayer coverage of 313?mgg?1. This study shows that ICAC is effective in removing CR dye from aqueous solutions.  相似文献   

9.
The adsorption of acid brown 75 onto kaolinite in aqueous solution was studied with respect to the pH, adsorbent dosage, contact time, initial concentration, and operating temperature. Desorption of dye from dye-saturated kaolinite was observed. Experimental data indicated that the adsorption capacity of kaolinite for the dye was higher in acidic rather than in basic solution. The maximum adsorption capacity of kaolinite towards the dye was found to be 96.5 mg g?1 (pH 1.0). At the optimal adsorption condition, the dye removal ratio was 95.5%. Dye-saturated kaolinite could desorb at aqueous NaOH, the desorption ratio of dye was 78.8%. The linear Langmuir and Freundlich isotherm models are well fitting to represent the experimental data.  相似文献   

10.
Arsenic (V) adsorption on manganese oxide coated rice wastes was investigated in this study. The modified adsorbents were characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy, and pH measurements to determine the point of zero charge. Batch adsorption equilibrium experiments were conducted to study the effects of pH, contact time, and initial concentration on arsenic removal efficiency. The adsorption capacity of rice waste was significantly improved after modification with permanganate. The Langmuir isotherm model fitted the equilibrium data better than the Freundlich model which confirms surface homogeneity of the adsorbent. Maxima adsorption capacities are determined as 10 and 12 mg/g at pH 3 for manganese oxide coated rice husk and straw, respectively. The adsorption energy indicates that the adsorption process may be dominated by chemisorption. Pseudo-second-order rate equation described the kinetics sorption of arsenic with good correlation coefficients, better than a pseudo-first-order equation. Manganese oxide coated rice husk and straw appear to be promising low cost adsorbents for removing arsenic from water.  相似文献   

11.
Batch adsorption experiments were conducted to explore the adsorption of Cr(VI) in aqueous solutions by β-FeOOH-coated sand. We investigated the key factors which affected the adsorption process such as adsorbent dosage, initial pH, initial Cr(VI) ion concentration, contact time and temperature. The uptake of Cr(VI) was very rapid and 44.3%, 51.6%, 58.9% of the adsorption happened during the first 180 minutes at 293K, 303K and 313K, respectively. The pseudo-second-order rate equation successfully described the adsorption kinetics. To study the adsorption isotherm, two equilibrium models, the Langmuir and Freundlich isotherms, were adopted. At 293K, 303K and 313K, the adsorption capacities obtained from the Langmuir isotherm were 0.060, 0.070 and 0.076 mg Cr(VI) per gram of the adsorbent, respectively. Thermodynamic parameters such as the change of energy, enthalpy and entropy were calculated using the equilibrium constants. The negative value of ΔG 0 and the positive value of ΔH 0 showed that the adsorption of Cr(VI) in aqueous solutions by β-FeOOH-coated sand was spontaneous, endothermic and occurred by physisorption.  相似文献   

12.
Removal of Cu2+, Cd2+, Pb2+, and Zn2+ from aqueous solutions by activated carbon prepared from stems and seed hulls of Cicer arietinum, an agricultural solid waste, has been studied. The influence of various parameters, such as pH, contact time, adsorbent dose, and initial concentration of metal ions on removal was evaluated. The activated carbon was characterized by FT-IR spectroscopy, X-ray diffraction, and elemental analysis. Sorption isotherms were studied using Langmuir and Freundlich isotherm models. All experimental sorption data were fitted to the sorption models using nonlinear least-squares regression. The maximum adsorption capacity values for activated carbon prepared from Cicer arietinum waste for metal ions were 18 mg g?1 (Cu2+), 18 mg g?1 (Cd2+), 20 mg g?1 (Pb2+), and 20 mg g?1 (Zn2+), respectively. The Freundlich isotherm model fit was best, followed by the pseudo-second-order kinetic model. Desorption studies were carried out with dilute hydrochloric acid for quantitative recovery of the metal ions and for regeneration of the adsorbent.  相似文献   

