首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
颗粒Ru催化剂催化湿式氧化乙酸和苯酚   总被引:1,自引:0,他引:1       下载免费PDF全文
采用湿式成型法制备了Ru/ZrO2-CeO2颗粒催化剂,对乙酸和苯酚进行湿式氧化,研究反应条件对苯酚氧化过程中COD去除的影响,并对催化剂的稳定性进行评价.结果表明,向CeO2中添加Zr能提高催化剂抗热性能,使用湿式成型法能降低焙烧温度,两者都可以提高比表面积和催化剂活性.Ru/ZrO2-CeO2催化湿式氧化苯酚的COD去除率随着反应温度的升高、压力的增大和催化剂使用量的增加而升高,最优反应条件为温度150℃,压力3MPa,催化剂用量35g/L.在110h的动态试验中,COD和苯酚的去除率高于90%,催化剂具有较高活性和良好的稳定性.  相似文献   

2.
通过共沉淀法制备了用于湿式氧化吡虫啉农药废水的Mn/Ce复合催化剂,利用BET比表面积测定和XRD对催化剂进行了表征,研究了焙烧温度对Mn/Ce催化剂活性及稳定性的影响,探讨了湿式催化氧化吡虫啉农药废水的适宜反应温度和氧分压.结果表明,Mn/Ce催化剂晶粒细小,晶粒尺寸小于15nm;适当降低焙烧温度,对减小催化剂晶粒、增加比表面积、提高活性有利,但会使金属溶出量增大、稳定性下降;提高反应温度,湿式催化氧化反应速率加快,而氧分压大于1.6MPa后,反应速率不受氧分压影响;使用该催化剂,在温度190℃、氧分压1.6MPa、进水pH为6.21的条件下经120min处理,COD去除率达93.1%;Mn/Ce复合催化剂对湿式氧化吡虫啉农药废水显示较好的活性和稳定性.  相似文献   

3.
催化剂Ru/ZrO2-CeO2催化湿式氧化苯酚   总被引:1,自引:1,他引:0  
王建兵  祝万鹏  王伟  杨少霞 《环境科学》2007,28(7):1460-1465
催化剂Ru/ZrO2-CeO2催化湿式氧化苯酚的过程表明,Ru/ZrO2-CeO2可以显著提高COD和苯酚去除效果,当反应温度为170℃,压力为3 MPa,反应120 min后,COD和苯酚的去除率分别达到了99%和100%.试验还考察了不同反应条件对苯酚溶液COD去除的影响,并获得了最优的反应条件:温度为170℃,压力为3 MPa,催化剂的投加量为5 g/L,搅拌速度为500 r/min.通过对中间产物的分析,本研究提出了催化湿式氧化苯酚的简单路径图,认为苯酚首先被氧化成小分子有机酸,接着小分子有机酸被氧化成二氧化碳和水.前一个过程是快速反应,后一个过程中的乙酸氧化是慢速过程,需要在高温下才能完成.乙酸的氧化主要是自由基攻击α碳上的C—H键,先生成甲酸,并最终生成二氧化碳和水.  相似文献   

4.
催化剂Ru/ZrO2-CeO2催化湿式氧化苯酚   总被引:2,自引:2,他引:2  
催化剂Ru/ZrO2-CeO2催化湿式氧化苯酚的过程表明,Ru/ZrO2-CeO2可以显著提高COD和苯酚去除效果,当反应温度为170℃,压力为3 MPa,反应120 min后,COD和苯酚的去除率分别达到了99%和100%.试验还考察了不同反应条件对苯酚溶液COD去除的影响,并获得了最优的反应条件:温度为170℃,压力为3 MPa,催化剂的投加量为5 g/L,搅拌速度为500 r/min.通过对中间产物的分析,本研究提出了催化湿式氧化苯酚的简单路径图,认为苯酚首先被氧化成小分子有机酸,接着小分子有机酸被氧化成二氧化碳和水.前一个过程是快速反应,后一个过程中的乙酸氧化是慢速过程,需要在高温下才能完成.乙酸的氧化主要是自由基攻击α碳上的C-H键,先生成甲酸,并最终生成二氧化碳和水.  相似文献   

5.
通过共沉淀法制备了用于湿式氧化吡虫啉农药废水的Cu/Mn复合氧化物催化剂,研究了沉淀剂种类、沉淀温度、焙烧温度和活性组分配比等岗素等对Cu/Mn复合氧化物催化剂的活性及稳定性的影响,确定了最佳制备条件,利用BET比表面积测定和XRD对催化剂进行了表征。结果表明,优化条件制备的Cu/Mn复合氧化物催化剂催化湿式氧化处理吡虫啉农药废水时,具有较高的催化活性和稳定性。催化剂用量4g/L,反应温度190℃,氧分压1.6MPa,反应120min,COD去除率为92.3%,活性组分溶出量较小。  相似文献   

6.
制备催化剂Cu-Fe-Co-Ni-Ce/γAl2O3,开展污泥催化湿式氧化处理的实验研究。在温度180℃、搅拌转速600 r/min、常温当量氧分压1.0 MPa、催化剂添加量8.0 g/L的最佳工艺条件下,反应90 min的污泥COD去除率可达72.6%,Cu2+溶出量为19.2 mg/L;反应30 min,污泥固相中95.5%的有机物消解,30 min沉降比从94.4%降至8.4%,抽虑后含水率可下降至59.2%,体积减量94.4%。此外,污泥的催化湿式氧化处理工艺具有一定的资源化前景。  相似文献   