13.
Highly activated carbon from the seed husk of Casuarina Casuarinas equisetifolia, a worldwide famous plant, have been prepared and tested for the removal of toxic Cr(VI) from its aqueous solution. The adsorbent was investigated for influences of initial chromium concentration (75, 100, 125, and 150 mg l-1), pH, contact time, and quantity of carbon on removal of Cr(VI) from aqueous solution at room temperature (25±2 °C). The adsorption kinetic of Cr(VI) was studied, and the rates of sorption were found to conform to pseudo-second-order kinetics with a good correlation (R2≥0.99). The Langmuir and Freundlich models fit the isotherm data well. Furthermore, the Gibbs free energy was obtained for each system and was found to be-5.29 kJ mol-1 for removal of Cr(IV). The negative value of Δ G° indicates the feasibility and spontaneous nature of adsorption. The results indicate that acidic pH (1.05) supported the adsorption of Cr(IV) on activated carbon. The maximum adsorption capacity of Cr(VI) on activated carbon was about 172.4 mg g-1 at pH 1.05.  相似文献   

14.
改性碳纳米管原始样品吸附亚甲基蓝的性能研究   总被引:4,自引:0,他引:4  
利用直接制备的碳纳米管原始样品作为染料亚甲基蓝的吸附剂,采用次氯酸钠溶液对于碳纳米管原始样品进行表面修饰改性,改性处理后碳纳米管对亚甲基蓝吸附性较好,本工艺简单有效,所获得的吸附剂具有磁性,吸附过后用磁铁易于达到固液分离的效果.吸附性能结果表明:本吸附剂对水溶液中亚甲基蓝的吸附在60 min基本达到平衡,吸附过程符合准二级动力学模型(R2>0.99).改性后的磁性碳纳米管吸附亚甲基蓝的平衡吸附量qe与亚甲基蓝溶液的平衡浓度Ce的关系满足Langmuir(R2>0.99)、Freundlich(R2>0.91)以及Dubinin-Radushkevich(D-R)(R2>0.92)等温吸附模型.通过Langmuir模型计算可知改性磁性碳纳米管对亚甲基蓝的最大吸附容量为101.6 mg.g-1,由D-R模型计算结果可以推断,次氯酸钠改性后的磁性碳纳米管对水溶液中亚甲基蓝的吸附机理以化学吸附为主.  相似文献   

15.
张再利  况群  贾晓珊 《生态环境》2010,19(12):2973-2977
以花生壳为生物吸附剂,通过序批式实验研究了吸附剂投量、吸附时间、金属离子初始质量浓度、吸附温度对吸附金属离子的影响,探讨了花生壳吸附的动力学及热力学特性。结果表明,准二级动力学方程能很好地描述花生壳对Pb^2+、Cu^2+、Cr^3+、Cd^2+、Ni^2+的吸附过程。Langmuir模型和Freundlich模型均能较好地描述花生壳对5种重金属离子的等温吸附过程,而Langmuir模型拟合的线性更好。Pb2+、Cu2+、Cr3+、Cd2+、Ni2+5种金属离子的最大吸附量分别是32.25、7.09、3.82、2.95、2.22 mg.g-1,花生壳可用于处理低质量浓度多种重金属混合的废水。热力学研究表明,花生壳对5种金属离子的吸附具有自发、吸热和熵增的特性。  相似文献   

16.
Several synthetic dyes employed in textile and food industries are discharged into aquatic environment. These visible pollutants in water damage environment, as they are carcinogenic and toxic to humans. The use of cost effective and ecofriendly plant cellulose based adsorbents have been studied in batch experiments as an alternative and effective substitution of activated carbon for the removal of toxic dyes from waste water. Adsorbents prepared from sugarcane baggase, were successfully used to remove certain textile dye such as crystal violet from an aqueous solution. The present investigation potentiate the use of sugarcane baggase, pretreated with formaldehyde (referred as Raw Baggase) and sulphuric acid (referred as Chemically Activated Baggase), for the removal of crystal violet dye from simulated waste water. Experiments were carried out at neutral pH with various parameters like dye concentration, temperature, contact time and adsorbent dosage. Efficiency of raw baggase was found better than chemically activated baggase for adsorption of crystal violet dye. The data obtained perfectly fits in the Freundlich adsorption isotherm.  相似文献   

17.
Biochar, is a low-cost material that can be used as an alternative adsorbent for the removal of heavy metals. In this study, a low-cost and efficient adsorbent synthesised from Jatropha curcas seeds was used for the uptake of Cu2+ from aqueous solutions. The as-prepared adsorbent was characterised by scanning electron microscopy and Brunauer–Emmett–Teller analysis post calcination at 500 °C, its BET surface area and total pore volume were 39.62?m2?g?1 and 0.049?m3?g?1, respectively. Subsequently, the effects of initial pH of the solution, contact time, and adsorbent material dosage on the adsorption of Cu2+ by the prepared adsorbent were investigated. The as-prepared adsorbent exhibited a high performance, with a maximum adsorption amount of 32.895?mg?g?1 for Cu2+ at pH 5.0 and 25 °C, owing to the presence of ?OH, C=O, C–O, Si-O-Si, and O-Si-O on its surface. The predominant Cu2+ adsorption mechanism was assumed to be ion exchange. Notably, the Cu2+ adsorption could attain equilibrium within 90?min. In addition, the fact that the Langmuir model was a better fit than the Freundlich model for the isotherm data of Cu2+ adsorption by the as-prepared adsorbent suggested that the adsorption of Cu2+ was a monolayer adsorption process.  相似文献   

18.
In this study, the adsorption performance of powdered activated carbon (PAC) on phenol was investigated in aqueous solutions. Batch adsorption studies were performed to evaluate the effects of various experimental parameters like PAC type, PAC dose, initial solution pH, temperature and pre-oxidation on the adsorption of phenol by PAC and establish the adsorption kinetics, thermodynamics and isothermal models. The results indicated that PAC adsorption is an effective method to remove phenol from water, and the effects of all the five factors on adsorption of phenol were significant. The adsorption rate of phenol by PAC was rapid, and more than 80% phenol could be absorbed by PAC within the initial 10 min. The adsorption process can be well described by pseudo-second-order adsorption kinetic model with rate constant amounted to 0.0313, 0.0305 and 0.0241 mg·μg -1·min -1 with coal, coconut shell and bamboo charcoal. The equilibrium data of phenol absorbed onto PAC were analyzed by Langmuir, Freundlich and Tempkin adsorption isotherms and Freundlich adsorption isotherm model gave the best correlation with the experimental data. Thermodynamic parameters such as the standard Gibbs free energy (?Go), enthalpy (?Ho) and entropy (?So) obtained in this study indicated that the adsorption of phenol by PAC is spontaneous, exothermic and entropy decreasing.  相似文献   

19.
Chemically prepared activated carbon derived from banana stalk (BSAC) was used as an adsorbent to remove malachite green (MG) dye from aqueous solution. BSAC was characterised using thermogravimetric analyser, Brunauer Emmett Teller, Fourier transform infrared spectrometry, scanning electron microscopy, pHpzc, elemental analysis and Boehm titration. The effectiveness of BSAC in adsorbing MG dye was studied as a function of pH, contact time, temperature, initial dye concentration and repeated desorption–adsorption processes. pHpzc of BSAC was 4.5 and maximum dye adsorption occurred at pH 8.0. The rate of dye adsorption by BSAC was very fast initially, attaining equilibrium within 120 min following a pseudo-second-order kinetic model. Experimental data were analysed by Langmuir, Freundlich and Dubinin–Raduschevich isotherms. Equilibrium data fitted best into the Langmuir model, with a maximum adsorption capacity of 141.76 mg·g?1. Δ G 0 values were negative, indicating that the process of MG dye adsorption onto BSAC was spontaneous. The positive values of Δ H 0 and Δ S 0 suggests that the process of dye adsorption was endothermic. The regeneration efficiency of spent BSAC was studied using 0.5 M HCl, and was found to be in the range of 90.22–95.16% after four cycles. This adsorbent was found to be both effective and viable for the removal of MG dye from aqueous solution.  相似文献   

20.
Sorghastrum Nutans L. Nash is used as an adsorbent for the removal of Cr(VI) from wastewater. Adsorption coupled reduction i.e. indirect reduction is the mechanism of Cr(VI) removal by the biomaterial. The adsorbent surface became highly positively charged at lower pH, adsorption rate of Cr(VI) is faster and reduction reaction also accelerates at lower pH since the binding of negatively charged Cr(VI) ion species to the cationic groups is enhanced and protons take part in this reaction. The adsorbent is characterised by using XRD, FTIR, SEM and EDAX analysis. OH bending, CN stretching/bending and NH stretching play a major role in Chromium adsorption. Experimental values follow pseudo-second order reaction and Langmuir adsorption isotherm. Surface diffusion is the rate controlling mechanism for the process. The maximum percentage of Cr(VI) removal obtained is 75.5% with 7?g/L dosage at pH 1.3 and adsorbate concentration was 100?mg/L. From the normal probability, residual, contour, 3D surface, main effect and interaction plot along with t-test, ANOVA, and F-test, it is observed that pH has the most significant effect on the percentage removal followed by adsorbent dosage and time. The adsorbate concentration has the least effects and interaction effects are found to be significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号