7.
在自制的滴流床反应器中,以苯酚配水溶液为研究对象,采用负载型MnOx/γ-Al2O3作为催化剂,研究了苯酚催化湿式氧化过程.通过实验数据的拟合分析,提出了苯酚催化湿式氧化本征反应速率表达式,计算了液体流率为1.6 L/h时不同温度下催化剂外表面湿润效率以及不同温度下与一定的氧分压相平衡的水中溶解氧浓度;由实验数据拟合得到苯酚催化湿式氧化表观反应动力学模型参数,并建立了关于积分式滴流床苯酚催化湿式氧化的反应器模型,比较了不同氧分压、进液苯酚质量浓度、进液流率下苯酚去除率的计算值与实验值.结果显示:当氧分压大于1.0 MPa时,计算值与实验值能较好吻合,当氧分压较低时,氧气从气相到液相存在一定的传质阻力.在苯酚进液质量浓度为0~5 000 mg/L时,苯酚对催化氧化反应的抑制作用不明显.在进液流率为0~2.05 L/h时,存在一定的外扩散阻力.   相似文献   

8.
通过在活性炭上负载铁、锰和铈离子的方法,制备Fe-Mn-Ce/GAC催化剂,并研究其在非均相臭氧催化氧化反应(heterogeneous catalytic ozonation process,HCOP)和尾气利用-非均相臭氧催化氧化反应(ozone reuse-HCOP,ORHCOP)深度处理生物制药废水中的催化性能。结果表明:HCOP工艺中,在反应时间为120 min,初始pH为9,催化剂投加量为2 g/L,催化剂粒径为0. 15~0. 35 mm条件下,COD和NH4+-N平均去除率分别可达80. 78%和94. 35%[出水浓度分别为(57. 03±0. 57),(0. 38±0. 06) mg/L]。OR-HCOP工艺中,ρ(COD)和ρ(NH4+-N)进水分别为(294. 46±2. 11),(5. 99±0. 06) mg/L,尾气催化氧化后分别降至(103. 63±3. 20),(0. 97±0. 08) mg/L,臭氧催化氧化后进一步降至(39. 42±4. 71),(0. 32±0. 02) mg/L,平均去除率分别可达86. 62%和94. 59%,且可回收臭氧57. 47%。在HCOP最佳工艺条件下,Fe-Mn-Ce/GAC至少可循环使用6次。  相似文献   

9.
催化湿式氧化处理造纸废水的研究   总被引:4,自引:1,他引:3  
以过渡金属氧化物CuO为活性组分,采用催化湿式氧化法处理造纸废水,考察Cu负载量、催化剂用量、反应温度对废水COD去除率的影响。结果表明:固定氧气分压在2.5MPa和反应时间3h,催化剂用量为3g,Cu负载量为4%,反应温度为220℃,500mL浓度为3250mg/L造纸废水的COD去除率为90%,色度去除率为89%,pH值由9.6变为7.8。另外,对催化剂进行再生处理和稳定性测试。结果表明:450℃下活化3h,在上述相同反应条件下,对原废水的COD去除率降低为88%,重复使用9次后对废水的COD去除率仍能保持在85%左右。  相似文献   

10.
催化臭氧氧化预处理垃圾渗滤液   总被引:2,自引:0,他引:2  
采用浸渍法制备载铜活性炭催化剂,系统地研究了催化氧化法对垃圾渗滤液中的COD和氨氮去除效果,对臭氧氧化和催化臭氧氧化效率进行了对比。在该方法下制备的催化剂中,活性组分金属铜的含量为2.89%。结果表明:在投加催化剂的情况下,COD的去除效率可得到显著提高。实验结果表明:处理COD为4980mg/L,氨氮为2100mg/L的垃圾渗滤液废水,在室温、pH为3、反应时间为120min、催化剂投加量为150g/L、臭氧的流量为5.2mg/min的条件下,废水中的COD及氨氮的去除率分别达到达81.9%和99.04%。  相似文献   

11.
The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic bound (OM) became predominance of Zn and organic bound Cu occupied the largest portion. There was more available amount of Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to ΔEXCH and ΔCAR forms but also in ΔOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by ΔEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.  相似文献   

12.
A hydroponic experiment was carried out to study intraspecific differences in the effects of different concentrations of cadmium (Cd)(0-10 mg/L) and arsenate (As(V)) (0-8 mg/L) on the growth parameters and accumulation of Cd and As in six wheat varieties Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8. The endpoints of wheat seedlings, including seed germination,biomass, root length and shoot height, decreased with increasing the Cd and As concentrations. Significant differences in seed germination, biomass, root length, shoot height and the accumulation of Cd and As were observed between the treatments and among the varieties (p < 0.05). The lethal dosage 50% were about 20, 80, 60, 60, 80 and 20 mg As/L for Jing-9428, Duokang-1, Jingdong-11,Jing-411, Jingdong-8 and Zhongmai-8, respectively, and the corresponding values for Cd were about 30, 80, 20, 40, 60 and 10 mg Cd/L, respectively. Among the six varieties, Duokang-1 was found to be the most resistant to Cd and As toxicity, and Zhongmai-8 was the most sensitive to Cd and As co-contamination. The resistance of the six varieties was found dependant on the seedling uptake of Cd and As. Duokang-1 was the most suitable for cultivation in Cd and As co-contaminated soils.  相似文献   

13.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

14.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

15.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

16.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

17.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

18.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

19.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

20.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号